AuroraOpenALSoft/Alc/effects/chorus.c

400 lines
13 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2013 by Mike Gorchak
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alFilter.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
enum ChorusWaveForm {
CWF_Triangle = AL_CHORUS_WAVEFORM_TRIANGLE,
CWF_Sinusoid = AL_CHORUS_WAVEFORM_SINUSOID
};
typedef struct ALchorusState {
DERIVE_FROM_TYPE(ALeffectState);
ALfloat *SampleBuffer[2];
ALuint BufferLength;
ALuint offset;
ALuint lfo_range;
ALfloat lfo_scale;
ALint lfo_disp;
/* Gains for left and right sides */
ALfloat Gain[2][MAX_OUTPUT_CHANNELS];
/* effect parameters */
enum ChorusWaveForm waveform;
ALint delay;
ALfloat depth;
ALfloat feedback;
} ALchorusState;
static ALvoid ALchorusState_Destruct(ALchorusState *state)
{
free(state->SampleBuffer[0]);
state->SampleBuffer[0] = NULL;
state->SampleBuffer[1] = NULL;
}
static ALboolean ALchorusState_deviceUpdate(ALchorusState *state, ALCdevice *Device)
{
ALuint maxlen;
ALuint it;
maxlen = fastf2u(AL_CHORUS_MAX_DELAY * 3.0f * Device->Frequency) + 1;
maxlen = NextPowerOf2(maxlen);
if(maxlen != state->BufferLength)
{
void *temp;
temp = realloc(state->SampleBuffer[0], maxlen * sizeof(ALfloat) * 2);
if(!temp) return AL_FALSE;
state->SampleBuffer[0] = temp;
state->SampleBuffer[1] = state->SampleBuffer[0] + maxlen;
state->BufferLength = maxlen;
}
for(it = 0;it < state->BufferLength;it++)
{
state->SampleBuffer[0][it] = 0.0f;
state->SampleBuffer[1][it] = 0.0f;
}
return AL_TRUE;
}
static ALvoid ALchorusState_update(ALchorusState *state, ALCdevice *Device, const ALeffectslot *Slot)
{
static const ALfloat left_dir[3] = { -1.0f, 0.0f, 0.0f };
static const ALfloat right_dir[3] = { 1.0f, 0.0f, 0.0f };
ALfloat frequency = (ALfloat)Device->Frequency;
ALfloat rate;
ALint phase;
switch(Slot->EffectProps.Chorus.Waveform)
{
case AL_CHORUS_WAVEFORM_TRIANGLE:
state->waveform = CWF_Triangle;
break;
case AL_CHORUS_WAVEFORM_SINUSOID:
state->waveform = CWF_Sinusoid;
break;
}
state->depth = Slot->EffectProps.Chorus.Depth;
state->feedback = Slot->EffectProps.Chorus.Feedback;
state->delay = fastf2i(Slot->EffectProps.Chorus.Delay * frequency);
/* Gains for left and right sides */
ComputeDirectionalGains(Device, left_dir, Slot->Gain, state->Gain[0]);
ComputeDirectionalGains(Device, right_dir, Slot->Gain, state->Gain[1]);
phase = Slot->EffectProps.Chorus.Phase;
rate = Slot->EffectProps.Chorus.Rate;
if(!(rate > 0.0f))
{
state->lfo_scale = 0.0f;
state->lfo_range = 1;
state->lfo_disp = 0;
}
else
{
/* Calculate LFO coefficient */
state->lfo_range = fastf2u(frequency/rate + 0.5f);
switch(state->waveform)
{
case CWF_Triangle:
state->lfo_scale = 4.0f / state->lfo_range;
break;
case CWF_Sinusoid:
state->lfo_scale = F_2PI / state->lfo_range;
break;
}
/* Calculate lfo phase displacement */
state->lfo_disp = fastf2i(state->lfo_range * (phase/360.0f));
}
}
static inline void Triangle(ALint *delay_left, ALint *delay_right, ALuint offset, const ALchorusState *state)
{
ALfloat lfo_value;
lfo_value = 2.0f - fabsf(2.0f - state->lfo_scale*(offset%state->lfo_range));
lfo_value *= state->depth * state->delay;
*delay_left = fastf2i(lfo_value) + state->delay;
offset += state->lfo_disp;
lfo_value = 2.0f - fabsf(2.0f - state->lfo_scale*(offset%state->lfo_range));
lfo_value *= state->depth * state->delay;
*delay_right = fastf2i(lfo_value) + state->delay;
}
static inline void Sinusoid(ALint *delay_left, ALint *delay_right, ALuint offset, const ALchorusState *state)
{
ALfloat lfo_value;
lfo_value = 1.0f + sinf(state->lfo_scale*(offset%state->lfo_range));
lfo_value *= state->depth * state->delay;
*delay_left = fastf2i(lfo_value) + state->delay;
offset += state->lfo_disp;
lfo_value = 1.0f + sinf(state->lfo_scale*(offset%state->lfo_range));
lfo_value *= state->depth * state->delay;
*delay_right = fastf2i(lfo_value) + state->delay;
}
#define DECL_TEMPLATE(Func) \
static void Process##Func(ALchorusState *state, const ALuint SamplesToDo, \
const ALfloat *restrict SamplesIn, ALfloat (*restrict out)[2]) \
{ \
const ALuint bufmask = state->BufferLength-1; \
ALfloat *restrict leftbuf = state->SampleBuffer[0]; \
ALfloat *restrict rightbuf = state->SampleBuffer[1]; \
ALuint offset = state->offset; \
const ALfloat feedback = state->feedback; \
ALuint it; \
\
for(it = 0;it < SamplesToDo;it++) \
{ \
ALint delay_left, delay_right; \
Func(&delay_left, &delay_right, offset, state); \
\
out[it][0] = leftbuf[(offset-delay_left)&bufmask]; \
leftbuf[offset&bufmask] = (out[it][0]+SamplesIn[it]) * feedback; \
\
out[it][1] = rightbuf[(offset-delay_right)&bufmask]; \
rightbuf[offset&bufmask] = (out[it][1]+SamplesIn[it]) * feedback; \
\
offset++; \
} \
state->offset = offset; \
}
DECL_TEMPLATE(Triangle)
DECL_TEMPLATE(Sinusoid)
#undef DECL_TEMPLATE
static ALvoid ALchorusState_process(ALchorusState *state, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
{
ALuint it, kt;
ALuint base;
for(base = 0;base < SamplesToDo;)
{
ALfloat temps[64][2];
ALuint td = minu(SamplesToDo-base, 64);
switch(state->waveform)
{
case CWF_Triangle:
ProcessTriangle(state, td, SamplesIn+base, temps);
break;
case CWF_Sinusoid:
ProcessSinusoid(state, td, SamplesIn+base, temps);
break;
}
for(kt = 0;kt < NumChannels;kt++)
{
ALfloat gain = state->Gain[0][kt];
if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
{
for(it = 0;it < td;it++)
SamplesOut[kt][it+base] += temps[it][0] * gain;
}
gain = state->Gain[1][kt];
if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
{
for(it = 0;it < td;it++)
SamplesOut[kt][it+base] += temps[it][1] * gain;
}
}
base += td;
}
}
DECLARE_DEFAULT_ALLOCATORS(ALchorusState)
DEFINE_ALEFFECTSTATE_VTABLE(ALchorusState);
typedef struct ALchorusStateFactory {
DERIVE_FROM_TYPE(ALeffectStateFactory);
} ALchorusStateFactory;
static ALeffectState *ALchorusStateFactory_create(ALchorusStateFactory *UNUSED(factory))
{
ALchorusState *state;
state = ALchorusState_New(sizeof(*state));
if(!state) return NULL;
SET_VTABLE2(ALchorusState, ALeffectState, state);
state->BufferLength = 0;
state->SampleBuffer[0] = NULL;
state->SampleBuffer[1] = NULL;
state->offset = 0;
state->lfo_range = 1;
state->waveform = CWF_Triangle;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALchorusStateFactory);
ALeffectStateFactory *ALchorusStateFactory_getFactory(void)
{
static ALchorusStateFactory ChorusFactory = { { GET_VTABLE2(ALchorusStateFactory, ALeffectStateFactory) } };
return STATIC_CAST(ALeffectStateFactory, &ChorusFactory);
}
void ALchorus_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_CHORUS_WAVEFORM:
if(!(val >= AL_CHORUS_MIN_WAVEFORM && val <= AL_CHORUS_MAX_WAVEFORM))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Waveform = val;
break;
case AL_CHORUS_PHASE:
if(!(val >= AL_CHORUS_MIN_PHASE && val <= AL_CHORUS_MAX_PHASE))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Phase = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALchorus_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALchorus_setParami(effect, context, param, vals[0]);
}
void ALchorus_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_CHORUS_RATE:
if(!(val >= AL_CHORUS_MIN_RATE && val <= AL_CHORUS_MAX_RATE))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Rate = val;
break;
case AL_CHORUS_DEPTH:
if(!(val >= AL_CHORUS_MIN_DEPTH && val <= AL_CHORUS_MAX_DEPTH))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Depth = val;
break;
case AL_CHORUS_FEEDBACK:
if(!(val >= AL_CHORUS_MIN_FEEDBACK && val <= AL_CHORUS_MAX_FEEDBACK))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Feedback = val;
break;
case AL_CHORUS_DELAY:
if(!(val >= AL_CHORUS_MIN_DELAY && val <= AL_CHORUS_MAX_DELAY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Delay = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALchorus_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALchorus_setParamf(effect, context, param, vals[0]);
}
void ALchorus_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_CHORUS_WAVEFORM:
*val = props->Chorus.Waveform;
break;
case AL_CHORUS_PHASE:
*val = props->Chorus.Phase;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALchorus_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALchorus_getParami(effect, context, param, vals);
}
void ALchorus_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_CHORUS_RATE:
*val = props->Chorus.Rate;
break;
case AL_CHORUS_DEPTH:
*val = props->Chorus.Depth;
break;
case AL_CHORUS_FEEDBACK:
*val = props->Chorus.Feedback;
break;
case AL_CHORUS_DELAY:
*val = props->Chorus.Delay;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALchorus_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
ALchorus_getParamf(effect, context, param, vals);
}
DEFINE_ALEFFECT_VTABLE(ALchorus);