Avoid separate in/out parameters when they're always the same

This commit is contained in:
Chris Robinson 2018-05-29 22:15:49 -07:00
parent 42d3235a66
commit 8854720e8a

View File

@ -988,46 +988,30 @@ static Complex *CreateComplexes(size_t n)
return a;
}
/* Fast Fourier transform routines. The number of points must be a power of
* two. In-place operation is possible only if both the real and imaginary
* parts are in-place together.
/* Fast Fourier transform routines. The number of points must be a power of
* two.
*/
// Performs bit-reversal ordering.
static void FftArrange(const uint n, const Complex *in, Complex *out)
static void FftArrange(const uint n, Complex *inout)
{
uint rk, k, m;
if(in == out)
// Handle in-place arrangement.
rk = 0;
for(k = 0;k < n;k++)
{
// Handle in-place arrangement.
rk = 0;
for(k = 0;k < n;k++)
if(rk > k)
{
if(rk > k)
{
Complex temp = in[rk];
out[rk] = in[k];
out[k] = temp;
}
m = n;
while(rk&(m >>= 1))
rk &= ~m;
rk |= m;
}
}
else
{
// Handle copy arrangement.
rk = 0;
for(k = 0;k < n;k++)
{
out[rk] = in[k];
m = n;
while(rk&(m >>= 1))
rk &= ~m;
rk |= m;
Complex temp = inout[rk];
inout[rk] = inout[k];
inout[k] = temp;
}
m = n;
while(rk&(m >>= 1))
rk &= ~m;
rk |= m;
}
}
@ -1061,23 +1045,23 @@ static void FftSummation(const int n, const double s, Complex *cplx)
}
// Performs a forward FFT.
static void FftForward(const uint n, const Complex *in, Complex *out)
static void FftForward(const uint n, Complex *inout)
{
FftArrange(n, in, out);
FftSummation(n, 1.0, out);
FftArrange(n, inout);
FftSummation(n, 1.0, inout);
}
// Performs an inverse FFT.
static void FftInverse(const uint n, const Complex *in, Complex *out)
static void FftInverse(const uint n, Complex *inout)
{
double f;
uint i;
FftArrange(n, in, out);
FftSummation(n, -1.0, out);
FftArrange(n, inout);
FftSummation(n, -1.0, inout);
f = 1.0 / n;
for(i = 0;i < n;i++)
out[i] = c_muls(out[i], f);
inout[i] = c_muls(inout[i], f);
}
/* Calculate the complex helical sequence (or discrete-time analytical signal)
@ -1085,30 +1069,22 @@ static void FftInverse(const uint n, const Complex *in, Complex *out)
* of a signal's magnitude response, the imaginary components can be used as
* the angles for minimum-phase reconstruction.
*/
static void Hilbert(const uint n, const Complex *in, Complex *out)
static void Hilbert(const uint n, Complex *inout)
{
uint i;
if(in == out)
{
// Handle in-place operation.
for(i = 0;i < n;i++)
out[i].Imag = 0.0;
}
else
{
// Handle copy operation.
for(i = 0;i < n;i++)
out[i] = MakeComplex(in[i].Real, 0.0);
}
FftInverse(n, out, out);
// Handle in-place operation.
for(i = 0;i < n;i++)
inout[i].Imag = 0.0;
FftInverse(n, inout);
for(i = 1;i < (n+1)/2;i++)
out[i] = c_muls(out[i], 2.0);
inout[i] = c_muls(inout[i], 2.0);
/* Increment i if n is even. */
i += (n&1)^1;
for(;i < n;i++)
out[i] = MakeComplex(0.0, 0.0);
FftForward(n, out, out);
inout[i] = MakeComplex(0.0, 0.0);
FftForward(n, inout);
}
/* Calculate the magnitude response of the given input. This is used in
@ -1175,7 +1151,7 @@ static void MinimumPhase(const uint n, const double *in, Complex *out)
mags[i] = mags[n - i];
out[i] = out[n - i];
}
Hilbert(n, out, out);
Hilbert(n, out);
// Remove any DC offset the filter has.
mags[0] = EPSILON;
for(i = 0;i < n;i++)
@ -2073,7 +2049,7 @@ static void AverageHrirMagnitude(const uint points, const uint n, const double *
h[i] = MakeComplex(hrir[i], 0.0);
for(;i < n;i++)
h[i] = MakeComplex(0.0, 0.0);
FftForward(n, h, h);
FftForward(n, h);
MagnitudeResponse(n, h, r);
for(i = 0;i < m;i++)
mag[i] = Lerp(mag[i], r[i], f);
@ -2243,7 +2219,7 @@ static void ReconstructHrirs(const HrirDataT *hData)
for(ti = 0;ti < channels;ti++)
{
MinimumPhase(n, azd->mIrs[ti], h);
FftInverse(n, h, h);
FftInverse(n, h);
for(i = 0;i < hData->mIrPoints;i++)
azd->mIrs[ti][i] = h[i].Real;
pcdone = ++count * 100 / total;