Use MixSamples for the dedicated and ring modulator effect output

This commit is contained in:
Chris Robinson 2018-01-11 04:48:18 -08:00
parent f55583330b
commit 9c33f4aea8
2 changed files with 40 additions and 57 deletions

View File

@ -32,7 +32,8 @@
typedef struct ALdedicatedState {
DERIVE_FROM_TYPE(ALeffectState);
ALfloat gains[MAX_OUTPUT_CHANNELS];
ALfloat CurrentGains[MAX_OUTPUT_CHANNELS];
ALfloat TargetGains[MAX_OUTPUT_CHANNELS];
} ALdedicatedState;
static ALvoid ALdedicatedState_Destruct(ALdedicatedState *state);
@ -46,13 +47,8 @@ DEFINE_ALEFFECTSTATE_VTABLE(ALdedicatedState);
static void ALdedicatedState_Construct(ALdedicatedState *state)
{
ALsizei s;
ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
SET_VTABLE2(ALdedicatedState, ALeffectState, state);
for(s = 0;s < MAX_OUTPUT_CHANNELS;s++)
state->gains[s] = 0.0f;
}
static ALvoid ALdedicatedState_Destruct(ALdedicatedState *state)
@ -60,8 +56,11 @@ static ALvoid ALdedicatedState_Destruct(ALdedicatedState *state)
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
}
static ALboolean ALdedicatedState_deviceUpdate(ALdedicatedState *UNUSED(state), ALCdevice *UNUSED(device))
static ALboolean ALdedicatedState_deviceUpdate(ALdedicatedState *state, ALCdevice *UNUSED(device))
{
ALsizei i;
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
state->CurrentGains[i] = 0.0f;
return AL_TRUE;
}
@ -69,10 +68,10 @@ static ALvoid ALdedicatedState_update(ALdedicatedState *state, const ALCcontext
{
const ALCdevice *device = context->Device;
ALfloat Gain;
ALuint i;
ALsizei i;
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
state->gains[i] = 0.0f;
state->TargetGains[i] = 0.0f;
Gain = slot->Params.Gain * props->Dedicated.Gain;
if(slot->Params.EffectType == AL_EFFECT_DEDICATED_LOW_FREQUENCY_EFFECT)
@ -82,7 +81,7 @@ static ALvoid ALdedicatedState_update(ALdedicatedState *state, const ALCcontext
{
STATIC_CAST(ALeffectState,state)->OutBuffer = device->RealOut.Buffer;
STATIC_CAST(ALeffectState,state)->OutChannels = device->RealOut.NumChannels;
state->gains[idx] = Gain;
state->TargetGains[idx] = Gain;
}
}
else if(slot->Params.EffectType == AL_EFFECT_DEDICATED_DIALOGUE)
@ -94,7 +93,7 @@ static ALvoid ALdedicatedState_update(ALdedicatedState *state, const ALCcontext
{
STATIC_CAST(ALeffectState,state)->OutBuffer = device->RealOut.Buffer;
STATIC_CAST(ALeffectState,state)->OutChannels = device->RealOut.NumChannels;
state->gains[idx] = Gain;
state->TargetGains[idx] = Gain;
}
else
{
@ -103,26 +102,15 @@ static ALvoid ALdedicatedState_update(ALdedicatedState *state, const ALCcontext
STATIC_CAST(ALeffectState,state)->OutBuffer = device->Dry.Buffer;
STATIC_CAST(ALeffectState,state)->OutChannels = device->Dry.NumChannels;
ComputeDryPanGains(&device->Dry, coeffs, Gain, state->gains);
ComputeDryPanGains(&device->Dry, coeffs, Gain, state->TargetGains);
}
}
}
static ALvoid ALdedicatedState_process(ALdedicatedState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
ALsizei i, c;
SamplesIn = ASSUME_ALIGNED(SamplesIn, 16);
SamplesOut = ASSUME_ALIGNED(SamplesOut, 16);
for(c = 0;c < NumChannels;c++)
{
const ALfloat gain = state->gains[c];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < SamplesToDo;i++)
SamplesOut[c][i] += SamplesIn[0][i] * gain;
}
MixSamples(SamplesIn[0], NumChannels, SamplesOut, state->CurrentGains,
state->TargetGains, SamplesToDo, 0, SamplesToDo);
}

View File

@ -38,9 +38,12 @@ typedef struct ALmodulatorState {
ALsizei index;
ALsizei step;
ALfloat Gain[MAX_EFFECT_CHANNELS][MAX_OUTPUT_CHANNELS];
struct {
ALfilterState Filter;
ALfilterState Filter[MAX_EFFECT_CHANNELS];
ALfloat CurrentGains[MAX_OUTPUT_CHANNELS];
ALfloat TargetGains[MAX_OUTPUT_CHANNELS];
} Chans[MAX_EFFECT_CHANNELS];
} ALmodulatorState;
static ALvoid ALmodulatorState_Destruct(ALmodulatorState *state);
@ -93,16 +96,11 @@ DECL_TEMPLATE(Square)
static void ALmodulatorState_Construct(ALmodulatorState *state)
{
ALuint i;
ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
SET_VTABLE2(ALmodulatorState, ALeffectState, state);
state->index = 0;
state->step = 1;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
ALfilterState_clear(&state->Filter[i]);
}
static ALvoid ALmodulatorState_Destruct(ALmodulatorState *state)
@ -110,8 +108,15 @@ static ALvoid ALmodulatorState_Destruct(ALmodulatorState *state)
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
}
static ALboolean ALmodulatorState_deviceUpdate(ALmodulatorState *UNUSED(state), ALCdevice *UNUSED(device))
static ALboolean ALmodulatorState_deviceUpdate(ALmodulatorState *state, ALCdevice *UNUSED(device))
{
ALsizei i, j;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
{
ALfilterState_clear(&state->Chans[i].Filter);
for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
state->Chans[i].CurrentGains[j] = 0.0f;
}
return AL_TRUE;
}
@ -136,20 +141,19 @@ static ALvoid ALmodulatorState_update(ALmodulatorState *state, const ALCcontext
cw = cosf(F_TAU * props->Modulator.HighPassCutoff / device->Frequency);
a = (2.0f-cw) - sqrtf(powf(2.0f-cw, 2.0f) - 1.0f);
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
{
state->Filter[i].b0 = a;
state->Filter[i].b1 = -a;
state->Filter[i].b2 = 0.0f;
state->Filter[i].a1 = -a;
state->Filter[i].a2 = 0.0f;
}
state->Chans[0].Filter.b0 = a;
state->Chans[0].Filter.b1 = -a;
state->Chans[0].Filter.b2 = 0.0f;
state->Chans[0].Filter.a1 = -a;
state->Chans[0].Filter.a2 = 0.0f;
for(i = 1;i < MAX_EFFECT_CHANNELS;i++)
ALfilterState_copyParams(&state->Chans[i].Filter, &state->Chans[0].Filter);
STATIC_CAST(ALeffectState,state)->OutBuffer = device->FOAOut.Buffer;
STATIC_CAST(ALeffectState,state)->OutChannels = device->FOAOut.NumChannels;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
ComputeFirstOrderGains(&device->FOAOut, IdentityMatrixf.m[i],
slot->Params.Gain, state->Gain[i]);
slot->Params.Gain, state->Chans[i].TargetGains);
}
static ALvoid ALmodulatorState_process(ALmodulatorState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
@ -162,29 +166,20 @@ static ALvoid ALmodulatorState_process(ALmodulatorState *state, ALsizei SamplesT
{
ALfloat temps[2][128];
ALsizei td = mini(128, SamplesToDo-base);
ALsizei i, j, k;
ALsizei i;
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
{
ALfilterState_process(&state->Filter[j], temps[0], &SamplesIn[j][base], td);
ALfilterState_process(&state->Chans[i].Filter, temps[0], &SamplesIn[i][base], td);
state->Process(temps[1], temps[0], index, step, td);
for(k = 0;k < NumChannels;k++)
{
ALfloat gain = state->Gain[j][k];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < td;i++)
SamplesOut[k][base+i] += gain * temps[1][i];
}
MixSamples(temps[1], NumChannels, SamplesOut, state->Chans[i].CurrentGains,
state->Chans[i].TargetGains, SamplesToDo-base, base, td);
}
for(i = 0;i < td;i++)
{
index += step;
index &= WAVEFORM_FRACMASK;
}
index &= WAVEFORM_FRACMASK;
base += td;
}
state->index = index;