AuroraOpenALSoft/common/almalloc.h

418 lines
13 KiB
C
Raw Normal View History

#ifndef AL_MALLOC_H
#define AL_MALLOC_H
2019-01-11 16:07:25 +00:00
#include <algorithm>
2019-07-29 16:29:35 +00:00
#include <cstddef>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
#include "pragmadefs.h"
2018-11-18 08:38:31 +00:00
void al_free(void *ptr) noexcept;
void *al_malloc(size_t alignment, size_t size);
void *al_calloc(size_t alignment, size_t size);
2018-11-18 08:38:31 +00:00
#define DISABLE_ALLOC() \
void *operator new(size_t) = delete; \
void *operator new[](size_t) = delete; \
void operator delete(void*) noexcept = delete; \
void operator delete[](void*) noexcept = delete;
2018-11-18 08:38:31 +00:00
#define DEF_NEWDEL(T) \
void *operator new(size_t size) \
{ \
static_assert(&operator new == &T::operator new, \
"Incorrect container type specified"); \
if(void *ret{al_malloc(alignof(T), size)}) \
return ret; \
throw std::bad_alloc(); \
2018-11-18 08:38:31 +00:00
} \
void *operator new[](size_t size) { return operator new(size); } \
void operator delete(void *block) noexcept { al_free(block); } \
void operator delete[](void *block) noexcept { operator delete(block); }
#define DEF_PLACE_NEWDEL() \
void *operator new(size_t /*size*/, void *ptr) noexcept { return ptr; } \
void *operator new[](size_t /*size*/, void *ptr) noexcept { return ptr; } \
2019-09-11 10:59:53 +00:00
void operator delete(void *block, void*) noexcept { al_free(block); } \
void operator delete(void *block) noexcept { al_free(block); } \
void operator delete[](void *block, void*) noexcept { al_free(block); } \
void operator delete[](void *block) noexcept { al_free(block); }
2019-09-11 10:59:53 +00:00
enum FamCount : size_t
{ };
2019-09-11 10:59:53 +00:00
#define DEF_FAM_NEWDEL(T, FamMem) \
static constexpr size_t Sizeof(size_t count) noexcept \
{ \
static_assert(&Sizeof == &T::Sizeof, \
"Incorrect container type specified"); \
2022-03-24 23:12:23 +00:00
return std::max(decltype(FamMem)::Sizeof(count, offsetof(T, FamMem)), \
sizeof(T)); \
} \
2019-09-11 10:59:53 +00:00
\
2020-05-19 19:15:57 +00:00
void *operator new(size_t /*size*/, FamCount count) \
2019-09-11 10:59:53 +00:00
{ \
2020-05-19 19:15:57 +00:00
if(void *ret{al_malloc(alignof(T), T::Sizeof(count))}) \
2019-09-11 10:59:53 +00:00
return ret; \
throw std::bad_alloc(); \
} \
void *operator new[](size_t /*size*/) = delete; \
void operator delete(void *block, FamCount) { al_free(block); } \
void operator delete(void *block) noexcept { al_free(block); } \
void operator delete[](void* /*block*/) = delete;
2019-09-11 10:59:53 +00:00
namespace al {
template<typename T, std::size_t Align=alignof(T)>
struct allocator
{
static constexpr std::size_t alignment { std::max(Align, alignof(T)) };
using value_type = T;
using reference = T &;
using const_reference = const T &;
using pointer = T *;
using const_pointer = const T *;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using is_always_equal = std::true_type;
template<typename U>
struct rebind
{
using other = allocator<U, Align>;
};
constexpr explicit allocator() noexcept = default;
template<typename U, std::size_t N>
constexpr explicit allocator(const allocator<U, N> &) noexcept
{ }
T *allocate(std::size_t n)
{
if (n > std::numeric_limits<std::size_t>::max() / sizeof(T)) throw std::bad_alloc();
if (auto p = al_malloc(alignment, n * sizeof(T))) return static_cast<T *>(p);
throw std::bad_alloc();
}
void deallocate(T *p, std::size_t) noexcept
{
al_free(p);
}
};
template<typename T, std::size_t N, typename U, std::size_t M>
constexpr bool operator==(const allocator<T, N> &, const allocator<U, M> &) noexcept
{
return true;
}
template<typename T, std::size_t N, typename U, std::size_t M>
constexpr bool operator!=(const allocator<T, N> &, const allocator<U, M> &) noexcept
2019-09-11 10:22:10 +00:00
{
return false;
}
template<typename T>
constexpr T *to_address(T *p) noexcept
2019-09-11 10:22:10 +00:00
{
static_assert(!std::is_function<T>::value, "Can't be a function type");
return p;
}
template<typename T>
constexpr auto to_address(const T &p) noexcept
{
return to_address(p.operator->());
}
template<typename T, typename ...Args>
constexpr T *construct_at(T *ptr, Args&& ...args)
noexcept(std::is_nothrow_constructible<T, Args...>::value)
{
return ::new(static_cast<void *>(ptr)) T { std::forward<Args>(args)... };
}
2018-12-20 19:46:40 +00:00
/* At least VS 2015 complains that 'ptr' is unused when the given type's
* destructor is trivial (a no-op). So disable that warning for this call.
*/
DIAGNOSTIC_PUSH
msc_pragma(warning(disable : 4100))
template<typename T>
constexpr std::enable_if_t<!std::is_array<T>::value>
destroy_at(T *ptr) noexcept(std::is_nothrow_destructible<T>::value)
{
ptr->~T();
}
DIAGNOSTIC_POP
template<typename T>
constexpr std::enable_if_t<std::is_array<T>::value>
destroy_at(T *ptr) noexcept(std::is_nothrow_destructible<std::remove_all_extents_t<T>>::value)
{
for (auto &elem : *ptr)
al::destroy_at(std::addressof(elem));
}
template<typename T>
constexpr void destroy(T first, T end) noexcept(noexcept(al::destroy_at(std::addressof(*first))))
{
while (first != end)
{
2019-06-21 16:25:09 +00:00
al::destroy_at(std::addressof(*first));
++first;
}
}
template<typename T, typename N>
constexpr std::enable_if_t<std::is_integral<N>::value, T>
destroy_n(T first, N count) noexcept(noexcept(al::destroy_at(std::addressof(*first))))
{
if (count != 0)
{
do
{
al::destroy_at(std::addressof(*first));
++first;
}
while (--count);
}
return first;
}
template<typename T, typename N>
inline std::enable_if_t<std::is_integral<N>::value,
T> uninitialized_default_construct_n(T first, N count)
{
using ValueT = typename std::iterator_traits<T>::value_type;
T current { first };
if (count != 0)
{
try
{
do
{
::new(static_cast<void *>(std::addressof(*current))) ValueT;
++current;
}
while (--count);
}
catch (...)
{
al::destroy(first, current);
throw;
}
}
return current;
}
/* Storage for flexible array data. This is trivially destructible if type T is
* trivially destructible.
*/
template<typename T, size_t alignment, bool = std::is_trivially_destructible<T>::value>
struct FlexArrayStorage
{
const size_t mSize;
union
{
char mDummy;
alignas(alignment) T mArray[1];
};
static constexpr size_t Sizeof(size_t count, size_t base=0u) noexcept
{
const size_t len { sizeof(T) * count };
return std::max(offsetof(FlexArrayStorage, mArray) + len, sizeof(FlexArrayStorage)) + base;
}
FlexArrayStorage(size_t size) : mSize { size }
{
al::uninitialized_default_construct_n(mArray, mSize);
}
~FlexArrayStorage() = default;
FlexArrayStorage(const FlexArrayStorage &) = delete;
FlexArrayStorage &operator=(const FlexArrayStorage &) = delete;
};
template<typename T, size_t alignment>
struct FlexArrayStorage<T, alignment, false>
{
const size_t mSize;
union
{
char mDummy;
alignas(alignment) T mArray[1];
};
static constexpr size_t Sizeof(size_t count, size_t base) noexcept
{
const size_t len { sizeof(T) * count };
return std::max(offsetof(FlexArrayStorage, mArray) + len, sizeof(FlexArrayStorage)) + base;
}
FlexArrayStorage(size_t size) : mSize { size }
{
al::uninitialized_default_construct_n(mArray, mSize);
}
~FlexArrayStorage()
{
al::destroy_n(mArray, mSize);
}
FlexArrayStorage(const FlexArrayStorage &) = delete;
FlexArrayStorage &operator=(const FlexArrayStorage &) = delete;
};
/* A flexible array type. Used either standalone or at the end of a parent
* struct, with placement new, to have a run-time-sized array that's embedded
* with its size.
*/
template<typename T, size_t alignment=alignof(T)>
struct FlexArray
{
using element_type = T;
using value_type = std::remove_cv_t<T>;
using index_type = size_t;
using difference_type = ptrdiff_t;
using pointer = T *;
using const_pointer = const T *;
using reference = T &;
using const_reference = const T &;
using iterator = pointer;
using const_iterator = const_pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using Storage_t_ = FlexArrayStorage<element_type, alignment>;
Storage_t_ mStore;
static constexpr index_type Sizeof(index_type count, index_type base=0u) noexcept
{
return Storage_t_::Sizeof(count, base);
}
static std::unique_ptr<FlexArray> Create(index_type count)
{
void *ptr { al_calloc(alignof(FlexArray), Sizeof(count)) };
return std::unique_ptr<FlexArray>{al::construct_at(static_cast<FlexArray *>(ptr), count)};
}
2019-06-08 06:42:31 +00:00
FlexArray(index_type size) : mStore { size }
{ }
~FlexArray() = default;
index_type size() const noexcept
{
return mStore.mSize;
}
bool empty() const noexcept
{
return mStore.mSize == 0;
}
2019-06-08 06:42:31 +00:00
pointer data() noexcept
{
return mStore.mArray;
}
const_pointer data() const noexcept
{
return mStore.mArray;
}
reference operator[](index_type i) noexcept
{
return mStore.mArray[i];
}
const_reference operator[](index_type i) const noexcept
{
return mStore.mArray[i];
}
reference front() noexcept
{
return mStore.mArray[0];
}
const_reference front() const noexcept
{
return mStore.mArray[0];
}
reference back() noexcept
{
return mStore.mArray[mStore.mSize - 1];
}
const_reference back() const noexcept
{
return mStore.mArray[mStore.mSize - 1];
}
iterator begin() noexcept
{
return mStore.mArray;
}
const_iterator begin() const noexcept
{
return mStore.mArray;
}
const_iterator cbegin() const noexcept
{
return mStore.mArray;
}
iterator end() noexcept
{
return mStore.mArray + mStore.mSize;
}
const_iterator end() const noexcept
{
return mStore.mArray + mStore.mSize;
}
const_iterator cend() const noexcept
{
return mStore.mArray + mStore.mSize;
}
reverse_iterator rbegin() noexcept
{
return end();
}
const_reverse_iterator rbegin() const noexcept
{
return end();
}
const_reverse_iterator crbegin() const noexcept
{
return cend();
}
reverse_iterator rend() noexcept
{
return begin();
}
const_reverse_iterator rend() const noexcept
{
return begin();
}
const_reverse_iterator crend() const noexcept
{
return cbegin();
}
DEF_PLACE_NEWDEL()
};
} // namespace al
#endif /* AL_MALLOC_H */