AuroraOpenALSoft/Alc/alcRing.c

402 lines
11 KiB
C
Raw Normal View History

2007-12-17 02:36:06 +00:00
/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
2007-12-17 02:36:06 +00:00
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
2008-01-16 22:09:04 +00:00
#include "config.h"
2007-12-17 02:36:06 +00:00
#include <string.h>
#include <stdlib.h>
#include "alMain.h"
#include "threads.h"
2013-10-28 19:05:33 +00:00
#include "compat.h"
2007-12-17 02:36:06 +00:00
struct RingBuffer {
ALubyte *mem;
ALsizei frame_size;
ALsizei length;
ALint read_pos;
ALint write_pos;
almtx_t mtx;
2007-12-17 02:36:06 +00:00
};
RingBuffer *CreateRingBuffer(ALsizei frame_size, ALsizei length)
{
RingBuffer *ring = calloc(1, sizeof(*ring) + ((length+1) * frame_size));
2007-12-17 02:36:06 +00:00
if(ring)
{
ring->mem = (ALubyte*)(ring+1);
2007-12-17 02:36:06 +00:00
ring->frame_size = frame_size;
ring->length = length+1;
ring->read_pos = 0;
ring->write_pos = 0;
2007-12-17 02:36:06 +00:00
almtx_init(&ring->mtx, almtx_plain);
2007-12-17 02:36:06 +00:00
}
return ring;
}
void DestroyRingBuffer(RingBuffer *ring)
{
if(ring)
{
almtx_destroy(&ring->mtx);
2007-12-17 02:36:06 +00:00
free(ring);
}
}
ALsizei RingBufferSize(RingBuffer *ring)
{
ALsizei s;
almtx_lock(&ring->mtx);
s = (ring->write_pos-ring->read_pos+ring->length) % ring->length;
almtx_unlock(&ring->mtx);
return s;
2007-12-17 02:36:06 +00:00
}
void WriteRingBuffer(RingBuffer *ring, const ALubyte *data, ALsizei len)
{
int remain;
2007-12-17 02:36:06 +00:00
almtx_lock(&ring->mtx);
2007-12-17 02:36:06 +00:00
remain = (ring->read_pos-ring->write_pos-1+ring->length) % ring->length;
if(remain < len) len = remain;
2007-12-17 02:36:06 +00:00
if(len > 0)
2007-12-17 02:36:06 +00:00
{
remain = ring->length - ring->write_pos;
if(remain < len)
{
memcpy(ring->mem+(ring->write_pos*ring->frame_size), data,
remain*ring->frame_size);
memcpy(ring->mem, data+(remain*ring->frame_size),
(len-remain)*ring->frame_size);
}
else
memcpy(ring->mem+(ring->write_pos*ring->frame_size), data,
len*ring->frame_size);
2007-12-17 02:36:06 +00:00
ring->write_pos += len;
ring->write_pos %= ring->length;
}
2007-12-17 02:36:06 +00:00
almtx_unlock(&ring->mtx);
2007-12-17 02:36:06 +00:00
}
void ReadRingBuffer(RingBuffer *ring, ALubyte *data, ALsizei len)
{
int remain;
2007-12-17 02:36:06 +00:00
almtx_lock(&ring->mtx);
2007-12-17 02:36:06 +00:00
remain = ring->length - ring->read_pos;
2007-12-17 02:36:06 +00:00
if(remain < len)
{
memcpy(data, ring->mem+(ring->read_pos*ring->frame_size), remain*ring->frame_size);
memcpy(data+(remain*ring->frame_size), ring->mem, (len-remain)*ring->frame_size);
}
else
memcpy(data, ring->mem+(ring->read_pos*ring->frame_size), len*ring->frame_size);
ring->read_pos += len;
ring->read_pos %= ring->length;
almtx_unlock(&ring->mtx);
2007-12-17 02:36:06 +00:00
}
/* NOTE: This lockless ringbuffer implementation is copied from JACK, extended
* to include an element size. Consequently, parameters and return values for a
* size or count is in 'elements', not bytes. Additionally, it only supports
* single-consumer/single-provider operation. */
struct ll_ringbuffer {
volatile size_t write_ptr;
volatile size_t read_ptr;
size_t size;
size_t size_mask;
size_t elem_size;
int mlocked;
alignas(16) char buf[];
};
/* Create a new ringbuffer to hold at least `sz' elements of `elem_sz' bytes.
* The number of elements is rounded up to the next power of two. */
ll_ringbuffer_t *ll_ringbuffer_create(size_t sz, size_t elem_sz)
{
ll_ringbuffer_t *rb;
ALuint power_of_two;
power_of_two = NextPowerOf2(sz);
if(power_of_two < sz)
return NULL;
rb = al_malloc(16, sizeof(*rb) + power_of_two*elem_sz);
if(!rb) return NULL;
rb->size = power_of_two;
rb->size_mask = rb->size - 1;
rb->elem_size = elem_sz;
rb->write_ptr = 0;
rb->read_ptr = 0;
rb->mlocked = 0;
return rb;
}
/* Free all data associated with the ringbuffer `rb'. */
void ll_ringbuffer_free(ll_ringbuffer_t *rb)
{
if(rb)
{
#ifdef USE_MLOCK
if(rb->mlocked)
munlock(rb, sizeof(*rb) + rb->size*rb->elem_size);
#endif /* USE_MLOCK */
al_free(rb);
}
}
/* Lock the data block of `rb' using the system call 'mlock'. */
int ll_ringbuffer_mlock(ll_ringbuffer_t *rb)
{
#ifdef USE_MLOCK
if(!rb->locked && mlock(rb, sizeof(*rb) + rb->size*rb->elem_size))
return -1;
#endif /* USE_MLOCK */
rb->mlocked = 1;
return 0;
}
/* Reset the read and write pointers to zero. This is not thread safe. */
void ll_ringbuffer_reset(ll_ringbuffer_t *rb)
{
rb->read_ptr = 0;
rb->write_ptr = 0;
memset(rb->buf, 0, rb->size*rb->elem_size);
}
2015-02-07 18:08:27 +00:00
/* Return the number of elements available for reading. This is the number of
* elements in front of the read pointer and behind the write pointer. */
size_t ll_ringbuffer_read_space(const ll_ringbuffer_t *rb)
{
size_t w = rb->write_ptr;
size_t r = rb->read_ptr;
return (rb->size+w-r) & rb->size_mask;
}
2015-02-07 18:08:27 +00:00
/* Return the number of elements available for writing. This is the number of
* elements in front of the write pointer and behind the read pointer. */
size_t ll_ringbuffer_write_space(const ll_ringbuffer_t *rb)
{
size_t w = rb->write_ptr;
size_t r = rb->read_ptr;
return (rb->size+r-w-1) & rb->size_mask;
}
/* The copying data reader. Copy at most `cnt' elements from `rb' to `dest'.
* Returns the actual number of elements copied. */
size_t ll_ringbuffer_read(ll_ringbuffer_t *rb, char *dest, size_t cnt)
{
size_t free_cnt;
size_t cnt2;
size_t to_read;
size_t n1, n2;
free_cnt = ll_ringbuffer_read_space(rb);
if(free_cnt == 0) return 0;
to_read = (cnt > free_cnt) ? free_cnt : cnt;
cnt2 = rb->read_ptr + to_read;
if(cnt2 > rb->size)
{
n1 = rb->size - rb->read_ptr;
n2 = cnt2 & rb->size_mask;
}
else
{
n1 = to_read;
n2 = 0;
}
memcpy(dest, &(rb->buf[rb->read_ptr*rb->elem_size]), n1*rb->elem_size);
rb->read_ptr = (rb->read_ptr + n1) & rb->size_mask;
if(n2)
{
memcpy(dest + n1*rb->elem_size, &(rb->buf[rb->read_ptr*rb->elem_size]), n2*rb->elem_size);
rb->read_ptr = (rb->read_ptr + n2) & rb->size_mask;
}
return to_read;
}
/* The copying data reader w/o read pointer advance. Copy at most `cnt'
* elements from `rb' to `dest'. Returns the actual number of elements copied.
*/
size_t ll_ringbuffer_peek(ll_ringbuffer_t *rb, char *dest, size_t cnt)
{
size_t free_cnt;
size_t cnt2;
size_t to_read;
size_t n1, n2;
size_t tmp_read_ptr;
tmp_read_ptr = rb->read_ptr;
free_cnt = ll_ringbuffer_read_space(rb);
if(free_cnt == 0) return 0;
to_read = (cnt > free_cnt) ? free_cnt : cnt;
cnt2 = tmp_read_ptr + to_read;
if(cnt2 > rb->size)
{
n1 = rb->size - tmp_read_ptr;
n2 = cnt2 & rb->size_mask;
}
else
{
n1 = to_read;
n2 = 0;
}
memcpy(dest, &(rb->buf[tmp_read_ptr*rb->elem_size]), n1*rb->elem_size);
tmp_read_ptr = (tmp_read_ptr + n1) & rb->size_mask;
if(n2)
memcpy(dest + n1*rb->elem_size, &(rb->buf[tmp_read_ptr*rb->elem_size]), n2*rb->elem_size);
return to_read;
}
/* The copying data writer. Copy at most `cnt' elements to `rb' from `src'.
* Returns the actual number of elements copied. */
size_t ll_ringbuffer_write(ll_ringbuffer_t *rb, const char *src, size_t cnt)
{
size_t free_cnt;
size_t cnt2;
size_t to_write;
size_t n1, n2;
free_cnt = ll_ringbuffer_write_space(rb);
if(free_cnt == 0) return 0;
to_write = (cnt > free_cnt) ? free_cnt : cnt;
cnt2 = rb->write_ptr + to_write;
if(cnt2 > rb->size)
{
n1 = rb->size - rb->write_ptr;
n2 = cnt2 & rb->size_mask;
}
else
{
n1 = to_write;
n2 = 0;
}
memcpy(&(rb->buf[rb->write_ptr*rb->elem_size]), src, n1*rb->elem_size);
rb->write_ptr = (rb->write_ptr + n1) & rb->size_mask;
if(n2)
{
memcpy(&(rb->buf[rb->write_ptr*rb->elem_size]), src + n1*rb->elem_size, n2*rb->elem_size);
rb->write_ptr = (rb->write_ptr + n2) & rb->size_mask;
}
return to_write;
}
/* Advance the read pointer `cnt' places. */
void ll_ringbuffer_read_advance(ll_ringbuffer_t *rb, size_t cnt)
{
size_t tmp = (rb->read_ptr + cnt) & rb->size_mask;
rb->read_ptr = tmp;
}
/* Advance the write pointer `cnt' places. */
void ll_ringbuffer_write_advance(ll_ringbuffer_t *rb, size_t cnt)
{
size_t tmp = (rb->write_ptr + cnt) & rb->size_mask;
rb->write_ptr = tmp;
}
/* The non-copying data reader. `vec' is an array of two places. Set the values
* at `vec' to hold the current readable data at `rb'. If the readable data is
* in one segment the second segment has zero length. */
void ll_ringbuffer_get_read_vector(const ll_ringbuffer_t *rb, ll_ringbuffer_data_t * vec)
{
size_t free_cnt;
size_t cnt2;
size_t w, r;
w = rb->write_ptr;
r = rb->read_ptr;
free_cnt = (rb->size+w-r) & rb->size_mask;
cnt2 = r + free_cnt;
if(cnt2 > rb->size)
{
/* Two part vector: the rest of the buffer after the current write ptr,
* plus some from the start of the buffer. */
vec[0].buf = (char*)&(rb->buf[r*rb->elem_size]);
vec[0].len = rb->size - r;
vec[1].buf = (char*)rb->buf;
vec[1].len = cnt2 & rb->size_mask;
}
else
{
/* Single part vector: just the rest of the buffer */
vec[0].buf = (char*)&(rb->buf[r*rb->elem_size]);
vec[0].len = free_cnt;
vec[1].buf = NULL;
vec[1].len = 0;
}
}
/* The non-copying data writer. `vec' is an array of two places. Set the values
* at `vec' to hold the current writeable data at `rb'. If the writeable data
* is in one segment the second segment has zero length. */
void ll_ringbuffer_get_write_vector(const ll_ringbuffer_t *rb, ll_ringbuffer_data_t *vec)
{
size_t free_cnt;
size_t cnt2;
size_t w, r;
w = rb->write_ptr;
r = rb->read_ptr;
free_cnt = (rb->size+r-w-1) & rb->size_mask;
cnt2 = w + free_cnt;
if(cnt2 > rb->size)
{
/* Two part vector: the rest of the buffer after the current write ptr,
* plus some from the start of the buffer. */
vec[0].buf = (char*)&(rb->buf[w*rb->elem_size]);
vec[0].len = rb->size - w;
vec[1].buf = (char*)rb->buf;
vec[1].len = cnt2 & rb->size_mask;
}
else
{
vec[0].buf = (char*)&(rb->buf[w*rb->elem_size]);
vec[0].len = free_cnt;
vec[1].buf = NULL;
vec[1].len = 0;
}
}