AuroraOpenALSoft/Alc/ALc.c
2017-02-21 12:29:25 -08:00

4321 lines
123 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "version.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <memory.h>
#include <ctype.h>
#include <signal.h>
#include "alMain.h"
#include "alSource.h"
#include "alListener.h"
#include "alThunk.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "bformatdec.h"
#include "alu.h"
#include "compat.h"
#include "threads.h"
#include "alstring.h"
#include "almalloc.h"
#include "backends/base.h"
/************************************************
* Backends
************************************************/
struct BackendInfo {
const char *name;
ALCbackendFactory* (*getFactory)(void);
ALCboolean (*Init)(BackendFuncs*);
void (*Deinit)(void);
void (*Probe)(enum DevProbe);
BackendFuncs Funcs;
};
#define EmptyFuncs { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }
static struct BackendInfo BackendList[] = {
#ifdef HAVE_JACK
{ "jack", ALCjackBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
#ifdef HAVE_PULSEAUDIO
{ "pulse", ALCpulseBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
#ifdef HAVE_ALSA
{ "alsa", ALCalsaBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
#ifdef HAVE_COREAUDIO
{ "core", NULL, alc_ca_init, alc_ca_deinit, alc_ca_probe, EmptyFuncs },
#endif
#ifdef HAVE_OSS
{ "oss", ALCossBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
#ifdef HAVE_SOLARIS
{ "solaris", ALCsolarisBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
#ifdef HAVE_SNDIO
{ "sndio", ALCsndioBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
#ifdef HAVE_QSA
{ "qsa", NULL, alc_qsa_init, alc_qsa_deinit, alc_qsa_probe, EmptyFuncs },
#endif
#ifdef HAVE_MMDEVAPI
{ "mmdevapi", ALCmmdevBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
#ifdef HAVE_DSOUND
{ "dsound", ALCdsoundBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
#ifdef HAVE_WINMM
{ "winmm", ALCwinmmBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
#ifdef HAVE_PORTAUDIO
{ "port", ALCportBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
#ifdef HAVE_OPENSL
{ "opensl", ALCopenslBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
{ "null", ALCnullBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#ifdef HAVE_WAVE
{ "wave", ALCwaveBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs },
#endif
{ NULL, NULL, NULL, NULL, NULL, EmptyFuncs }
};
#undef EmptyFuncs
static struct BackendInfo PlaybackBackend;
static struct BackendInfo CaptureBackend;
/************************************************
* Functions, enums, and errors
************************************************/
typedef struct ALCfunction {
const ALCchar *funcName;
ALCvoid *address;
} ALCfunction;
typedef struct ALCenums {
const ALCchar *enumName;
ALCenum value;
} ALCenums;
#define DECL(x) { #x, (ALCvoid*)(x) }
static const ALCfunction alcFunctions[] = {
DECL(alcCreateContext),
DECL(alcMakeContextCurrent),
DECL(alcProcessContext),
DECL(alcSuspendContext),
DECL(alcDestroyContext),
DECL(alcGetCurrentContext),
DECL(alcGetContextsDevice),
DECL(alcOpenDevice),
DECL(alcCloseDevice),
DECL(alcGetError),
DECL(alcIsExtensionPresent),
DECL(alcGetProcAddress),
DECL(alcGetEnumValue),
DECL(alcGetString),
DECL(alcGetIntegerv),
DECL(alcCaptureOpenDevice),
DECL(alcCaptureCloseDevice),
DECL(alcCaptureStart),
DECL(alcCaptureStop),
DECL(alcCaptureSamples),
DECL(alcSetThreadContext),
DECL(alcGetThreadContext),
DECL(alcLoopbackOpenDeviceSOFT),
DECL(alcIsRenderFormatSupportedSOFT),
DECL(alcRenderSamplesSOFT),
DECL(alcDevicePauseSOFT),
DECL(alcDeviceResumeSOFT),
DECL(alcGetStringiSOFT),
DECL(alcResetDeviceSOFT),
DECL(alcGetInteger64vSOFT),
DECL(alEnable),
DECL(alDisable),
DECL(alIsEnabled),
DECL(alGetString),
DECL(alGetBooleanv),
DECL(alGetIntegerv),
DECL(alGetFloatv),
DECL(alGetDoublev),
DECL(alGetBoolean),
DECL(alGetInteger),
DECL(alGetFloat),
DECL(alGetDouble),
DECL(alGetError),
DECL(alIsExtensionPresent),
DECL(alGetProcAddress),
DECL(alGetEnumValue),
DECL(alListenerf),
DECL(alListener3f),
DECL(alListenerfv),
DECL(alListeneri),
DECL(alListener3i),
DECL(alListeneriv),
DECL(alGetListenerf),
DECL(alGetListener3f),
DECL(alGetListenerfv),
DECL(alGetListeneri),
DECL(alGetListener3i),
DECL(alGetListeneriv),
DECL(alGenSources),
DECL(alDeleteSources),
DECL(alIsSource),
DECL(alSourcef),
DECL(alSource3f),
DECL(alSourcefv),
DECL(alSourcei),
DECL(alSource3i),
DECL(alSourceiv),
DECL(alGetSourcef),
DECL(alGetSource3f),
DECL(alGetSourcefv),
DECL(alGetSourcei),
DECL(alGetSource3i),
DECL(alGetSourceiv),
DECL(alSourcePlayv),
DECL(alSourceStopv),
DECL(alSourceRewindv),
DECL(alSourcePausev),
DECL(alSourcePlay),
DECL(alSourceStop),
DECL(alSourceRewind),
DECL(alSourcePause),
DECL(alSourceQueueBuffers),
DECL(alSourceUnqueueBuffers),
DECL(alGenBuffers),
DECL(alDeleteBuffers),
DECL(alIsBuffer),
DECL(alBufferData),
DECL(alBufferf),
DECL(alBuffer3f),
DECL(alBufferfv),
DECL(alBufferi),
DECL(alBuffer3i),
DECL(alBufferiv),
DECL(alGetBufferf),
DECL(alGetBuffer3f),
DECL(alGetBufferfv),
DECL(alGetBufferi),
DECL(alGetBuffer3i),
DECL(alGetBufferiv),
DECL(alDopplerFactor),
DECL(alDopplerVelocity),
DECL(alSpeedOfSound),
DECL(alDistanceModel),
DECL(alGenFilters),
DECL(alDeleteFilters),
DECL(alIsFilter),
DECL(alFilteri),
DECL(alFilteriv),
DECL(alFilterf),
DECL(alFilterfv),
DECL(alGetFilteri),
DECL(alGetFilteriv),
DECL(alGetFilterf),
DECL(alGetFilterfv),
DECL(alGenEffects),
DECL(alDeleteEffects),
DECL(alIsEffect),
DECL(alEffecti),
DECL(alEffectiv),
DECL(alEffectf),
DECL(alEffectfv),
DECL(alGetEffecti),
DECL(alGetEffectiv),
DECL(alGetEffectf),
DECL(alGetEffectfv),
DECL(alGenAuxiliaryEffectSlots),
DECL(alDeleteAuxiliaryEffectSlots),
DECL(alIsAuxiliaryEffectSlot),
DECL(alAuxiliaryEffectSloti),
DECL(alAuxiliaryEffectSlotiv),
DECL(alAuxiliaryEffectSlotf),
DECL(alAuxiliaryEffectSlotfv),
DECL(alGetAuxiliaryEffectSloti),
DECL(alGetAuxiliaryEffectSlotiv),
DECL(alGetAuxiliaryEffectSlotf),
DECL(alGetAuxiliaryEffectSlotfv),
DECL(alDeferUpdatesSOFT),
DECL(alProcessUpdatesSOFT),
DECL(alSourcedSOFT),
DECL(alSource3dSOFT),
DECL(alSourcedvSOFT),
DECL(alGetSourcedSOFT),
DECL(alGetSource3dSOFT),
DECL(alGetSourcedvSOFT),
DECL(alSourcei64SOFT),
DECL(alSource3i64SOFT),
DECL(alSourcei64vSOFT),
DECL(alGetSourcei64SOFT),
DECL(alGetSource3i64SOFT),
DECL(alGetSourcei64vSOFT),
DECL(alBufferSamplesSOFT),
DECL(alGetBufferSamplesSOFT),
DECL(alIsBufferFormatSupportedSOFT),
{ NULL, NULL }
};
#undef DECL
#define DECL(x) { #x, (x) }
static const ALCenums enumeration[] = {
DECL(ALC_INVALID),
DECL(ALC_FALSE),
DECL(ALC_TRUE),
DECL(ALC_MAJOR_VERSION),
DECL(ALC_MINOR_VERSION),
DECL(ALC_ATTRIBUTES_SIZE),
DECL(ALC_ALL_ATTRIBUTES),
DECL(ALC_DEFAULT_DEVICE_SPECIFIER),
DECL(ALC_DEVICE_SPECIFIER),
DECL(ALC_ALL_DEVICES_SPECIFIER),
DECL(ALC_DEFAULT_ALL_DEVICES_SPECIFIER),
DECL(ALC_EXTENSIONS),
DECL(ALC_FREQUENCY),
DECL(ALC_REFRESH),
DECL(ALC_SYNC),
DECL(ALC_MONO_SOURCES),
DECL(ALC_STEREO_SOURCES),
DECL(ALC_CAPTURE_DEVICE_SPECIFIER),
DECL(ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER),
DECL(ALC_CAPTURE_SAMPLES),
DECL(ALC_CONNECTED),
DECL(ALC_EFX_MAJOR_VERSION),
DECL(ALC_EFX_MINOR_VERSION),
DECL(ALC_MAX_AUXILIARY_SENDS),
DECL(ALC_FORMAT_CHANNELS_SOFT),
DECL(ALC_FORMAT_TYPE_SOFT),
DECL(ALC_MONO_SOFT),
DECL(ALC_STEREO_SOFT),
DECL(ALC_QUAD_SOFT),
DECL(ALC_5POINT1_SOFT),
DECL(ALC_6POINT1_SOFT),
DECL(ALC_7POINT1_SOFT),
DECL(ALC_BYTE_SOFT),
DECL(ALC_UNSIGNED_BYTE_SOFT),
DECL(ALC_SHORT_SOFT),
DECL(ALC_UNSIGNED_SHORT_SOFT),
DECL(ALC_INT_SOFT),
DECL(ALC_UNSIGNED_INT_SOFT),
DECL(ALC_FLOAT_SOFT),
DECL(ALC_HRTF_SOFT),
DECL(ALC_DONT_CARE_SOFT),
DECL(ALC_HRTF_STATUS_SOFT),
DECL(ALC_HRTF_DISABLED_SOFT),
DECL(ALC_HRTF_ENABLED_SOFT),
DECL(ALC_HRTF_DENIED_SOFT),
DECL(ALC_HRTF_REQUIRED_SOFT),
DECL(ALC_HRTF_HEADPHONES_DETECTED_SOFT),
DECL(ALC_HRTF_UNSUPPORTED_FORMAT_SOFT),
DECL(ALC_NUM_HRTF_SPECIFIERS_SOFT),
DECL(ALC_HRTF_SPECIFIER_SOFT),
DECL(ALC_HRTF_ID_SOFT),
DECL(ALC_NO_ERROR),
DECL(ALC_INVALID_DEVICE),
DECL(ALC_INVALID_CONTEXT),
DECL(ALC_INVALID_ENUM),
DECL(ALC_INVALID_VALUE),
DECL(ALC_OUT_OF_MEMORY),
DECL(AL_INVALID),
DECL(AL_NONE),
DECL(AL_FALSE),
DECL(AL_TRUE),
DECL(AL_SOURCE_RELATIVE),
DECL(AL_CONE_INNER_ANGLE),
DECL(AL_CONE_OUTER_ANGLE),
DECL(AL_PITCH),
DECL(AL_POSITION),
DECL(AL_DIRECTION),
DECL(AL_VELOCITY),
DECL(AL_LOOPING),
DECL(AL_BUFFER),
DECL(AL_GAIN),
DECL(AL_MIN_GAIN),
DECL(AL_MAX_GAIN),
DECL(AL_ORIENTATION),
DECL(AL_REFERENCE_DISTANCE),
DECL(AL_ROLLOFF_FACTOR),
DECL(AL_CONE_OUTER_GAIN),
DECL(AL_MAX_DISTANCE),
DECL(AL_SEC_OFFSET),
DECL(AL_SAMPLE_OFFSET),
DECL(AL_BYTE_OFFSET),
DECL(AL_SOURCE_TYPE),
DECL(AL_STATIC),
DECL(AL_STREAMING),
DECL(AL_UNDETERMINED),
DECL(AL_METERS_PER_UNIT),
DECL(AL_LOOP_POINTS_SOFT),
DECL(AL_DIRECT_CHANNELS_SOFT),
DECL(AL_DIRECT_FILTER),
DECL(AL_AUXILIARY_SEND_FILTER),
DECL(AL_AIR_ABSORPTION_FACTOR),
DECL(AL_ROOM_ROLLOFF_FACTOR),
DECL(AL_CONE_OUTER_GAINHF),
DECL(AL_DIRECT_FILTER_GAINHF_AUTO),
DECL(AL_AUXILIARY_SEND_FILTER_GAIN_AUTO),
DECL(AL_AUXILIARY_SEND_FILTER_GAINHF_AUTO),
DECL(AL_SOURCE_STATE),
DECL(AL_INITIAL),
DECL(AL_PLAYING),
DECL(AL_PAUSED),
DECL(AL_STOPPED),
DECL(AL_BUFFERS_QUEUED),
DECL(AL_BUFFERS_PROCESSED),
DECL(AL_FORMAT_MONO8),
DECL(AL_FORMAT_MONO16),
DECL(AL_FORMAT_MONO_FLOAT32),
DECL(AL_FORMAT_MONO_DOUBLE_EXT),
DECL(AL_FORMAT_STEREO8),
DECL(AL_FORMAT_STEREO16),
DECL(AL_FORMAT_STEREO_FLOAT32),
DECL(AL_FORMAT_STEREO_DOUBLE_EXT),
DECL(AL_FORMAT_MONO_IMA4),
DECL(AL_FORMAT_STEREO_IMA4),
DECL(AL_FORMAT_MONO_MSADPCM_SOFT),
DECL(AL_FORMAT_STEREO_MSADPCM_SOFT),
DECL(AL_FORMAT_QUAD8_LOKI),
DECL(AL_FORMAT_QUAD16_LOKI),
DECL(AL_FORMAT_QUAD8),
DECL(AL_FORMAT_QUAD16),
DECL(AL_FORMAT_QUAD32),
DECL(AL_FORMAT_51CHN8),
DECL(AL_FORMAT_51CHN16),
DECL(AL_FORMAT_51CHN32),
DECL(AL_FORMAT_61CHN8),
DECL(AL_FORMAT_61CHN16),
DECL(AL_FORMAT_61CHN32),
DECL(AL_FORMAT_71CHN8),
DECL(AL_FORMAT_71CHN16),
DECL(AL_FORMAT_71CHN32),
DECL(AL_FORMAT_REAR8),
DECL(AL_FORMAT_REAR16),
DECL(AL_FORMAT_REAR32),
DECL(AL_FORMAT_MONO_MULAW),
DECL(AL_FORMAT_MONO_MULAW_EXT),
DECL(AL_FORMAT_STEREO_MULAW),
DECL(AL_FORMAT_STEREO_MULAW_EXT),
DECL(AL_FORMAT_QUAD_MULAW),
DECL(AL_FORMAT_51CHN_MULAW),
DECL(AL_FORMAT_61CHN_MULAW),
DECL(AL_FORMAT_71CHN_MULAW),
DECL(AL_FORMAT_REAR_MULAW),
DECL(AL_FORMAT_MONO_ALAW_EXT),
DECL(AL_FORMAT_STEREO_ALAW_EXT),
DECL(AL_FORMAT_BFORMAT2D_8),
DECL(AL_FORMAT_BFORMAT2D_16),
DECL(AL_FORMAT_BFORMAT2D_FLOAT32),
DECL(AL_FORMAT_BFORMAT2D_MULAW),
DECL(AL_FORMAT_BFORMAT3D_8),
DECL(AL_FORMAT_BFORMAT3D_16),
DECL(AL_FORMAT_BFORMAT3D_FLOAT32),
DECL(AL_FORMAT_BFORMAT3D_MULAW),
DECL(AL_MONO8_SOFT),
DECL(AL_MONO16_SOFT),
DECL(AL_MONO32F_SOFT),
DECL(AL_STEREO8_SOFT),
DECL(AL_STEREO16_SOFT),
DECL(AL_STEREO32F_SOFT),
DECL(AL_QUAD8_SOFT),
DECL(AL_QUAD16_SOFT),
DECL(AL_QUAD32F_SOFT),
DECL(AL_REAR8_SOFT),
DECL(AL_REAR16_SOFT),
DECL(AL_REAR32F_SOFT),
DECL(AL_5POINT1_8_SOFT),
DECL(AL_5POINT1_16_SOFT),
DECL(AL_5POINT1_32F_SOFT),
DECL(AL_6POINT1_8_SOFT),
DECL(AL_6POINT1_16_SOFT),
DECL(AL_6POINT1_32F_SOFT),
DECL(AL_7POINT1_8_SOFT),
DECL(AL_7POINT1_16_SOFT),
DECL(AL_7POINT1_32F_SOFT),
DECL(AL_BFORMAT2D_8_SOFT),
DECL(AL_BFORMAT2D_16_SOFT),
DECL(AL_BFORMAT2D_32F_SOFT),
DECL(AL_BFORMAT3D_8_SOFT),
DECL(AL_BFORMAT3D_16_SOFT),
DECL(AL_BFORMAT3D_32F_SOFT),
DECL(AL_MONO_SOFT),
DECL(AL_STEREO_SOFT),
DECL(AL_QUAD_SOFT),
DECL(AL_REAR_SOFT),
DECL(AL_5POINT1_SOFT),
DECL(AL_6POINT1_SOFT),
DECL(AL_7POINT1_SOFT),
DECL(AL_BFORMAT2D_SOFT),
DECL(AL_BFORMAT3D_SOFT),
DECL(AL_BYTE_SOFT),
DECL(AL_UNSIGNED_BYTE_SOFT),
DECL(AL_SHORT_SOFT),
DECL(AL_UNSIGNED_SHORT_SOFT),
DECL(AL_INT_SOFT),
DECL(AL_UNSIGNED_INT_SOFT),
DECL(AL_FLOAT_SOFT),
DECL(AL_DOUBLE_SOFT),
DECL(AL_BYTE3_SOFT),
DECL(AL_UNSIGNED_BYTE3_SOFT),
DECL(AL_MULAW_SOFT),
DECL(AL_FREQUENCY),
DECL(AL_BITS),
DECL(AL_CHANNELS),
DECL(AL_SIZE),
DECL(AL_INTERNAL_FORMAT_SOFT),
DECL(AL_BYTE_LENGTH_SOFT),
DECL(AL_SAMPLE_LENGTH_SOFT),
DECL(AL_SEC_LENGTH_SOFT),
DECL(AL_UNPACK_BLOCK_ALIGNMENT_SOFT),
DECL(AL_PACK_BLOCK_ALIGNMENT_SOFT),
DECL(AL_SOURCE_RADIUS),
DECL(AL_STEREO_ANGLES),
DECL(AL_UNUSED),
DECL(AL_PENDING),
DECL(AL_PROCESSED),
DECL(AL_NO_ERROR),
DECL(AL_INVALID_NAME),
DECL(AL_INVALID_ENUM),
DECL(AL_INVALID_VALUE),
DECL(AL_INVALID_OPERATION),
DECL(AL_OUT_OF_MEMORY),
DECL(AL_VENDOR),
DECL(AL_VERSION),
DECL(AL_RENDERER),
DECL(AL_EXTENSIONS),
DECL(AL_DOPPLER_FACTOR),
DECL(AL_DOPPLER_VELOCITY),
DECL(AL_DISTANCE_MODEL),
DECL(AL_SPEED_OF_SOUND),
DECL(AL_SOURCE_DISTANCE_MODEL),
DECL(AL_DEFERRED_UPDATES_SOFT),
DECL(AL_GAIN_LIMIT_SOFT),
DECL(AL_INVERSE_DISTANCE),
DECL(AL_INVERSE_DISTANCE_CLAMPED),
DECL(AL_LINEAR_DISTANCE),
DECL(AL_LINEAR_DISTANCE_CLAMPED),
DECL(AL_EXPONENT_DISTANCE),
DECL(AL_EXPONENT_DISTANCE_CLAMPED),
DECL(AL_FILTER_TYPE),
DECL(AL_FILTER_NULL),
DECL(AL_FILTER_LOWPASS),
DECL(AL_FILTER_HIGHPASS),
DECL(AL_FILTER_BANDPASS),
DECL(AL_LOWPASS_GAIN),
DECL(AL_LOWPASS_GAINHF),
DECL(AL_HIGHPASS_GAIN),
DECL(AL_HIGHPASS_GAINLF),
DECL(AL_BANDPASS_GAIN),
DECL(AL_BANDPASS_GAINHF),
DECL(AL_BANDPASS_GAINLF),
DECL(AL_EFFECT_TYPE),
DECL(AL_EFFECT_NULL),
DECL(AL_EFFECT_REVERB),
DECL(AL_EFFECT_EAXREVERB),
DECL(AL_EFFECT_CHORUS),
DECL(AL_EFFECT_DISTORTION),
DECL(AL_EFFECT_ECHO),
DECL(AL_EFFECT_FLANGER),
#if 0
DECL(AL_EFFECT_FREQUENCY_SHIFTER),
DECL(AL_EFFECT_VOCAL_MORPHER),
DECL(AL_EFFECT_PITCH_SHIFTER),
#endif
DECL(AL_EFFECT_RING_MODULATOR),
#if 0
DECL(AL_EFFECT_AUTOWAH),
#endif
DECL(AL_EFFECT_COMPRESSOR),
DECL(AL_EFFECT_EQUALIZER),
DECL(AL_EFFECT_DEDICATED_LOW_FREQUENCY_EFFECT),
DECL(AL_EFFECT_DEDICATED_DIALOGUE),
DECL(AL_EFFECTSLOT_EFFECT),
DECL(AL_EFFECTSLOT_GAIN),
DECL(AL_EFFECTSLOT_AUXILIARY_SEND_AUTO),
DECL(AL_EFFECTSLOT_NULL),
DECL(AL_EAXREVERB_DENSITY),
DECL(AL_EAXREVERB_DIFFUSION),
DECL(AL_EAXREVERB_GAIN),
DECL(AL_EAXREVERB_GAINHF),
DECL(AL_EAXREVERB_GAINLF),
DECL(AL_EAXREVERB_DECAY_TIME),
DECL(AL_EAXREVERB_DECAY_HFRATIO),
DECL(AL_EAXREVERB_DECAY_LFRATIO),
DECL(AL_EAXREVERB_REFLECTIONS_GAIN),
DECL(AL_EAXREVERB_REFLECTIONS_DELAY),
DECL(AL_EAXREVERB_REFLECTIONS_PAN),
DECL(AL_EAXREVERB_LATE_REVERB_GAIN),
DECL(AL_EAXREVERB_LATE_REVERB_DELAY),
DECL(AL_EAXREVERB_LATE_REVERB_PAN),
DECL(AL_EAXREVERB_ECHO_TIME),
DECL(AL_EAXREVERB_ECHO_DEPTH),
DECL(AL_EAXREVERB_MODULATION_TIME),
DECL(AL_EAXREVERB_MODULATION_DEPTH),
DECL(AL_EAXREVERB_AIR_ABSORPTION_GAINHF),
DECL(AL_EAXREVERB_HFREFERENCE),
DECL(AL_EAXREVERB_LFREFERENCE),
DECL(AL_EAXREVERB_ROOM_ROLLOFF_FACTOR),
DECL(AL_EAXREVERB_DECAY_HFLIMIT),
DECL(AL_REVERB_DENSITY),
DECL(AL_REVERB_DIFFUSION),
DECL(AL_REVERB_GAIN),
DECL(AL_REVERB_GAINHF),
DECL(AL_REVERB_DECAY_TIME),
DECL(AL_REVERB_DECAY_HFRATIO),
DECL(AL_REVERB_REFLECTIONS_GAIN),
DECL(AL_REVERB_REFLECTIONS_DELAY),
DECL(AL_REVERB_LATE_REVERB_GAIN),
DECL(AL_REVERB_LATE_REVERB_DELAY),
DECL(AL_REVERB_AIR_ABSORPTION_GAINHF),
DECL(AL_REVERB_ROOM_ROLLOFF_FACTOR),
DECL(AL_REVERB_DECAY_HFLIMIT),
DECL(AL_CHORUS_WAVEFORM),
DECL(AL_CHORUS_PHASE),
DECL(AL_CHORUS_RATE),
DECL(AL_CHORUS_DEPTH),
DECL(AL_CHORUS_FEEDBACK),
DECL(AL_CHORUS_DELAY),
DECL(AL_DISTORTION_EDGE),
DECL(AL_DISTORTION_GAIN),
DECL(AL_DISTORTION_LOWPASS_CUTOFF),
DECL(AL_DISTORTION_EQCENTER),
DECL(AL_DISTORTION_EQBANDWIDTH),
DECL(AL_ECHO_DELAY),
DECL(AL_ECHO_LRDELAY),
DECL(AL_ECHO_DAMPING),
DECL(AL_ECHO_FEEDBACK),
DECL(AL_ECHO_SPREAD),
DECL(AL_FLANGER_WAVEFORM),
DECL(AL_FLANGER_PHASE),
DECL(AL_FLANGER_RATE),
DECL(AL_FLANGER_DEPTH),
DECL(AL_FLANGER_FEEDBACK),
DECL(AL_FLANGER_DELAY),
DECL(AL_RING_MODULATOR_FREQUENCY),
DECL(AL_RING_MODULATOR_HIGHPASS_CUTOFF),
DECL(AL_RING_MODULATOR_WAVEFORM),
DECL(AL_COMPRESSOR_ONOFF),
DECL(AL_EQUALIZER_LOW_GAIN),
DECL(AL_EQUALIZER_LOW_CUTOFF),
DECL(AL_EQUALIZER_MID1_GAIN),
DECL(AL_EQUALIZER_MID1_CENTER),
DECL(AL_EQUALIZER_MID1_WIDTH),
DECL(AL_EQUALIZER_MID2_GAIN),
DECL(AL_EQUALIZER_MID2_CENTER),
DECL(AL_EQUALIZER_MID2_WIDTH),
DECL(AL_EQUALIZER_HIGH_GAIN),
DECL(AL_EQUALIZER_HIGH_CUTOFF),
DECL(AL_DEDICATED_GAIN),
{ NULL, (ALCenum)0 }
};
#undef DECL
static const ALCchar alcNoError[] = "No Error";
static const ALCchar alcErrInvalidDevice[] = "Invalid Device";
static const ALCchar alcErrInvalidContext[] = "Invalid Context";
static const ALCchar alcErrInvalidEnum[] = "Invalid Enum";
static const ALCchar alcErrInvalidValue[] = "Invalid Value";
static const ALCchar alcErrOutOfMemory[] = "Out of Memory";
/************************************************
* Global variables
************************************************/
/* Enumerated device names */
static const ALCchar alcDefaultName[] = "OpenAL Soft\0";
static al_string alcAllDevicesList;
static al_string alcCaptureDeviceList;
/* Default is always the first in the list */
static ALCchar *alcDefaultAllDevicesSpecifier;
static ALCchar *alcCaptureDefaultDeviceSpecifier;
/* Default context extensions */
static const ALchar alExtList[] =
"AL_EXT_ALAW AL_EXT_BFORMAT AL_EXT_DOUBLE AL_EXT_EXPONENT_DISTANCE "
"AL_EXT_FLOAT32 AL_EXT_IMA4 AL_EXT_LINEAR_DISTANCE AL_EXT_MCFORMATS "
"AL_EXT_MULAW AL_EXT_MULAW_BFORMAT AL_EXT_MULAW_MCFORMATS AL_EXT_OFFSET "
"AL_EXT_source_distance_model AL_EXT_SOURCE_RADIUS AL_EXT_STEREO_ANGLES "
"AL_LOKI_quadriphonic AL_SOFT_block_alignment AL_SOFT_deferred_updates "
"AL_SOFT_direct_channels AL_SOFT_gain_clamp_ex AL_SOFT_loop_points "
"AL_SOFT_MSADPCM AL_SOFT_source_latency AL_SOFT_source_length";
static ATOMIC(ALCenum) LastNullDeviceError = ATOMIC_INIT_STATIC(ALC_NO_ERROR);
/* Thread-local current context */
static altss_t LocalContext;
/* Process-wide current context */
static ATOMIC(ALCcontext*) GlobalContext = ATOMIC_INIT_STATIC(NULL);
/* Mixing thread piority level */
ALint RTPrioLevel;
FILE *LogFile;
#ifdef _DEBUG
enum LogLevel LogLevel = LogWarning;
#else
enum LogLevel LogLevel = LogError;
#endif
/* Flag to trap ALC device errors */
static ALCboolean TrapALCError = ALC_FALSE;
/* One-time configuration init control */
static alonce_flag alc_config_once = AL_ONCE_FLAG_INIT;
/* Default effect that applies to sources that don't have an effect on send 0 */
static ALeffect DefaultEffect;
/* Flag to specify if alcSuspendContext/alcProcessContext should defer/process
* updates.
*/
static ALCboolean SuspendDefers = ALC_TRUE;
/************************************************
* ALC information
************************************************/
static const ALCchar alcNoDeviceExtList[] =
"ALC_ENUMERATE_ALL_EXT ALC_ENUMERATION_EXT ALC_EXT_CAPTURE "
"ALC_EXT_thread_local_context ALC_SOFT_loopback";
static const ALCchar alcExtensionList[] =
"ALC_ENUMERATE_ALL_EXT ALC_ENUMERATION_EXT ALC_EXT_CAPTURE "
"ALC_EXT_DEDICATED ALC_EXT_disconnect ALC_EXT_EFX "
"ALC_EXT_thread_local_context ALC_SOFTX_device_clock ALC_SOFT_HRTF "
"ALC_SOFT_loopback ALC_SOFT_pause_device";
static const ALCint alcMajorVersion = 1;
static const ALCint alcMinorVersion = 1;
static const ALCint alcEFXMajorVersion = 1;
static const ALCint alcEFXMinorVersion = 0;
/************************************************
* Device lists
************************************************/
static ATOMIC(ALCdevice*) DeviceList = ATOMIC_INIT_STATIC(NULL);
static almtx_t ListLock;
static inline void LockLists(void)
{
int ret = almtx_lock(&ListLock);
assert(ret == althrd_success);
}
static inline void UnlockLists(void)
{
int ret = almtx_unlock(&ListLock);
assert(ret == althrd_success);
}
/************************************************
* Library initialization
************************************************/
#if defined(_WIN32)
static void alc_init(void);
static void alc_deinit(void);
static void alc_deinit_safe(void);
#ifndef AL_LIBTYPE_STATIC
BOOL APIENTRY DllMain(HINSTANCE hModule, DWORD reason, LPVOID lpReserved)
{
switch(reason)
{
case DLL_PROCESS_ATTACH:
/* Pin the DLL so we won't get unloaded until the process terminates */
GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_PIN | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
(WCHAR*)hModule, &hModule);
alc_init();
break;
case DLL_THREAD_DETACH:
break;
case DLL_PROCESS_DETACH:
if(!lpReserved)
alc_deinit();
else
alc_deinit_safe();
break;
}
return TRUE;
}
#elif defined(_MSC_VER)
#pragma section(".CRT$XCU",read)
static void alc_constructor(void);
static void alc_destructor(void);
__declspec(allocate(".CRT$XCU")) void (__cdecl* alc_constructor_)(void) = alc_constructor;
static void alc_constructor(void)
{
atexit(alc_destructor);
alc_init();
}
static void alc_destructor(void)
{
alc_deinit();
}
#elif defined(HAVE_GCC_DESTRUCTOR)
static void alc_init(void) __attribute__((constructor));
static void alc_deinit(void) __attribute__((destructor));
#else
#error "No static initialization available on this platform!"
#endif
#elif defined(HAVE_GCC_DESTRUCTOR)
static void alc_init(void) __attribute__((constructor));
static void alc_deinit(void) __attribute__((destructor));
#else
#error "No global initialization available on this platform!"
#endif
static void ReleaseThreadCtx(void *ptr);
static void alc_init(void)
{
const char *str;
int ret;
LogFile = stderr;
AL_STRING_INIT(alcAllDevicesList);
AL_STRING_INIT(alcCaptureDeviceList);
str = getenv("__ALSOFT_HALF_ANGLE_CONES");
if(str && (strcasecmp(str, "true") == 0 || strtol(str, NULL, 0) == 1))
ConeScale *= 0.5f;
str = getenv("__ALSOFT_REVERSE_Z");
if(str && (strcasecmp(str, "true") == 0 || strtol(str, NULL, 0) == 1))
ZScale *= -1.0f;
ret = altss_create(&LocalContext, ReleaseThreadCtx);
assert(ret == althrd_success);
ret = almtx_init(&ListLock, almtx_recursive);
assert(ret == althrd_success);
ThunkInit();
}
static void alc_initconfig(void)
{
const char *devs, *str;
ALuint capfilter;
float valf;
int i, n;
str = getenv("ALSOFT_LOGLEVEL");
if(str)
{
long lvl = strtol(str, NULL, 0);
if(lvl >= NoLog && lvl <= LogRef)
LogLevel = lvl;
}
str = getenv("ALSOFT_LOGFILE");
if(str && str[0])
{
FILE *logfile = al_fopen(str, "wt");
if(logfile) LogFile = logfile;
else ERR("Failed to open log file '%s'\n", str);
}
TRACE("Initializing library v%s-%s %s\n", ALSOFT_VERSION,
ALSOFT_GIT_COMMIT_HASH, ALSOFT_GIT_BRANCH);
{
char buf[1024] = "";
int len = snprintf(buf, sizeof(buf), "%s", BackendList[0].name);
for(i = 1;BackendList[i].name;i++)
len += snprintf(buf+len, sizeof(buf)-len, ", %s", BackendList[i].name);
TRACE("Supported backends: %s\n", buf);
}
ReadALConfig();
str = getenv("__ALSOFT_SUSPEND_CONTEXT");
if(str && *str)
{
if(strcasecmp(str, "ignore") == 0)
{
SuspendDefers = ALC_FALSE;
TRACE("Selected context suspend behavior, \"ignore\"\n");
}
else
ERR("Unhandled context suspend behavior setting: \"%s\"\n", str);
}
capfilter = 0;
#if defined(HAVE_SSE4_1)
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3 | CPU_CAP_SSE4_1;
#elif defined(HAVE_SSE3)
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3;
#elif defined(HAVE_SSE2)
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2;
#elif defined(HAVE_SSE)
capfilter |= CPU_CAP_SSE;
#endif
#ifdef HAVE_NEON
capfilter |= CPU_CAP_NEON;
#endif
if(ConfigValueStr(NULL, NULL, "disable-cpu-exts", &str))
{
if(strcasecmp(str, "all") == 0)
capfilter = 0;
else
{
size_t len;
const char *next = str;
do {
str = next;
while(isspace(str[0]))
str++;
next = strchr(str, ',');
if(!str[0] || str[0] == ',')
continue;
len = (next ? ((size_t)(next-str)) : strlen(str));
while(len > 0 && isspace(str[len-1]))
len--;
if(len == 3 && strncasecmp(str, "sse", len) == 0)
capfilter &= ~CPU_CAP_SSE;
else if(len == 4 && strncasecmp(str, "sse2", len) == 0)
capfilter &= ~CPU_CAP_SSE2;
else if(len == 4 && strncasecmp(str, "sse3", len) == 0)
capfilter &= ~CPU_CAP_SSE3;
else if(len == 6 && strncasecmp(str, "sse4.1", len) == 0)
capfilter &= ~CPU_CAP_SSE4_1;
else if(len == 4 && strncasecmp(str, "neon", len) == 0)
capfilter &= ~CPU_CAP_NEON;
else
WARN("Invalid CPU extension \"%s\"\n", str);
} while(next++);
}
}
FillCPUCaps(capfilter);
#ifdef _WIN32
RTPrioLevel = 1;
#else
RTPrioLevel = 0;
#endif
ConfigValueInt(NULL, NULL, "rt-prio", &RTPrioLevel);
aluInitMixer();
str = getenv("ALSOFT_TRAP_ERROR");
if(str && (strcasecmp(str, "true") == 0 || strtol(str, NULL, 0) == 1))
{
TrapALError = AL_TRUE;
TrapALCError = AL_TRUE;
}
else
{
str = getenv("ALSOFT_TRAP_AL_ERROR");
if(str && (strcasecmp(str, "true") == 0 || strtol(str, NULL, 0) == 1))
TrapALError = AL_TRUE;
TrapALError = GetConfigValueBool(NULL, NULL, "trap-al-error", TrapALError);
str = getenv("ALSOFT_TRAP_ALC_ERROR");
if(str && (strcasecmp(str, "true") == 0 || strtol(str, NULL, 0) == 1))
TrapALCError = ALC_TRUE;
TrapALCError = GetConfigValueBool(NULL, NULL, "trap-alc-error", TrapALCError);
}
if(ConfigValueFloat(NULL, "reverb", "boost", &valf))
ReverbBoost *= powf(10.0f, valf / 20.0f);
EmulateEAXReverb = GetConfigValueBool(NULL, "reverb", "emulate-eax", AL_FALSE);
if(((devs=getenv("ALSOFT_DRIVERS")) && devs[0]) ||
ConfigValueStr(NULL, NULL, "drivers", &devs))
{
int n;
size_t len;
const char *next = devs;
int endlist, delitem;
i = 0;
do {
devs = next;
while(isspace(devs[0]))
devs++;
next = strchr(devs, ',');
delitem = (devs[0] == '-');
if(devs[0] == '-') devs++;
if(!devs[0] || devs[0] == ',')
{
endlist = 0;
continue;
}
endlist = 1;
len = (next ? ((size_t)(next-devs)) : strlen(devs));
while(len > 0 && isspace(devs[len-1]))
len--;
for(n = i;BackendList[n].name;n++)
{
if(len == strlen(BackendList[n].name) &&
strncmp(BackendList[n].name, devs, len) == 0)
{
if(delitem)
{
do {
BackendList[n] = BackendList[n+1];
++n;
} while(BackendList[n].name);
}
else
{
struct BackendInfo Bkp = BackendList[n];
while(n > i)
{
BackendList[n] = BackendList[n-1];
--n;
}
BackendList[n] = Bkp;
i++;
}
break;
}
}
} while(next++);
if(endlist)
{
BackendList[i].name = NULL;
BackendList[i].getFactory = NULL;
BackendList[i].Init = NULL;
BackendList[i].Deinit = NULL;
BackendList[i].Probe = NULL;
}
}
for(i = 0;(BackendList[i].Init || BackendList[i].getFactory) && (!PlaybackBackend.name || !CaptureBackend.name);i++)
{
if(BackendList[i].getFactory)
{
ALCbackendFactory *factory = BackendList[i].getFactory();
if(!V0(factory,init)())
{
WARN("Failed to initialize backend \"%s\"\n", BackendList[i].name);
continue;
}
TRACE("Initialized backend \"%s\"\n", BackendList[i].name);
if(!PlaybackBackend.name && V(factory,querySupport)(ALCbackend_Playback))
{
PlaybackBackend = BackendList[i];
TRACE("Added \"%s\" for playback\n", PlaybackBackend.name);
}
if(!CaptureBackend.name && V(factory,querySupport)(ALCbackend_Capture))
{
CaptureBackend = BackendList[i];
TRACE("Added \"%s\" for capture\n", CaptureBackend.name);
}
continue;
}
if(!BackendList[i].Init(&BackendList[i].Funcs))
{
WARN("Failed to initialize backend \"%s\"\n", BackendList[i].name);
continue;
}
TRACE("Initialized backend \"%s\"\n", BackendList[i].name);
if(BackendList[i].Funcs.OpenPlayback && !PlaybackBackend.name)
{
PlaybackBackend = BackendList[i];
TRACE("Added \"%s\" for playback\n", PlaybackBackend.name);
}
if(BackendList[i].Funcs.OpenCapture && !CaptureBackend.name)
{
CaptureBackend = BackendList[i];
TRACE("Added \"%s\" for capture\n", CaptureBackend.name);
}
}
{
ALCbackendFactory *factory = ALCloopbackFactory_getFactory();
V0(factory,init)();
}
if(!PlaybackBackend.name)
WARN("No playback backend available!\n");
if(!CaptureBackend.name)
WARN("No capture backend available!\n");
if(ConfigValueStr(NULL, NULL, "excludefx", &str))
{
size_t len;
const char *next = str;
do {
str = next;
next = strchr(str, ',');
if(!str[0] || next == str)
continue;
len = (next ? ((size_t)(next-str)) : strlen(str));
for(n = 0;EffectList[n].name;n++)
{
if(len == strlen(EffectList[n].name) &&
strncmp(EffectList[n].name, str, len) == 0)
DisabledEffects[EffectList[n].type] = AL_TRUE;
}
} while(next++);
}
InitEffectFactoryMap();
InitEffect(&DefaultEffect);
str = getenv("ALSOFT_DEFAULT_REVERB");
if((str && str[0]) || ConfigValueStr(NULL, NULL, "default-reverb", &str))
LoadReverbPreset(str, &DefaultEffect);
}
#define DO_INITCONFIG() alcall_once(&alc_config_once, alc_initconfig)
#ifdef __ANDROID__
#include <jni.h>
static JavaVM *gJavaVM;
static pthread_key_t gJVMThreadKey;
static void CleanupJNIEnv(void* UNUSED(ptr))
{
JCALL0(gJavaVM,DetachCurrentThread)();
}
void *Android_GetJNIEnv(void)
{
if(!gJavaVM)
{
WARN("gJavaVM is NULL!\n");
return NULL;
}
/* http://developer.android.com/guide/practices/jni.html
*
* All threads are Linux threads, scheduled by the kernel. They're usually
* started from managed code (using Thread.start), but they can also be
* created elsewhere and then attached to the JavaVM. For example, a thread
* started with pthread_create can be attached with the JNI
* AttachCurrentThread or AttachCurrentThreadAsDaemon functions. Until a
* thread is attached, it has no JNIEnv, and cannot make JNI calls.
* Attaching a natively-created thread causes a java.lang.Thread object to
* be constructed and added to the "main" ThreadGroup, making it visible to
* the debugger. Calling AttachCurrentThread on an already-attached thread
* is a no-op.
*/
JNIEnv *env = pthread_getspecific(gJVMThreadKey);
if(!env)
{
int status = JCALL(gJavaVM,AttachCurrentThread)(&env, NULL);
if(status < 0)
{
ERR("Failed to attach current thread\n");
return NULL;
}
pthread_setspecific(gJVMThreadKey, env);
}
return env;
}
/* Automatically called by JNI. */
JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *jvm, void* UNUSED(reserved))
{
void *env;
int err;
gJavaVM = jvm;
if(JCALL(gJavaVM,GetEnv)(&env, JNI_VERSION_1_4) != JNI_OK)
{
ERR("Failed to get JNIEnv with JNI_VERSION_1_4\n");
return JNI_ERR;
}
/* Create gJVMThreadKey so we can keep track of the JNIEnv assigned to each
* thread. The JNIEnv *must* be detached before the thread is destroyed.
*/
if((err=pthread_key_create(&gJVMThreadKey, CleanupJNIEnv)) != 0)
ERR("pthread_key_create failed: %d\n", err);
pthread_setspecific(gJVMThreadKey, env);
return JNI_VERSION_1_4;
}
#endif
/************************************************
* Library deinitialization
************************************************/
static void alc_cleanup(void)
{
ALCdevice *dev;
AL_STRING_DEINIT(alcAllDevicesList);
AL_STRING_DEINIT(alcCaptureDeviceList);
free(alcDefaultAllDevicesSpecifier);
alcDefaultAllDevicesSpecifier = NULL;
free(alcCaptureDefaultDeviceSpecifier);
alcCaptureDefaultDeviceSpecifier = NULL;
if((dev=ATOMIC_EXCHANGE_SEQ(ALCdevice*, &DeviceList, NULL)) != NULL)
{
ALCuint num = 0;
do {
num++;
} while((dev=dev->next) != NULL);
ERR("%u device%s not closed\n", num, (num>1)?"s":"");
}
DeinitEffectFactoryMap();
}
static void alc_deinit_safe(void)
{
alc_cleanup();
FreeHrtfs();
FreeALConfig();
ThunkExit();
almtx_destroy(&ListLock);
altss_delete(LocalContext);
if(LogFile != stderr)
fclose(LogFile);
LogFile = NULL;
}
static void alc_deinit(void)
{
int i;
alc_cleanup();
memset(&PlaybackBackend, 0, sizeof(PlaybackBackend));
memset(&CaptureBackend, 0, sizeof(CaptureBackend));
for(i = 0;BackendList[i].Deinit || BackendList[i].getFactory;i++)
{
if(!BackendList[i].getFactory)
BackendList[i].Deinit();
else
{
ALCbackendFactory *factory = BackendList[i].getFactory();
V0(factory,deinit)();
}
}
{
ALCbackendFactory *factory = ALCloopbackFactory_getFactory();
V0(factory,deinit)();
}
alc_deinit_safe();
}
/************************************************
* Device enumeration
************************************************/
static void ProbeDevices(al_string *list, struct BackendInfo *backendinfo, enum DevProbe type)
{
DO_INITCONFIG();
LockLists();
al_string_clear(list);
if(backendinfo->Probe)
backendinfo->Probe(type);
else if(backendinfo->getFactory)
{
ALCbackendFactory *factory = backendinfo->getFactory();
V(factory,probe)(type);
}
UnlockLists();
}
static void ProbeAllDevicesList(void)
{ ProbeDevices(&alcAllDevicesList, &PlaybackBackend, ALL_DEVICE_PROBE); }
static void ProbeCaptureDeviceList(void)
{ ProbeDevices(&alcCaptureDeviceList, &CaptureBackend, CAPTURE_DEVICE_PROBE); }
static void AppendDevice(const ALCchar *name, al_string *devnames)
{
size_t len = strlen(name);
if(len > 0)
al_string_append_range(devnames, name, name+len+1);
}
void AppendAllDevicesList(const ALCchar *name)
{ AppendDevice(name, &alcAllDevicesList); }
void AppendCaptureDeviceList(const ALCchar *name)
{ AppendDevice(name, &alcCaptureDeviceList); }
/************************************************
* Device format information
************************************************/
const ALCchar *DevFmtTypeString(enum DevFmtType type)
{
switch(type)
{
case DevFmtByte: return "Signed Byte";
case DevFmtUByte: return "Unsigned Byte";
case DevFmtShort: return "Signed Short";
case DevFmtUShort: return "Unsigned Short";
case DevFmtInt: return "Signed Int";
case DevFmtUInt: return "Unsigned Int";
case DevFmtFloat: return "Float";
}
return "(unknown type)";
}
const ALCchar *DevFmtChannelsString(enum DevFmtChannels chans)
{
switch(chans)
{
case DevFmtMono: return "Mono";
case DevFmtStereo: return "Stereo";
case DevFmtQuad: return "Quadraphonic";
case DevFmtX51: return "5.1 Surround";
case DevFmtX51Rear: return "5.1 Surround (Rear)";
case DevFmtX61: return "6.1 Surround";
case DevFmtX71: return "7.1 Surround";
case DevFmtAmbi1: return "Ambisonic (1st Order)";
case DevFmtAmbi2: return "Ambisonic (2nd Order)";
case DevFmtAmbi3: return "Ambisonic (3rd Order)";
}
return "(unknown channels)";
}
extern inline ALsizei FrameSizeFromDevFmt(enum DevFmtChannels chans, enum DevFmtType type);
ALsizei BytesFromDevFmt(enum DevFmtType type)
{
switch(type)
{
case DevFmtByte: return sizeof(ALbyte);
case DevFmtUByte: return sizeof(ALubyte);
case DevFmtShort: return sizeof(ALshort);
case DevFmtUShort: return sizeof(ALushort);
case DevFmtInt: return sizeof(ALint);
case DevFmtUInt: return sizeof(ALuint);
case DevFmtFloat: return sizeof(ALfloat);
}
return 0;
}
ALsizei ChannelsFromDevFmt(enum DevFmtChannels chans)
{
switch(chans)
{
case DevFmtMono: return 1;
case DevFmtStereo: return 2;
case DevFmtQuad: return 4;
case DevFmtX51: return 6;
case DevFmtX51Rear: return 6;
case DevFmtX61: return 7;
case DevFmtX71: return 8;
case DevFmtAmbi1: return 4;
case DevFmtAmbi2: return 9;
case DevFmtAmbi3: return 16;
}
return 0;
}
static ALboolean DecomposeDevFormat(ALenum format, enum DevFmtChannels *chans,
enum DevFmtType *type)
{
static const struct {
ALenum format;
enum DevFmtChannels channels;
enum DevFmtType type;
} list[] = {
{ AL_FORMAT_MONO8, DevFmtMono, DevFmtUByte },
{ AL_FORMAT_MONO16, DevFmtMono, DevFmtShort },
{ AL_FORMAT_MONO_FLOAT32, DevFmtMono, DevFmtFloat },
{ AL_FORMAT_STEREO8, DevFmtStereo, DevFmtUByte },
{ AL_FORMAT_STEREO16, DevFmtStereo, DevFmtShort },
{ AL_FORMAT_STEREO_FLOAT32, DevFmtStereo, DevFmtFloat },
{ AL_FORMAT_QUAD8, DevFmtQuad, DevFmtUByte },
{ AL_FORMAT_QUAD16, DevFmtQuad, DevFmtShort },
{ AL_FORMAT_QUAD32, DevFmtQuad, DevFmtFloat },
{ AL_FORMAT_51CHN8, DevFmtX51, DevFmtUByte },
{ AL_FORMAT_51CHN16, DevFmtX51, DevFmtShort },
{ AL_FORMAT_51CHN32, DevFmtX51, DevFmtFloat },
{ AL_FORMAT_61CHN8, DevFmtX61, DevFmtUByte },
{ AL_FORMAT_61CHN16, DevFmtX61, DevFmtShort },
{ AL_FORMAT_61CHN32, DevFmtX61, DevFmtFloat },
{ AL_FORMAT_71CHN8, DevFmtX71, DevFmtUByte },
{ AL_FORMAT_71CHN16, DevFmtX71, DevFmtShort },
{ AL_FORMAT_71CHN32, DevFmtX71, DevFmtFloat },
};
ALuint i;
for(i = 0;i < COUNTOF(list);i++)
{
if(list[i].format == format)
{
*chans = list[i].channels;
*type = list[i].type;
return AL_TRUE;
}
}
return AL_FALSE;
}
static ALCboolean IsValidALCType(ALCenum type)
{
switch(type)
{
case ALC_BYTE_SOFT:
case ALC_UNSIGNED_BYTE_SOFT:
case ALC_SHORT_SOFT:
case ALC_UNSIGNED_SHORT_SOFT:
case ALC_INT_SOFT:
case ALC_UNSIGNED_INT_SOFT:
case ALC_FLOAT_SOFT:
return ALC_TRUE;
}
return ALC_FALSE;
}
static ALCboolean IsValidALCChannels(ALCenum channels)
{
switch(channels)
{
case ALC_MONO_SOFT:
case ALC_STEREO_SOFT:
case ALC_QUAD_SOFT:
case ALC_5POINT1_SOFT:
case ALC_6POINT1_SOFT:
case ALC_7POINT1_SOFT:
return ALC_TRUE;
}
return ALC_FALSE;
}
/************************************************
* Miscellaneous ALC helpers
************************************************/
void ALCdevice_Lock(ALCdevice *device)
{
V0(device->Backend,lock)();
}
void ALCdevice_Unlock(ALCdevice *device)
{
V0(device->Backend,unlock)();
}
/* SetDefaultWFXChannelOrder
*
* Sets the default channel order used by WaveFormatEx.
*/
void SetDefaultWFXChannelOrder(ALCdevice *device)
{
ALuint i;
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
device->RealOut.ChannelName[i] = InvalidChannel;
switch(device->FmtChans)
{
case DevFmtMono:
device->RealOut.ChannelName[0] = FrontCenter;
break;
case DevFmtStereo:
device->RealOut.ChannelName[0] = FrontLeft;
device->RealOut.ChannelName[1] = FrontRight;
break;
case DevFmtQuad:
device->RealOut.ChannelName[0] = FrontLeft;
device->RealOut.ChannelName[1] = FrontRight;
device->RealOut.ChannelName[2] = BackLeft;
device->RealOut.ChannelName[3] = BackRight;
break;
case DevFmtX51:
device->RealOut.ChannelName[0] = FrontLeft;
device->RealOut.ChannelName[1] = FrontRight;
device->RealOut.ChannelName[2] = FrontCenter;
device->RealOut.ChannelName[3] = LFE;
device->RealOut.ChannelName[4] = SideLeft;
device->RealOut.ChannelName[5] = SideRight;
break;
case DevFmtX51Rear:
device->RealOut.ChannelName[0] = FrontLeft;
device->RealOut.ChannelName[1] = FrontRight;
device->RealOut.ChannelName[2] = FrontCenter;
device->RealOut.ChannelName[3] = LFE;
device->RealOut.ChannelName[4] = BackLeft;
device->RealOut.ChannelName[5] = BackRight;
break;
case DevFmtX61:
device->RealOut.ChannelName[0] = FrontLeft;
device->RealOut.ChannelName[1] = FrontRight;
device->RealOut.ChannelName[2] = FrontCenter;
device->RealOut.ChannelName[3] = LFE;
device->RealOut.ChannelName[4] = BackCenter;
device->RealOut.ChannelName[5] = SideLeft;
device->RealOut.ChannelName[6] = SideRight;
break;
case DevFmtX71:
device->RealOut.ChannelName[0] = FrontLeft;
device->RealOut.ChannelName[1] = FrontRight;
device->RealOut.ChannelName[2] = FrontCenter;
device->RealOut.ChannelName[3] = LFE;
device->RealOut.ChannelName[4] = BackLeft;
device->RealOut.ChannelName[5] = BackRight;
device->RealOut.ChannelName[6] = SideLeft;
device->RealOut.ChannelName[7] = SideRight;
break;
case DevFmtAmbi1:
device->RealOut.ChannelName[0] = Aux0;
device->RealOut.ChannelName[1] = Aux1;
device->RealOut.ChannelName[2] = Aux2;
device->RealOut.ChannelName[3] = Aux3;
break;
case DevFmtAmbi2:
device->RealOut.ChannelName[0] = Aux0;
device->RealOut.ChannelName[1] = Aux1;
device->RealOut.ChannelName[2] = Aux2;
device->RealOut.ChannelName[3] = Aux3;
device->RealOut.ChannelName[4] = Aux4;
device->RealOut.ChannelName[5] = Aux5;
device->RealOut.ChannelName[6] = Aux6;
device->RealOut.ChannelName[7] = Aux7;
device->RealOut.ChannelName[8] = Aux8;
break;
case DevFmtAmbi3:
device->RealOut.ChannelName[0] = Aux0;
device->RealOut.ChannelName[1] = Aux1;
device->RealOut.ChannelName[2] = Aux2;
device->RealOut.ChannelName[3] = Aux3;
device->RealOut.ChannelName[4] = Aux4;
device->RealOut.ChannelName[5] = Aux5;
device->RealOut.ChannelName[6] = Aux6;
device->RealOut.ChannelName[7] = Aux7;
device->RealOut.ChannelName[8] = Aux8;
device->RealOut.ChannelName[9] = Aux9;
device->RealOut.ChannelName[10] = Aux10;
device->RealOut.ChannelName[11] = Aux11;
device->RealOut.ChannelName[12] = Aux12;
device->RealOut.ChannelName[13] = Aux13;
device->RealOut.ChannelName[14] = Aux14;
device->RealOut.ChannelName[15] = Aux15;
break;
}
}
/* SetDefaultChannelOrder
*
* Sets the default channel order used by most non-WaveFormatEx-based APIs.
*/
void SetDefaultChannelOrder(ALCdevice *device)
{
ALuint i;
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
device->RealOut.ChannelName[i] = InvalidChannel;
switch(device->FmtChans)
{
case DevFmtX51Rear:
device->RealOut.ChannelName[0] = FrontLeft;
device->RealOut.ChannelName[1] = FrontRight;
device->RealOut.ChannelName[2] = BackLeft;
device->RealOut.ChannelName[3] = BackRight;
device->RealOut.ChannelName[4] = FrontCenter;
device->RealOut.ChannelName[5] = LFE;
return;
case DevFmtX71:
device->RealOut.ChannelName[0] = FrontLeft;
device->RealOut.ChannelName[1] = FrontRight;
device->RealOut.ChannelName[2] = BackLeft;
device->RealOut.ChannelName[3] = BackRight;
device->RealOut.ChannelName[4] = FrontCenter;
device->RealOut.ChannelName[5] = LFE;
device->RealOut.ChannelName[6] = SideLeft;
device->RealOut.ChannelName[7] = SideRight;
return;
/* Same as WFX order */
case DevFmtMono:
case DevFmtStereo:
case DevFmtQuad:
case DevFmtX51:
case DevFmtX61:
case DevFmtAmbi1:
case DevFmtAmbi2:
case DevFmtAmbi3:
SetDefaultWFXChannelOrder(device);
break;
}
}
extern inline ALint GetChannelIndex(const enum Channel names[MAX_OUTPUT_CHANNELS], enum Channel chan);
/* ALCcontext_DeferUpdates
*
* Defers/suspends updates for the given context's listener and sources. This
* does *NOT* stop mixing, but rather prevents certain property changes from
* taking effect.
*/
void ALCcontext_DeferUpdates(ALCcontext *context, ALenum type)
{
ATOMIC_STORE_SEQ(&context->DeferUpdates, type);
}
/* ALCcontext_ProcessUpdates
*
* Resumes update processing after being deferred.
*/
void ALCcontext_ProcessUpdates(ALCcontext *context)
{
ALCdevice *device = context->Device;
ReadLock(&context->PropLock);
if(ATOMIC_EXCHANGE_SEQ(ALenum, &context->DeferUpdates, AL_FALSE))
{
ALsizei pos;
uint updates;
/* Tell the mixer to stop applying updates, then wait for any active
* updating to finish, before providing updates.
*/
ATOMIC_STORE_SEQ(&context->HoldUpdates, AL_TRUE);
while(((updates=ReadRef(&context->UpdateCount))&1) != 0)
althrd_yield();
UpdateListenerProps(context);
UpdateAllEffectSlotProps(context);
LockUIntMapRead(&context->SourceMap);
V0(device->Backend,lock)();
for(pos = 0;pos < context->SourceMap.size;pos++)
{
ALsource *Source = context->SourceMap.values[pos];
ALenum new_state;
if(Source->OffsetType != AL_NONE && IsPlayingOrPaused(Source))
{
WriteLock(&Source->queue_lock);
ApplyOffset(Source);
WriteUnlock(&Source->queue_lock);
}
new_state = Source->new_state;
Source->new_state = AL_NONE;
if(new_state)
SetSourceState(Source, context, new_state);
}
V0(device->Backend,unlock)();
UnlockUIntMapRead(&context->SourceMap);
UpdateAllSourceProps(context);
/* Now with all updates declared, let the mixer continue applying them
* so they all happen at once.
*/
ATOMIC_STORE_SEQ(&context->HoldUpdates, AL_FALSE);
}
ReadUnlock(&context->PropLock);
}
/* alcSetError
*
* Stores the latest ALC device error
*/
static void alcSetError(ALCdevice *device, ALCenum errorCode)
{
if(TrapALCError)
{
#ifdef _WIN32
/* DebugBreak() will cause an exception if there is no debugger */
if(IsDebuggerPresent())
DebugBreak();
#elif defined(SIGTRAP)
raise(SIGTRAP);
#endif
}
if(device)
ATOMIC_STORE_SEQ(&device->LastError, errorCode);
else
ATOMIC_STORE_SEQ(&LastNullDeviceError, errorCode);
}
/* UpdateClockBase
*
* Updates the device's base clock time with however many samples have been
* done. This is used so frequency changes on the device don't cause the time
* to jump forward or back.
*/
static inline void UpdateClockBase(ALCdevice *device)
{
device->ClockBase += device->SamplesDone * DEVICE_CLOCK_RES / device->Frequency;
device->SamplesDone = 0;
}
/* UpdateDeviceParams
*
* Updates device parameters according to the attribute list (caller is
* responsible for holding the list lock).
*/
static ALCenum UpdateDeviceParams(ALCdevice *device, const ALCint *attrList)
{
ALCcontext *context;
enum HrtfRequestMode hrtf_appreq = Hrtf_Default;
enum HrtfRequestMode hrtf_userreq = Hrtf_Default;
ALsizei old_sends = device->NumAuxSends;
enum DevFmtChannels oldChans;
enum DevFmtType oldType;
ALCuint oldFreq;
FPUCtl oldMode;
ALCsizei hrtf_id = -1;
size_t size;
// Check for attributes
if(device->Type == Loopback)
{
enum {
GotFreq = 1<<0,
GotChans = 1<<1,
GotType = 1<<2,
GotAll = GotFreq|GotChans|GotType
};
ALCuint freq, numMono, numStereo, numSends;
enum DevFmtChannels schans;
enum DevFmtType stype;
ALCuint attrIdx = 0;
ALCint gotFmt = 0;
if(!attrList)
{
WARN("Missing attributes for loopback device\n");
return ALC_INVALID_VALUE;
}
numMono = device->NumMonoSources;
numStereo = device->NumStereoSources;
numSends = device->NumAuxSends;
schans = device->FmtChans;
stype = device->FmtType;
freq = device->Frequency;
#define TRACE_ATTR(a, v) TRACE("Loopback %s = %d\n", #a, v)
while(attrList[attrIdx])
{
if(attrList[attrIdx] == ALC_FORMAT_CHANNELS_SOFT)
{
ALCint val = attrList[attrIdx + 1];
TRACE_ATTR(ALC_FORMAT_CHANNELS_SOFT, val);
if(!IsValidALCChannels(val) || !ChannelsFromDevFmt(val))
return ALC_INVALID_VALUE;
schans = val;
gotFmt |= GotChans;
}
if(attrList[attrIdx] == ALC_FORMAT_TYPE_SOFT)
{
ALCint val = attrList[attrIdx + 1];
TRACE_ATTR(ALC_FORMAT_TYPE_SOFT, val);
if(!IsValidALCType(val) || !BytesFromDevFmt(val))
return ALC_INVALID_VALUE;
stype = val;
gotFmt |= GotType;
}
if(attrList[attrIdx] == ALC_FREQUENCY)
{
freq = attrList[attrIdx + 1];
TRACE_ATTR(ALC_FREQUENCY, freq);
if(freq < MIN_OUTPUT_RATE)
return ALC_INVALID_VALUE;
gotFmt |= GotFreq;
}
if(attrList[attrIdx] == ALC_STEREO_SOURCES)
{
numStereo = attrList[attrIdx + 1];
TRACE_ATTR(ALC_STEREO_SOURCES, numStereo);
if(numStereo > device->SourcesMax)
numStereo = device->SourcesMax;
numMono = device->SourcesMax - numStereo;
}
if(attrList[attrIdx] == ALC_MAX_AUXILIARY_SENDS)
{
numSends = attrList[attrIdx + 1];
TRACE_ATTR(ALC_MAX_AUXILIARY_SENDS, numSends);
}
if(attrList[attrIdx] == ALC_HRTF_SOFT)
{
TRACE_ATTR(ALC_HRTF_SOFT, attrList[attrIdx + 1]);
if(attrList[attrIdx + 1] == ALC_FALSE)
hrtf_appreq = Hrtf_Disable;
else if(attrList[attrIdx + 1] == ALC_TRUE)
hrtf_appreq = Hrtf_Enable;
else
hrtf_appreq = Hrtf_Default;
}
if(attrList[attrIdx] == ALC_HRTF_ID_SOFT)
{
hrtf_id = attrList[attrIdx + 1];
TRACE_ATTR(ALC_HRTF_ID_SOFT, hrtf_id);
}
attrIdx += 2;
}
#undef TRACE_ATTR
if(gotFmt != GotAll)
{
WARN("Missing format for loopback device\n");
return ALC_INVALID_VALUE;
}
ConfigValueUInt(NULL, NULL, "sends", &numSends);
numSends = minu(MAX_SENDS, numSends);
if((device->Flags&DEVICE_RUNNING))
V0(device->Backend,stop)();
device->Flags &= ~DEVICE_RUNNING;
UpdateClockBase(device);
device->Frequency = freq;
device->FmtChans = schans;
device->FmtType = stype;
device->NumMonoSources = numMono;
device->NumStereoSources = numStereo;
device->NumAuxSends = numSends;
}
else if(attrList && attrList[0])
{
ALCuint freq, numMono, numStereo, numSends;
ALCuint attrIdx = 0;
/* If a context is already running on the device, stop playback so the
* device attributes can be updated. */
if((device->Flags&DEVICE_RUNNING))
V0(device->Backend,stop)();
device->Flags &= ~DEVICE_RUNNING;
freq = device->Frequency;
numMono = device->NumMonoSources;
numStereo = device->NumStereoSources;
numSends = device->NumAuxSends;
#define TRACE_ATTR(a, v) TRACE("%s = %d\n", #a, v)
while(attrList[attrIdx])
{
if(attrList[attrIdx] == ALC_FREQUENCY)
{
freq = attrList[attrIdx + 1];
device->Flags |= DEVICE_FREQUENCY_REQUEST;
TRACE_ATTR(ALC_FREQUENCY, freq);
}
if(attrList[attrIdx] == ALC_STEREO_SOURCES)
{
numStereo = attrList[attrIdx + 1];
TRACE_ATTR(ALC_STEREO_SOURCES, numStereo);
if(numStereo > device->SourcesMax)
numStereo = device->SourcesMax;
numMono = device->SourcesMax - numStereo;
}
if(attrList[attrIdx] == ALC_MAX_AUXILIARY_SENDS)
{
numSends = attrList[attrIdx + 1];
TRACE_ATTR(ALC_MAX_AUXILIARY_SENDS, numSends);
}
if(attrList[attrIdx] == ALC_HRTF_SOFT)
{
TRACE_ATTR(ALC_HRTF_SOFT, attrList[attrIdx + 1]);
if(attrList[attrIdx + 1] == ALC_FALSE)
hrtf_appreq = Hrtf_Disable;
else if(attrList[attrIdx + 1] == ALC_TRUE)
hrtf_appreq = Hrtf_Enable;
else
hrtf_appreq = Hrtf_Default;
}
if(attrList[attrIdx] == ALC_HRTF_ID_SOFT)
{
hrtf_id = attrList[attrIdx + 1];
TRACE_ATTR(ALC_HRTF_ID_SOFT, hrtf_id);
}
attrIdx += 2;
}
#undef TRACE_ATTR
ConfigValueUInt(al_string_get_cstr(device->DeviceName), NULL, "frequency", &freq);
freq = maxu(freq, MIN_OUTPUT_RATE);
ConfigValueUInt(al_string_get_cstr(device->DeviceName), NULL, "sends", &numSends);
numSends = minu(MAX_SENDS, numSends);
UpdateClockBase(device);
device->UpdateSize = (ALuint64)device->UpdateSize * freq /
device->Frequency;
/* SSE and Neon do best with the update size being a multiple of 4 */
if((CPUCapFlags&(CPU_CAP_SSE|CPU_CAP_NEON)) != 0)
device->UpdateSize = (device->UpdateSize+3)&~3;
device->Frequency = freq;
device->NumMonoSources = numMono;
device->NumStereoSources = numStereo;
device->NumAuxSends = numSends;
}
if((device->Flags&DEVICE_RUNNING))
return ALC_NO_ERROR;
al_free(device->Uhj_Encoder);
device->Uhj_Encoder = NULL;
al_free(device->Bs2b);
device->Bs2b = NULL;
al_free(device->Dry.Buffer);
device->Dry.Buffer = NULL;
device->Dry.NumChannels = 0;
device->FOAOut.Buffer = NULL;
device->FOAOut.NumChannels = 0;
device->RealOut.Buffer = NULL;
device->RealOut.NumChannels = 0;
UpdateClockBase(device);
/*************************************************************************
* Update device format request if HRTF is requested
*/
device->Hrtf.Status = ALC_HRTF_DISABLED_SOFT;
if(device->Type != Loopback)
{
const char *hrtf;
if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "hrtf", &hrtf))
{
if(strcasecmp(hrtf, "true") == 0)
hrtf_userreq = Hrtf_Enable;
else if(strcasecmp(hrtf, "false") == 0)
hrtf_userreq = Hrtf_Disable;
else if(strcasecmp(hrtf, "auto") != 0)
ERR("Unexpected hrtf value: %s\n", hrtf);
}
if(hrtf_userreq == Hrtf_Enable || (hrtf_userreq != Hrtf_Disable && hrtf_appreq == Hrtf_Enable))
{
if(VECTOR_SIZE(device->Hrtf.List) == 0)
{
VECTOR_DEINIT(device->Hrtf.List);
device->Hrtf.List = EnumerateHrtf(device->DeviceName);
}
if(VECTOR_SIZE(device->Hrtf.List) > 0)
{
device->FmtChans = DevFmtStereo;
if(hrtf_id >= 0 && (size_t)hrtf_id < VECTOR_SIZE(device->Hrtf.List))
device->Frequency = VECTOR_ELEM(device->Hrtf.List, hrtf_id).hrtf->sampleRate;
else
device->Frequency = VECTOR_ELEM(device->Hrtf.List, 0).hrtf->sampleRate;
device->Flags |= DEVICE_CHANNELS_REQUEST | DEVICE_FREQUENCY_REQUEST;
}
else
{
hrtf_userreq = Hrtf_Default;
hrtf_appreq = Hrtf_Disable;
device->Hrtf.Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
}
}
}
else if(hrtf_appreq == Hrtf_Enable)
{
size_t i = VECTOR_SIZE(device->Hrtf.List);
/* Loopback device. We don't need to match to a specific HRTF entry
* here. If the requested ID matches, we'll pick that later, if not,
* we'll try to auto-select one anyway. Just make sure one exists
* that'll work.
*/
if(device->FmtChans == DevFmtStereo)
{
if(VECTOR_SIZE(device->Hrtf.List) == 0)
{
VECTOR_DEINIT(device->Hrtf.List);
device->Hrtf.List = EnumerateHrtf(device->DeviceName);
}
for(i = 0;i < VECTOR_SIZE(device->Hrtf.List);i++)
{
const struct Hrtf *hrtf = VECTOR_ELEM(device->Hrtf.List, i).hrtf;
if(hrtf->sampleRate == device->Frequency)
break;
}
}
if(i == VECTOR_SIZE(device->Hrtf.List))
{
ERR("Requested format not HRTF compatible: %s, %uhz\n",
DevFmtChannelsString(device->FmtChans), device->Frequency);
hrtf_appreq = Hrtf_Disable;
device->Hrtf.Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
}
}
oldFreq = device->Frequency;
oldChans = device->FmtChans;
oldType = device->FmtType;
TRACE("Pre-reset: %s%s, %s%s, %s%uhz, %u update size x%d\n",
(device->Flags&DEVICE_CHANNELS_REQUEST)?"*":"", DevFmtChannelsString(device->FmtChans),
(device->Flags&DEVICE_SAMPLE_TYPE_REQUEST)?"*":"", DevFmtTypeString(device->FmtType),
(device->Flags&DEVICE_FREQUENCY_REQUEST)?"*":"", device->Frequency,
device->UpdateSize, device->NumUpdates
);
if(V0(device->Backend,reset)() == ALC_FALSE)
return ALC_INVALID_DEVICE;
if(device->FmtChans != oldChans && (device->Flags&DEVICE_CHANNELS_REQUEST))
{
ERR("Failed to set %s, got %s instead\n", DevFmtChannelsString(oldChans),
DevFmtChannelsString(device->FmtChans));
device->Flags &= ~DEVICE_CHANNELS_REQUEST;
}
if(device->FmtType != oldType && (device->Flags&DEVICE_SAMPLE_TYPE_REQUEST))
{
ERR("Failed to set %s, got %s instead\n", DevFmtTypeString(oldType),
DevFmtTypeString(device->FmtType));
device->Flags &= ~DEVICE_SAMPLE_TYPE_REQUEST;
}
if(device->Frequency != oldFreq && (device->Flags&DEVICE_FREQUENCY_REQUEST))
{
ERR("Failed to set %uhz, got %uhz instead\n", oldFreq, device->Frequency);
device->Flags &= ~DEVICE_FREQUENCY_REQUEST;
}
if((device->UpdateSize&3) != 0)
{
if((CPUCapFlags&CPU_CAP_SSE))
WARN("SSE performs best with multiple of 4 update sizes (%u)\n", device->UpdateSize);
if((CPUCapFlags&CPU_CAP_NEON))
WARN("NEON performs best with multiple of 4 update sizes (%u)\n", device->UpdateSize);
}
TRACE("Post-reset: %s, %s, %uhz, %u update size x%d\n",
DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType),
device->Frequency, device->UpdateSize, device->NumUpdates
);
aluInitRenderer(device, hrtf_id, hrtf_appreq, hrtf_userreq);
TRACE("Channel config, Dry: %d, FOA: %d, Real: %d\n", device->Dry.NumChannels,
device->FOAOut.NumChannels, device->RealOut.NumChannels);
/* Allocate extra channels for any post-filter output. */
size = (device->Dry.NumChannels + device->FOAOut.NumChannels +
device->RealOut.NumChannels)*sizeof(device->Dry.Buffer[0]);
TRACE("Allocating "SZFMT" channels, "SZFMT" bytes\n", size/sizeof(device->Dry.Buffer[0]), size);
device->Dry.Buffer = al_calloc(16, size);
if(!device->Dry.Buffer)
{
ERR("Failed to allocate "SZFMT" bytes for mix buffer\n", size);
return ALC_INVALID_DEVICE;
}
if(device->RealOut.NumChannels != 0)
device->RealOut.Buffer = device->Dry.Buffer + device->Dry.NumChannels +
device->FOAOut.NumChannels;
else
{
device->RealOut.Buffer = device->Dry.Buffer;
device->RealOut.NumChannels = device->Dry.NumChannels;
}
if(device->FOAOut.NumChannels != 0)
device->FOAOut.Buffer = device->Dry.Buffer + device->Dry.NumChannels;
else
{
device->FOAOut.Buffer = device->Dry.Buffer;
device->FOAOut.NumChannels = device->Dry.NumChannels;
}
SetMixerFPUMode(&oldMode);
if(device->DefaultSlot)
{
ALeffectslot *slot = device->DefaultSlot;
ALeffectState *state = slot->Effect.State;
state->OutBuffer = device->Dry.Buffer;
state->OutChannels = device->Dry.NumChannels;
if(V(state,deviceUpdate)(device) == AL_FALSE)
{
RestoreFPUMode(&oldMode);
return ALC_INVALID_DEVICE;
}
UpdateEffectSlotProps(slot);
}
context = ATOMIC_LOAD_SEQ(&device->ContextList);
while(context)
{
ALsizei pos;
WriteLock(&context->PropLock);
LockUIntMapRead(&context->EffectSlotMap);
for(pos = 0;pos < context->EffectSlotMap.size;pos++)
{
ALeffectslot *slot = context->EffectSlotMap.values[pos];
ALeffectState *state = slot->Effect.State;
state->OutBuffer = device->Dry.Buffer;
state->OutChannels = device->Dry.NumChannels;
if(V(state,deviceUpdate)(device) == AL_FALSE)
{
UnlockUIntMapRead(&context->EffectSlotMap);
ReadUnlock(&context->PropLock);
RestoreFPUMode(&oldMode);
return ALC_INVALID_DEVICE;
}
UpdateEffectSlotProps(slot);
}
UnlockUIntMapRead(&context->EffectSlotMap);
LockUIntMapRead(&context->SourceMap);
for(pos = 0;pos < context->SourceMap.size;pos++)
{
ALsource *source = context->SourceMap.values[pos];
struct ALsourceProps *props;
ALsizei s;
for(s = device->NumAuxSends;s < MAX_SENDS;s++)
{
if(source->Send[s].Slot)
DecrementRef(&source->Send[s].Slot->ref);
source->Send[s].Slot = NULL;
source->Send[s].Gain = 1.0f;
source->Send[s].GainHF = 1.0f;
source->Send[s].HFReference = LOWPASSFREQREF;
source->Send[s].GainLF = 1.0f;
source->Send[s].LFReference = HIGHPASSFREQREF;
}
source->NeedsUpdate = AL_TRUE;
/* Clear any pre-existing source property structs, in case the
* number of auxiliary sends changed. Playing (or paused) sources
* will have updates specified.
*/
props = ATOMIC_EXCHANGE_SEQ(struct ALsourceProps*, &source->Update, NULL);
al_free(props);
props = ATOMIC_EXCHANGE(struct ALsourceProps*, &source->FreeList, NULL,
almemory_order_relaxed);
while(props)
{
struct ALsourceProps *next = ATOMIC_LOAD(&props->next, almemory_order_relaxed);
al_free(props);
props = next;
}
}
AllocateVoices(context, context->MaxVoices, old_sends);
UnlockUIntMapRead(&context->SourceMap);
UpdateListenerProps(context);
UpdateAllSourceProps(context);
WriteUnlock(&context->PropLock);
context = context->next;
}
RestoreFPUMode(&oldMode);
if(!(device->Flags&DEVICE_PAUSED))
{
if(V0(device->Backend,start)() == ALC_FALSE)
return ALC_INVALID_DEVICE;
device->Flags |= DEVICE_RUNNING;
}
return ALC_NO_ERROR;
}
/* FreeDevice
*
* Frees the device structure, and destroys any objects the app failed to
* delete. Called once there's no more references on the device.
*/
static ALCvoid FreeDevice(ALCdevice *device)
{
TRACE("%p\n", device);
V0(device->Backend,close)();
DELETE_OBJ(device->Backend);
device->Backend = NULL;
almtx_destroy(&device->BackendLock);
if(device->DefaultSlot)
{
DeinitEffectSlot(device->DefaultSlot);
device->DefaultSlot = NULL;
}
if(device->BufferMap.size > 0)
{
WARN("(%p) Deleting %d Buffer%s\n", device, device->BufferMap.size,
(device->BufferMap.size==1)?"":"s");
ReleaseALBuffers(device);
}
ResetUIntMap(&device->BufferMap);
if(device->EffectMap.size > 0)
{
WARN("(%p) Deleting %d Effect%s\n", device, device->EffectMap.size,
(device->EffectMap.size==1)?"":"s");
ReleaseALEffects(device);
}
ResetUIntMap(&device->EffectMap);
if(device->FilterMap.size > 0)
{
WARN("(%p) Deleting %d Filter%s\n", device, device->FilterMap.size,
(device->FilterMap.size==1)?"":"s");
ReleaseALFilters(device);
}
ResetUIntMap(&device->FilterMap);
AL_STRING_DEINIT(device->Hrtf.Name);
FreeHrtfList(&device->Hrtf.List);
al_free(device->Bs2b);
device->Bs2b = NULL;
al_free(device->Uhj_Encoder);
device->Uhj_Encoder = NULL;
bformatdec_free(device->AmbiDecoder);
device->AmbiDecoder = NULL;
ambiup_free(device->AmbiUp);
device->AmbiUp = NULL;
AL_STRING_DEINIT(device->DeviceName);
al_free(device->Dry.Buffer);
device->Dry.Buffer = NULL;
device->Dry.NumChannels = 0;
device->FOAOut.Buffer = NULL;
device->FOAOut.NumChannels = 0;
device->RealOut.Buffer = NULL;
device->RealOut.NumChannels = 0;
al_free(device);
}
void ALCdevice_IncRef(ALCdevice *device)
{
uint ref;
ref = IncrementRef(&device->ref);
TRACEREF("%p increasing refcount to %u\n", device, ref);
}
void ALCdevice_DecRef(ALCdevice *device)
{
uint ref;
ref = DecrementRef(&device->ref);
TRACEREF("%p decreasing refcount to %u\n", device, ref);
if(ref == 0) FreeDevice(device);
}
/* VerifyDevice
*
* Checks if the device handle is valid, and increments its ref count if so.
*/
static ALCboolean VerifyDevice(ALCdevice **device)
{
ALCdevice *tmpDevice;
LockLists();
tmpDevice = ATOMIC_LOAD_SEQ(&DeviceList);
while(tmpDevice)
{
if(tmpDevice == *device)
{
ALCdevice_IncRef(tmpDevice);
UnlockLists();
return ALC_TRUE;
}
tmpDevice = tmpDevice->next;
}
UnlockLists();
*device = NULL;
return ALC_FALSE;
}
/* InitContext
*
* Initializes context fields
*/
static ALvoid InitContext(ALCcontext *Context)
{
ALlistener *listener = Context->Listener;
//Initialise listener
listener->Gain = 1.0f;
listener->MetersPerUnit = 1.0f;
listener->Position[0] = 0.0f;
listener->Position[1] = 0.0f;
listener->Position[2] = 0.0f;
listener->Velocity[0] = 0.0f;
listener->Velocity[1] = 0.0f;
listener->Velocity[2] = 0.0f;
listener->Forward[0] = 0.0f;
listener->Forward[1] = 0.0f;
listener->Forward[2] = -1.0f;
listener->Up[0] = 0.0f;
listener->Up[1] = 1.0f;
listener->Up[2] = 0.0f;
aluMatrixfSet(&listener->Params.Matrix,
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
aluVectorSet(&listener->Params.Velocity, 0.0f, 0.0f, 0.0f, 0.0f);
listener->Params.Gain = 1.0f;
listener->Params.MetersPerUnit = 1.0f;
listener->Params.DopplerFactor = 1.0f;
listener->Params.SpeedOfSound = SPEEDOFSOUNDMETRESPERSEC;
ATOMIC_INIT(&listener->Update, NULL);
ATOMIC_INIT(&listener->FreeList, NULL);
//Validate Context
InitRef(&Context->UpdateCount, 0);
ATOMIC_INIT(&Context->HoldUpdates, AL_FALSE);
Context->GainBoost = 1.0f;
RWLockInit(&Context->PropLock);
ATOMIC_INIT(&Context->LastError, AL_NO_ERROR);
InitUIntMap(&Context->SourceMap, Context->Device->SourcesMax);
InitUIntMap(&Context->EffectSlotMap, Context->Device->AuxiliaryEffectSlotMax);
//Set globals
Context->DistanceModel = DefaultDistanceModel;
Context->SourceDistanceModel = AL_FALSE;
Context->DopplerFactor = 1.0f;
Context->DopplerVelocity = 1.0f;
Context->SpeedOfSound = SPEEDOFSOUNDMETRESPERSEC;
ATOMIC_INIT(&Context->DeferUpdates, AL_FALSE);
Context->ExtensionList = alExtList;
}
/* FreeContext
*
* Cleans up the context, and destroys any remaining objects the app failed to
* delete. Called once there's no more references on the context.
*/
static void FreeContext(ALCcontext *context)
{
ALlistener *listener = context->Listener;
struct ALlistenerProps *lprops;
size_t count;
TRACE("%p\n", context);
if(context->SourceMap.size > 0)
{
WARN("(%p) Deleting %d Source%s\n", context, context->SourceMap.size,
(context->SourceMap.size==1)?"":"s");
ReleaseALSources(context);
}
ResetUIntMap(&context->SourceMap);
if(context->EffectSlotMap.size > 0)
{
WARN("(%p) Deleting %d AuxiliaryEffectSlot%s\n", context, context->EffectSlotMap.size,
(context->EffectSlotMap.size==1)?"":"s");
ReleaseALAuxiliaryEffectSlots(context);
}
ResetUIntMap(&context->EffectSlotMap);
al_free(context->Voices);
context->Voices = NULL;
context->VoiceCount = 0;
context->MaxVoices = 0;
if((lprops=ATOMIC_LOAD(&listener->Update, almemory_order_acquire)) != NULL)
{
TRACE("Freed unapplied listener update %p\n", lprops);
al_free(lprops);
}
count = 0;
lprops = ATOMIC_LOAD(&listener->FreeList, almemory_order_acquire);
while(lprops)
{
struct ALlistenerProps *next = ATOMIC_LOAD(&lprops->next, almemory_order_acquire);
al_free(lprops);
lprops = next;
++count;
}
TRACE("Freed "SZFMT" listener property object%s\n", count, (count==1)?"":"s");
ALCdevice_DecRef(context->Device);
context->Device = NULL;
//Invalidate context
memset(context, 0, sizeof(ALCcontext));
al_free(context);
}
/* ReleaseContext
*
* Removes the context reference from the given device and removes it from
* being current on the running thread or globally.
*/
static void ReleaseContext(ALCcontext *context, ALCdevice *device)
{
ALCcontext *origctx;
if(altss_get(LocalContext) == context)
{
WARN("%p released while current on thread\n", context);
altss_set(LocalContext, NULL);
ALCcontext_DecRef(context);
}
origctx = context;
if(ATOMIC_COMPARE_EXCHANGE_STRONG_SEQ(ALCcontext*, &GlobalContext, &origctx, NULL))
ALCcontext_DecRef(context);
ALCdevice_Lock(device);
origctx = context;
if(!ATOMIC_COMPARE_EXCHANGE_STRONG_SEQ(ALCcontext*, &device->ContextList,
&origctx, context->next))
{
ALCcontext *volatile*list = &origctx->next;
while(*list)
{
if(*list == context)
{
*list = (*list)->next;
break;
}
list = &(*list)->next;
}
}
ALCdevice_Unlock(device);
ALCcontext_DecRef(context);
}
void ALCcontext_IncRef(ALCcontext *context)
{
uint ref = IncrementRef(&context->ref);
TRACEREF("%p increasing refcount to %u\n", context, ref);
}
void ALCcontext_DecRef(ALCcontext *context)
{
uint ref = DecrementRef(&context->ref);
TRACEREF("%p decreasing refcount to %u\n", context, ref);
if(ref == 0) FreeContext(context);
}
static void ReleaseThreadCtx(void *ptr)
{
ALCcontext *context = ptr;
uint ref = DecrementRef(&context->ref);
TRACEREF("%p decreasing refcount to %u\n", context, ref);
ERR("Context %p current for thread being destroyed, possible leak!\n", context);
}
/* VerifyContext
*
* Checks that the given context is valid, and increments its reference count.
*/
static ALCboolean VerifyContext(ALCcontext **context)
{
ALCdevice *dev;
LockLists();
dev = ATOMIC_LOAD_SEQ(&DeviceList);
while(dev)
{
ALCcontext *ctx = ATOMIC_LOAD(&dev->ContextList, almemory_order_acquire);
while(ctx)
{
if(ctx == *context)
{
ALCcontext_IncRef(ctx);
UnlockLists();
return ALC_TRUE;
}
ctx = ctx->next;
}
dev = dev->next;
}
UnlockLists();
*context = NULL;
return ALC_FALSE;
}
/* GetContextRef
*
* Returns the currently active context for this thread, and adds a reference
* without locking it.
*/
ALCcontext *GetContextRef(void)
{
ALCcontext *context;
context = altss_get(LocalContext);
if(context)
ALCcontext_IncRef(context);
else
{
LockLists();
context = ATOMIC_LOAD_SEQ(&GlobalContext);
if(context)
ALCcontext_IncRef(context);
UnlockLists();
}
return context;
}
void AllocateVoices(ALCcontext *context, ALsizei num_voices, ALsizei old_sends)
{
ALCdevice *device = context->Device;
ALsizei num_sends = device->NumAuxSends;
struct ALsourceProps *props;
size_t sizeof_props;
size_t sizeof_voice;
ALvoice **voices;
ALvoice *voice;
ALsizei v = 0;
size_t size;
if(num_voices == context->MaxVoices && num_sends == old_sends)
return;
/* Allocate the voice pointers, voices, and the voices' stored source
* property set (including the dynamically-sized Send[] array) in one
* chunk.
*/
sizeof_props = RoundUp(offsetof(struct ALsourceProps, Send[num_sends]), 16);
sizeof_voice = RoundUp(offsetof(ALvoice, Send[num_sends]), 16);
size = sizeof(ALvoice*) + sizeof_voice + sizeof_props;
voices = al_calloc(16, RoundUp(size*num_voices, 16));
/* The voice and property objects are stored interleaved since they're
* paired together.
*/
voice = (ALvoice*)((char*)voices + RoundUp(num_voices*sizeof(ALvoice*), 16));
props = (struct ALsourceProps*)((char*)voice + sizeof_voice);
if(context->Voices)
{
ALsizei v_count = mini(context->VoiceCount, num_voices);
for(;v < v_count;v++)
{
ALsizei s_count = mini(old_sends, num_sends);
ALsizei i;
/* Copy the old voice data and source property set to the new
* storage.
*/
*voice = *(context->Voices[v]);
for(i = 0;i < s_count;i++)
voice->Send[i] = context->Voices[v]->Send[i];
*props = *(context->Voices[v]->Props);
for(i = 0;i < s_count;i++)
props->Send[i] = context->Voices[v]->Props->Send[i];
/* Set this voice's property set pointer and voice reference. */
voice->Props = props;
voices[v] = voice;
/* Increment pointers to the next storage space. */
voice = (ALvoice*)((char*)props + sizeof_props);
props = (struct ALsourceProps*)((char*)voice + sizeof_voice);
}
}
/* Finish setting the voices' property set pointers and references. */
for(;v < num_voices;v++)
{
voice->Props = props;
voices[v] = voice;
voice = (ALvoice*)((char*)props + sizeof_props);
props = (struct ALsourceProps*)((char*)voice + sizeof_voice);
}
al_free(context->Voices);
context->Voices = voices;
context->MaxVoices = num_voices;
context->VoiceCount = mini(context->VoiceCount, num_voices);
}
/************************************************
* Standard ALC functions
************************************************/
/* alcGetError
*
* Return last ALC generated error code for the given device
*/
ALC_API ALCenum ALC_APIENTRY alcGetError(ALCdevice *device)
{
ALCenum errorCode;
if(VerifyDevice(&device))
{
errorCode = ATOMIC_EXCHANGE_SEQ(ALCenum, &device->LastError, ALC_NO_ERROR);
ALCdevice_DecRef(device);
}
else
errorCode = ATOMIC_EXCHANGE_SEQ(ALCenum, &LastNullDeviceError, ALC_NO_ERROR);
return errorCode;
}
/* alcSuspendContext
*
* Suspends updates for the given context
*/
ALC_API ALCvoid ALC_APIENTRY alcSuspendContext(ALCcontext *context)
{
if(!SuspendDefers)
return;
if(!VerifyContext(&context))
alcSetError(NULL, ALC_INVALID_CONTEXT);
else
{
ALCcontext_DeferUpdates(context, DeferAllowPlay);
ALCcontext_DecRef(context);
}
}
/* alcProcessContext
*
* Resumes processing updates for the given context
*/
ALC_API ALCvoid ALC_APIENTRY alcProcessContext(ALCcontext *context)
{
if(!SuspendDefers)
return;
if(!VerifyContext(&context))
alcSetError(NULL, ALC_INVALID_CONTEXT);
else
{
ALCcontext_ProcessUpdates(context);
ALCcontext_DecRef(context);
}
}
/* alcGetString
*
* Returns information about the device, and error strings
*/
ALC_API const ALCchar* ALC_APIENTRY alcGetString(ALCdevice *Device, ALCenum param)
{
const ALCchar *value = NULL;
switch(param)
{
case ALC_NO_ERROR:
value = alcNoError;
break;
case ALC_INVALID_ENUM:
value = alcErrInvalidEnum;
break;
case ALC_INVALID_VALUE:
value = alcErrInvalidValue;
break;
case ALC_INVALID_DEVICE:
value = alcErrInvalidDevice;
break;
case ALC_INVALID_CONTEXT:
value = alcErrInvalidContext;
break;
case ALC_OUT_OF_MEMORY:
value = alcErrOutOfMemory;
break;
case ALC_DEVICE_SPECIFIER:
value = alcDefaultName;
break;
case ALC_ALL_DEVICES_SPECIFIER:
if(VerifyDevice(&Device))
{
value = al_string_get_cstr(Device->DeviceName);
ALCdevice_DecRef(Device);
}
else
{
ProbeAllDevicesList();
value = al_string_get_cstr(alcAllDevicesList);
}
break;
case ALC_CAPTURE_DEVICE_SPECIFIER:
if(VerifyDevice(&Device))
{
value = al_string_get_cstr(Device->DeviceName);
ALCdevice_DecRef(Device);
}
else
{
ProbeCaptureDeviceList();
value = al_string_get_cstr(alcCaptureDeviceList);
}
break;
/* Default devices are always first in the list */
case ALC_DEFAULT_DEVICE_SPECIFIER:
value = alcDefaultName;
break;
case ALC_DEFAULT_ALL_DEVICES_SPECIFIER:
if(al_string_empty(alcAllDevicesList))
ProbeAllDevicesList();
VerifyDevice(&Device);
free(alcDefaultAllDevicesSpecifier);
alcDefaultAllDevicesSpecifier = strdup(al_string_get_cstr(alcAllDevicesList));
if(!alcDefaultAllDevicesSpecifier)
alcSetError(Device, ALC_OUT_OF_MEMORY);
value = alcDefaultAllDevicesSpecifier;
if(Device) ALCdevice_DecRef(Device);
break;
case ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER:
if(al_string_empty(alcCaptureDeviceList))
ProbeCaptureDeviceList();
VerifyDevice(&Device);
free(alcCaptureDefaultDeviceSpecifier);
alcCaptureDefaultDeviceSpecifier = strdup(al_string_get_cstr(alcCaptureDeviceList));
if(!alcCaptureDefaultDeviceSpecifier)
alcSetError(Device, ALC_OUT_OF_MEMORY);
value = alcCaptureDefaultDeviceSpecifier;
if(Device) ALCdevice_DecRef(Device);
break;
case ALC_EXTENSIONS:
if(!VerifyDevice(&Device))
value = alcNoDeviceExtList;
else
{
value = alcExtensionList;
ALCdevice_DecRef(Device);
}
break;
case ALC_HRTF_SPECIFIER_SOFT:
if(!VerifyDevice(&Device))
alcSetError(NULL, ALC_INVALID_DEVICE);
else
{
almtx_lock(&Device->BackendLock);
value = (Device->Hrtf.Handle ? al_string_get_cstr(Device->Hrtf.Name) : "");
almtx_unlock(&Device->BackendLock);
ALCdevice_DecRef(Device);
}
break;
default:
VerifyDevice(&Device);
alcSetError(Device, ALC_INVALID_ENUM);
if(Device) ALCdevice_DecRef(Device);
break;
}
return value;
}
static ALCsizei GetIntegerv(ALCdevice *device, ALCenum param, ALCsizei size, ALCint *values)
{
ALCsizei i;
if(size <= 0 || values == NULL)
{
alcSetError(device, ALC_INVALID_VALUE);
return 0;
}
if(!device)
{
switch(param)
{
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_ATTRIBUTES_SIZE:
case ALC_ALL_ATTRIBUTES:
case ALC_FREQUENCY:
case ALC_REFRESH:
case ALC_SYNC:
case ALC_MONO_SOURCES:
case ALC_STEREO_SOURCES:
case ALC_CAPTURE_SAMPLES:
case ALC_FORMAT_CHANNELS_SOFT:
case ALC_FORMAT_TYPE_SOFT:
alcSetError(NULL, ALC_INVALID_DEVICE);
return 0;
default:
alcSetError(NULL, ALC_INVALID_ENUM);
return 0;
}
return 0;
}
if(device->Type == Capture)
{
switch(param)
{
case ALC_CAPTURE_SAMPLES:
almtx_lock(&device->BackendLock);
values[0] = V0(device->Backend,availableSamples)();
almtx_unlock(&device->BackendLock);
return 1;
case ALC_CONNECTED:
values[0] = device->Connected;
return 1;
default:
alcSetError(device, ALC_INVALID_ENUM);
return 0;
}
return 0;
}
/* render device */
switch(param)
{
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_EFX_MAJOR_VERSION:
values[0] = alcEFXMajorVersion;
return 1;
case ALC_EFX_MINOR_VERSION:
values[0] = alcEFXMinorVersion;
return 1;
case ALC_ATTRIBUTES_SIZE:
values[0] = 17;
return 1;
case ALC_ALL_ATTRIBUTES:
if(size < 17)
{
alcSetError(device, ALC_INVALID_VALUE);
return 0;
}
i = 0;
almtx_lock(&device->BackendLock);
values[i++] = ALC_FREQUENCY;
values[i++] = device->Frequency;
if(device->Type != Loopback)
{
values[i++] = ALC_REFRESH;
values[i++] = device->Frequency / device->UpdateSize;
values[i++] = ALC_SYNC;
values[i++] = ALC_FALSE;
}
else
{
values[i++] = ALC_FORMAT_CHANNELS_SOFT;
values[i++] = device->FmtChans;
values[i++] = ALC_FORMAT_TYPE_SOFT;
values[i++] = device->FmtType;
}
values[i++] = ALC_MONO_SOURCES;
values[i++] = device->NumMonoSources;
values[i++] = ALC_STEREO_SOURCES;
values[i++] = device->NumStereoSources;
values[i++] = ALC_MAX_AUXILIARY_SENDS;
values[i++] = device->NumAuxSends;
values[i++] = ALC_HRTF_SOFT;
values[i++] = (device->Hrtf.Handle ? ALC_TRUE : ALC_FALSE);
values[i++] = ALC_HRTF_STATUS_SOFT;
values[i++] = device->Hrtf.Status;
almtx_unlock(&device->BackendLock);
values[i++] = 0;
return i;
case ALC_FREQUENCY:
values[0] = device->Frequency;
return 1;
case ALC_REFRESH:
if(device->Type == Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
almtx_lock(&device->BackendLock);
values[0] = device->Frequency / device->UpdateSize;
almtx_unlock(&device->BackendLock);
return 1;
case ALC_SYNC:
if(device->Type == Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = ALC_FALSE;
return 1;
case ALC_FORMAT_CHANNELS_SOFT:
if(device->Type != Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = device->FmtChans;
return 1;
case ALC_FORMAT_TYPE_SOFT:
if(device->Type != Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = device->FmtType;
return 1;
case ALC_MONO_SOURCES:
values[0] = device->NumMonoSources;
return 1;
case ALC_STEREO_SOURCES:
values[0] = device->NumStereoSources;
return 1;
case ALC_MAX_AUXILIARY_SENDS:
values[0] = device->NumAuxSends;
return 1;
case ALC_CONNECTED:
values[0] = device->Connected;
return 1;
case ALC_HRTF_SOFT:
values[0] = (device->Hrtf.Handle ? ALC_TRUE : ALC_FALSE);
return 1;
case ALC_HRTF_STATUS_SOFT:
values[0] = device->Hrtf.Status;
return 1;
case ALC_NUM_HRTF_SPECIFIERS_SOFT:
almtx_lock(&device->BackendLock);
FreeHrtfList(&device->Hrtf.List);
device->Hrtf.List = EnumerateHrtf(device->DeviceName);
values[0] = (ALCint)VECTOR_SIZE(device->Hrtf.List);
almtx_unlock(&device->BackendLock);
return 1;
default:
alcSetError(device, ALC_INVALID_ENUM);
return 0;
}
return 0;
}
/* alcGetIntegerv
*
* Returns information about the device and the version of OpenAL
*/
ALC_API void ALC_APIENTRY alcGetIntegerv(ALCdevice *device, ALCenum param, ALCsizei size, ALCint *values)
{
VerifyDevice(&device);
if(size <= 0 || values == NULL)
alcSetError(device, ALC_INVALID_VALUE);
else
GetIntegerv(device, param, size, values);
if(device) ALCdevice_DecRef(device);
}
ALC_API void ALC_APIENTRY alcGetInteger64vSOFT(ALCdevice *device, ALCenum pname, ALCsizei size, ALCint64SOFT *values)
{
ALCint *ivals;
ALsizei i;
VerifyDevice(&device);
if(size <= 0 || values == NULL)
alcSetError(device, ALC_INVALID_VALUE);
else if(!device || device->Type == Capture)
{
ivals = malloc(size * sizeof(ALCint));
size = GetIntegerv(device, pname, size, ivals);
for(i = 0;i < size;i++)
values[i] = ivals[i];
free(ivals);
}
else /* render device */
{
ClockLatency clock;
ALuint64 basecount;
ALuint samplecount;
ALuint refcount;
switch(pname)
{
case ALC_ATTRIBUTES_SIZE:
*values = 21;
break;
case ALC_ALL_ATTRIBUTES:
if(size < 21)
alcSetError(device, ALC_INVALID_VALUE);
else
{
i = 0;
almtx_lock(&device->BackendLock);
values[i++] = ALC_FREQUENCY;
values[i++] = device->Frequency;
if(device->Type != Loopback)
{
values[i++] = ALC_REFRESH;
values[i++] = device->Frequency / device->UpdateSize;
values[i++] = ALC_SYNC;
values[i++] = ALC_FALSE;
}
else
{
values[i++] = ALC_FORMAT_CHANNELS_SOFT;
values[i++] = device->FmtChans;
values[i++] = ALC_FORMAT_TYPE_SOFT;
values[i++] = device->FmtType;
}
values[i++] = ALC_MONO_SOURCES;
values[i++] = device->NumMonoSources;
values[i++] = ALC_STEREO_SOURCES;
values[i++] = device->NumStereoSources;
values[i++] = ALC_MAX_AUXILIARY_SENDS;
values[i++] = device->NumAuxSends;
values[i++] = ALC_HRTF_SOFT;
values[i++] = (device->Hrtf.Handle ? ALC_TRUE : ALC_FALSE);
values[i++] = ALC_HRTF_STATUS_SOFT;
values[i++] = device->Hrtf.Status;
clock = V0(device->Backend,getClockLatency)();
values[i++] = ALC_DEVICE_CLOCK_SOFT;
values[i++] = clock.ClockTime;
values[i++] = ALC_DEVICE_LATENCY_SOFT;
values[i++] = clock.Latency;
almtx_unlock(&device->BackendLock);
values[i++] = 0;
}
break;
case ALC_DEVICE_CLOCK_SOFT:
almtx_lock(&device->BackendLock);
do {
while(((refcount=ReadRef(&device->MixCount))&1) != 0)
althrd_yield();
basecount = device->ClockBase;
samplecount = device->SamplesDone;
} while(refcount != ReadRef(&device->MixCount));
*values = basecount + (samplecount*DEVICE_CLOCK_RES/device->Frequency);
almtx_unlock(&device->BackendLock);
break;
case ALC_DEVICE_LATENCY_SOFT:
{
almtx_lock(&device->BackendLock);
clock = V0(device->Backend,getClockLatency)();
almtx_unlock(&device->BackendLock);
*values = clock.Latency;
}
break;
case ALC_DEVICE_CLOCK_LATENCY_SOFT:
if(size < 2)
alcSetError(device, ALC_INVALID_VALUE);
else
{
ClockLatency clock;
almtx_lock(&device->BackendLock);
clock = V0(device->Backend,getClockLatency)();
almtx_unlock(&device->BackendLock);
values[0] = clock.ClockTime;
values[1] = clock.Latency;
}
break;
default:
ivals = malloc(size * sizeof(ALCint));
size = GetIntegerv(device, pname, size, ivals);
for(i = 0;i < size;i++)
values[i] = ivals[i];
free(ivals);
break;
}
}
if(device)
ALCdevice_DecRef(device);
}
/* alcIsExtensionPresent
*
* Determines if there is support for a particular extension
*/
ALC_API ALCboolean ALC_APIENTRY alcIsExtensionPresent(ALCdevice *device, const ALCchar *extName)
{
ALCboolean bResult = ALC_FALSE;
VerifyDevice(&device);
if(!extName)
alcSetError(device, ALC_INVALID_VALUE);
else
{
size_t len = strlen(extName);
const char *ptr = (device ? alcExtensionList : alcNoDeviceExtList);
while(ptr && *ptr)
{
if(strncasecmp(ptr, extName, len) == 0 &&
(ptr[len] == '\0' || isspace(ptr[len])))
{
bResult = ALC_TRUE;
break;
}
if((ptr=strchr(ptr, ' ')) != NULL)
{
do {
++ptr;
} while(isspace(*ptr));
}
}
}
if(device)
ALCdevice_DecRef(device);
return bResult;
}
/* alcGetProcAddress
*
* Retrieves the function address for a particular extension function
*/
ALC_API ALCvoid* ALC_APIENTRY alcGetProcAddress(ALCdevice *device, const ALCchar *funcName)
{
ALCvoid *ptr = NULL;
if(!funcName)
{
VerifyDevice(&device);
alcSetError(device, ALC_INVALID_VALUE);
if(device) ALCdevice_DecRef(device);
}
else
{
ALsizei i = 0;
while(alcFunctions[i].funcName && strcmp(alcFunctions[i].funcName, funcName) != 0)
i++;
ptr = alcFunctions[i].address;
}
return ptr;
}
/* alcGetEnumValue
*
* Get the value for a particular ALC enumeration name
*/
ALC_API ALCenum ALC_APIENTRY alcGetEnumValue(ALCdevice *device, const ALCchar *enumName)
{
ALCenum val = 0;
if(!enumName)
{
VerifyDevice(&device);
alcSetError(device, ALC_INVALID_VALUE);
if(device) ALCdevice_DecRef(device);
}
else
{
ALsizei i = 0;
while(enumeration[i].enumName && strcmp(enumeration[i].enumName, enumName) != 0)
i++;
val = enumeration[i].value;
}
return val;
}
/* alcCreateContext
*
* Create and attach a context to the given device.
*/
ALC_API ALCcontext* ALC_APIENTRY alcCreateContext(ALCdevice *device, const ALCint *attrList)
{
ALCcontext *ALContext;
ALfloat valf;
ALCenum err;
LockLists();
if(!VerifyDevice(&device) || device->Type == Capture || !device->Connected)
{
UnlockLists();
alcSetError(device, ALC_INVALID_DEVICE);
if(device) ALCdevice_DecRef(device);
return NULL;
}
almtx_lock(&device->BackendLock);
UnlockLists();
ATOMIC_STORE_SEQ(&device->LastError, ALC_NO_ERROR);
ALContext = al_calloc(16, sizeof(ALCcontext)+sizeof(ALlistener));
if(ALContext)
{
InitRef(&ALContext->ref, 1);
ALContext->Listener = (ALlistener*)ALContext->_listener_mem;
ALContext->Device = device;
ATOMIC_INIT(&ALContext->ActiveAuxSlotList, NULL);
ALContext->Voices = NULL;
ALContext->MaxVoices = 0;
ALContext->VoiceCount = 0;
AllocateVoices(ALContext, 256, device->NumAuxSends);
}
if(!ALContext || !ALContext->Voices)
{
almtx_unlock(&device->BackendLock);
if(ALContext)
{
al_free(ALContext->Voices);
ALContext->Voices = NULL;
al_free(ALContext);
ALContext = NULL;
}
alcSetError(device, ALC_OUT_OF_MEMORY);
ALCdevice_DecRef(device);
return NULL;
}
if((err=UpdateDeviceParams(device, attrList)) != ALC_NO_ERROR)
{
almtx_unlock(&device->BackendLock);
al_free(ALContext->Voices);
ALContext->Voices = NULL;
al_free(ALContext);
ALContext = NULL;
alcSetError(device, err);
if(err == ALC_INVALID_DEVICE)
{
V0(device->Backend,lock)();
aluHandleDisconnect(device);
V0(device->Backend,unlock)();
}
ALCdevice_DecRef(device);
return NULL;
}
ALCdevice_IncRef(ALContext->Device);
InitContext(ALContext);
if(ConfigValueFloat(al_string_get_cstr(device->DeviceName), NULL, "volume-adjust", &valf))
{
if(!isfinite(valf))
ERR("volume-adjust must be finite: %f\n", valf);
else
{
ALfloat db = clampf(valf, -24.0f, 24.0f);
if(db != valf)
WARN("volume-adjust clamped: %f, range: +/-%f\n", valf, 24.0f);
ALContext->GainBoost = powf(10.0f, db/20.0f);
TRACE("volume-adjust gain: %f\n", ALContext->GainBoost);
}
}
UpdateListenerProps(ALContext);
{
ALCcontext *head = ATOMIC_LOAD_SEQ(&device->ContextList);
do {
ALContext->next = head;
} while(ATOMIC_COMPARE_EXCHANGE_WEAK_SEQ(ALCcontext*,
&device->ContextList, &head, ALContext) == 0);
}
almtx_unlock(&device->BackendLock);
ALCdevice_DecRef(device);
TRACE("Created context %p\n", ALContext);
return ALContext;
}
/* alcDestroyContext
*
* Remove a context from its device
*/
ALC_API ALCvoid ALC_APIENTRY alcDestroyContext(ALCcontext *context)
{
ALCdevice *Device;
LockLists();
/* alcGetContextsDevice sets an error for invalid contexts */
Device = alcGetContextsDevice(context);
if(Device)
{
almtx_lock(&Device->BackendLock);
ReleaseContext(context, Device);
if(!ATOMIC_LOAD_SEQ(&Device->ContextList))
{
V0(Device->Backend,stop)();
Device->Flags &= ~DEVICE_RUNNING;
}
almtx_unlock(&Device->BackendLock);
}
UnlockLists();
}
/* alcGetCurrentContext
*
* Returns the currently active context on the calling thread
*/
ALC_API ALCcontext* ALC_APIENTRY alcGetCurrentContext(void)
{
ALCcontext *Context = altss_get(LocalContext);
if(!Context) Context = ATOMIC_LOAD_SEQ(&GlobalContext);
return Context;
}
/* alcGetThreadContext
*
* Returns the currently active thread-local context
*/
ALC_API ALCcontext* ALC_APIENTRY alcGetThreadContext(void)
{
return altss_get(LocalContext);
}
/* alcMakeContextCurrent
*
* Makes the given context the active process-wide context, and removes the
* thread-local context for the calling thread.
*/
ALC_API ALCboolean ALC_APIENTRY alcMakeContextCurrent(ALCcontext *context)
{
/* context must be valid or NULL */
if(context && !VerifyContext(&context))
{
alcSetError(NULL, ALC_INVALID_CONTEXT);
return ALC_FALSE;
}
/* context's reference count is already incremented */
context = ATOMIC_EXCHANGE_SEQ(ALCcontext*, &GlobalContext, context);
if(context) ALCcontext_DecRef(context);
if((context=altss_get(LocalContext)) != NULL)
{
altss_set(LocalContext, NULL);
ALCcontext_DecRef(context);
}
return ALC_TRUE;
}
/* alcSetThreadContext
*
* Makes the given context the active context for the current thread
*/
ALC_API ALCboolean ALC_APIENTRY alcSetThreadContext(ALCcontext *context)
{
ALCcontext *old;
/* context must be valid or NULL */
if(context && !VerifyContext(&context))
{
alcSetError(NULL, ALC_INVALID_CONTEXT);
return ALC_FALSE;
}
/* context's reference count is already incremented */
old = altss_get(LocalContext);
altss_set(LocalContext, context);
if(old) ALCcontext_DecRef(old);
return ALC_TRUE;
}
/* alcGetContextsDevice
*
* Returns the device that a particular context is attached to
*/
ALC_API ALCdevice* ALC_APIENTRY alcGetContextsDevice(ALCcontext *Context)
{
ALCdevice *Device;
if(!VerifyContext(&Context))
{
alcSetError(NULL, ALC_INVALID_CONTEXT);
return NULL;
}
Device = Context->Device;
ALCcontext_DecRef(Context);
return Device;
}
/* alcOpenDevice
*
* Opens the named device.
*/
ALC_API ALCdevice* ALC_APIENTRY alcOpenDevice(const ALCchar *deviceName)
{
const ALCchar *fmt;
ALCdevice *device;
ALCenum err;
DO_INITCONFIG();
if(!PlaybackBackend.name)
{
alcSetError(NULL, ALC_INVALID_VALUE);
return NULL;
}
if(deviceName && (!deviceName[0] || strcasecmp(deviceName, alcDefaultName) == 0 || strcasecmp(deviceName, "openal-soft") == 0
#ifdef _WIN32
/* Some old Windows apps hardcode these expecting OpenAL to use a
* specific audio API, even when they're not enumerated. Creative's
* router effectively ignores them too.
*/
|| strcasecmp(deviceName, "DirectSound3D") == 0 || strcasecmp(deviceName, "DirectSound") == 0
|| strcasecmp(deviceName, "MMSYSTEM") == 0
#endif
))
deviceName = NULL;
device = al_calloc(16, sizeof(ALCdevice)+sizeof(ALeffectslot));
if(!device)
{
alcSetError(NULL, ALC_OUT_OF_MEMORY);
return NULL;
}
//Validate device
InitRef(&device->ref, 1);
device->Connected = ALC_TRUE;
device->Type = Playback;
ATOMIC_INIT(&device->LastError, ALC_NO_ERROR);
device->Flags = 0;
device->Bs2b = NULL;
device->Uhj_Encoder = NULL;
VECTOR_INIT(device->Hrtf.List);
AL_STRING_INIT(device->Hrtf.Name);
device->Render_Mode = NormalRender;
AL_STRING_INIT(device->DeviceName);
device->Dry.Buffer = NULL;
device->Dry.NumChannels = 0;
device->FOAOut.Buffer = NULL;
device->FOAOut.NumChannels = 0;
device->RealOut.Buffer = NULL;
device->RealOut.NumChannels = 0;
ATOMIC_INIT(&device->ContextList, NULL);
device->ClockBase = 0;
device->SamplesDone = 0;
device->SourcesMax = 256;
device->AuxiliaryEffectSlotMax = 4;
device->NumAuxSends = MAX_SENDS;
InitUIntMap(&device->BufferMap, ~0);
InitUIntMap(&device->EffectMap, ~0);
InitUIntMap(&device->FilterMap, ~0);
//Set output format
device->FmtChans = DevFmtChannelsDefault;
device->FmtType = DevFmtTypeDefault;
device->Frequency = DEFAULT_OUTPUT_RATE;
device->IsHeadphones = AL_FALSE;
device->AmbiFmt = AmbiFormat_Default;
device->NumUpdates = 4;
device->UpdateSize = 1024;
if(!PlaybackBackend.getFactory)
device->Backend = create_backend_wrapper(device, &PlaybackBackend.Funcs,
ALCbackend_Playback);
else
{
ALCbackendFactory *factory = PlaybackBackend.getFactory();
device->Backend = V(factory,createBackend)(device, ALCbackend_Playback);
}
if(!device->Backend)
{
al_free(device);
alcSetError(NULL, ALC_OUT_OF_MEMORY);
return NULL;
}
if(ConfigValueStr(deviceName, NULL, "channels", &fmt))
{
static const struct {
const char name[16];
enum DevFmtChannels chans;
} chanlist[] = {
{ "mono", DevFmtMono },
{ "stereo", DevFmtStereo },
{ "quad", DevFmtQuad },
{ "surround51", DevFmtX51 },
{ "surround61", DevFmtX61 },
{ "surround71", DevFmtX71 },
{ "surround51rear", DevFmtX51Rear },
{ "ambi1", DevFmtAmbi1 },
{ "ambi2", DevFmtAmbi2 },
{ "ambi3", DevFmtAmbi3 },
};
size_t i;
for(i = 0;i < COUNTOF(chanlist);i++)
{
if(strcasecmp(chanlist[i].name, fmt) == 0)
{
device->FmtChans = chanlist[i].chans;
device->Flags |= DEVICE_CHANNELS_REQUEST;
break;
}
}
if(i == COUNTOF(chanlist))
ERR("Unsupported channels: %s\n", fmt);
}
if(ConfigValueStr(deviceName, NULL, "sample-type", &fmt))
{
static const struct {
const char name[16];
enum DevFmtType type;
} typelist[] = {
{ "int8", DevFmtByte },
{ "uint8", DevFmtUByte },
{ "int16", DevFmtShort },
{ "uint16", DevFmtUShort },
{ "int32", DevFmtInt },
{ "uint32", DevFmtUInt },
{ "float32", DevFmtFloat },
};
size_t i;
for(i = 0;i < COUNTOF(typelist);i++)
{
if(strcasecmp(typelist[i].name, fmt) == 0)
{
device->FmtType = typelist[i].type;
device->Flags |= DEVICE_SAMPLE_TYPE_REQUEST;
break;
}
}
if(i == COUNTOF(typelist))
ERR("Unsupported sample-type: %s\n", fmt);
}
if(ConfigValueUInt(deviceName, NULL, "frequency", &device->Frequency))
{
device->Flags |= DEVICE_FREQUENCY_REQUEST;
if(device->Frequency < MIN_OUTPUT_RATE)
ERR("%uhz request clamped to %uhz minimum\n", device->Frequency, MIN_OUTPUT_RATE);
device->Frequency = maxu(device->Frequency, MIN_OUTPUT_RATE);
}
ConfigValueUInt(deviceName, NULL, "periods", &device->NumUpdates);
device->NumUpdates = clampu(device->NumUpdates, 2, 16);
ConfigValueUInt(deviceName, NULL, "period_size", &device->UpdateSize);
device->UpdateSize = clampu(device->UpdateSize, 64, 8192);
if((CPUCapFlags&(CPU_CAP_SSE|CPU_CAP_NEON)) != 0)
device->UpdateSize = (device->UpdateSize+3)&~3;
ConfigValueUInt(deviceName, NULL, "sources", &device->SourcesMax);
if(device->SourcesMax == 0) device->SourcesMax = 256;
ConfigValueUInt(deviceName, NULL, "slots", &device->AuxiliaryEffectSlotMax);
if(device->AuxiliaryEffectSlotMax == 0) device->AuxiliaryEffectSlotMax = 4;
ConfigValueUInt(deviceName, NULL, "sends", &device->NumAuxSends);
if(device->NumAuxSends > MAX_SENDS) device->NumAuxSends = MAX_SENDS;
device->NumStereoSources = 1;
device->NumMonoSources = device->SourcesMax - device->NumStereoSources;
// Find a playback device to open
if((err=V(device->Backend,open)(deviceName)) != ALC_NO_ERROR)
{
DELETE_OBJ(device->Backend);
al_free(device);
alcSetError(NULL, err);
return NULL;
}
almtx_init(&device->BackendLock, almtx_plain);
if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "ambi-format", &fmt))
{
if(strcasecmp(fmt, "fuma") == 0)
device->AmbiFmt = AmbiFormat_FuMa;
else if(strcasecmp(fmt, "acn+sn3d") == 0)
device->AmbiFmt = AmbiFormat_ACN_SN3D;
else if(strcasecmp(fmt, "acn+n3d") == 0)
device->AmbiFmt = AmbiFormat_ACN_N3D;
else
ERR("Unsupported ambi-format: %s\n", fmt);
}
if(DefaultEffect.type != AL_EFFECT_NULL)
{
device->DefaultSlot = (ALeffectslot*)device->_slot_mem;
if(InitEffectSlot(device->DefaultSlot) != AL_NO_ERROR)
{
device->DefaultSlot = NULL;
ERR("Failed to initialize the default effect slot\n");
}
else
{
aluInitEffectPanning(device->DefaultSlot);
if(InitializeEffect(device, device->DefaultSlot, &DefaultEffect) != AL_NO_ERROR)
{
DeinitEffectSlot(device->DefaultSlot);
device->DefaultSlot = NULL;
ERR("Failed to initialize the default effect\n");
}
}
}
{
ALCdevice *head = ATOMIC_LOAD_SEQ(&DeviceList);
do {
device->next = head;
} while(!ATOMIC_COMPARE_EXCHANGE_WEAK_SEQ(ALCdevice*, &DeviceList, &head, device));
}
TRACE("Created device %p, \"%s\"\n", device, al_string_get_cstr(device->DeviceName));
return device;
}
/* alcCloseDevice
*
* Closes the given device.
*/
ALC_API ALCboolean ALC_APIENTRY alcCloseDevice(ALCdevice *device)
{
ALCdevice *iter, *origdev;
ALCcontext *ctx;
LockLists();
iter = ATOMIC_LOAD_SEQ(&DeviceList);
do {
if(iter == device)
break;
} while((iter=iter->next) != NULL);
if(!iter || iter->Type == Capture)
{
alcSetError(iter, ALC_INVALID_DEVICE);
UnlockLists();
return ALC_FALSE;
}
almtx_lock(&device->BackendLock);
origdev = device;
if(!ATOMIC_COMPARE_EXCHANGE_STRONG_SEQ(ALCdevice*, &DeviceList, &origdev, device->next))
{
ALCdevice *volatile*list = &origdev->next;
while(*list)
{
if(*list == device)
{
*list = (*list)->next;
break;
}
list = &(*list)->next;
}
}
UnlockLists();
ctx = ATOMIC_LOAD_SEQ(&device->ContextList);
while(ctx != NULL)
{
ALCcontext *next = ctx->next;
WARN("Releasing context %p\n", ctx);
ReleaseContext(ctx, device);
ctx = next;
}
if((device->Flags&DEVICE_RUNNING))
V0(device->Backend,stop)();
device->Flags &= ~DEVICE_RUNNING;
almtx_unlock(&device->BackendLock);
ALCdevice_DecRef(device);
return ALC_TRUE;
}
/************************************************
* ALC capture functions
************************************************/
ALC_API ALCdevice* ALC_APIENTRY alcCaptureOpenDevice(const ALCchar *deviceName, ALCuint frequency, ALCenum format, ALCsizei samples)
{
ALCdevice *device = NULL;
ALCenum err;
DO_INITCONFIG();
if(!CaptureBackend.name)
{
alcSetError(NULL, ALC_INVALID_VALUE);
return NULL;
}
if(samples <= 0)
{
alcSetError(NULL, ALC_INVALID_VALUE);
return NULL;
}
if(deviceName && (!deviceName[0] || strcasecmp(deviceName, alcDefaultName) == 0 || strcasecmp(deviceName, "openal-soft") == 0))
deviceName = NULL;
device = al_calloc(16, sizeof(ALCdevice));
if(!device)
{
alcSetError(NULL, ALC_OUT_OF_MEMORY);
return NULL;
}
//Validate device
InitRef(&device->ref, 1);
device->Connected = ALC_TRUE;
device->Type = Capture;
VECTOR_INIT(device->Hrtf.List);
AL_STRING_INIT(device->Hrtf.Name);
AL_STRING_INIT(device->DeviceName);
device->Dry.Buffer = NULL;
device->Dry.NumChannels = 0;
device->FOAOut.Buffer = NULL;
device->FOAOut.NumChannels = 0;
device->RealOut.Buffer = NULL;
device->RealOut.NumChannels = 0;
InitUIntMap(&device->BufferMap, ~0);
InitUIntMap(&device->EffectMap, ~0);
InitUIntMap(&device->FilterMap, ~0);
if(!CaptureBackend.getFactory)
device->Backend = create_backend_wrapper(device, &CaptureBackend.Funcs,
ALCbackend_Capture);
else
{
ALCbackendFactory *factory = CaptureBackend.getFactory();
device->Backend = V(factory,createBackend)(device, ALCbackend_Capture);
}
if(!device->Backend)
{
al_free(device);
alcSetError(NULL, ALC_OUT_OF_MEMORY);
return NULL;
}
device->Flags |= DEVICE_FREQUENCY_REQUEST;
device->Frequency = frequency;
device->Flags |= DEVICE_CHANNELS_REQUEST | DEVICE_SAMPLE_TYPE_REQUEST;
if(DecomposeDevFormat(format, &device->FmtChans, &device->FmtType) == AL_FALSE)
{
al_free(device);
alcSetError(NULL, ALC_INVALID_ENUM);
return NULL;
}
device->IsHeadphones = AL_FALSE;
device->AmbiFmt = AmbiFormat_Default;
device->UpdateSize = samples;
device->NumUpdates = 1;
if((err=V(device->Backend,open)(deviceName)) != ALC_NO_ERROR)
{
al_free(device);
alcSetError(NULL, err);
return NULL;
}
almtx_init(&device->BackendLock, almtx_plain);
{
ALCdevice *head = ATOMIC_LOAD_SEQ(&DeviceList);
do {
device->next = head;
} while(!ATOMIC_COMPARE_EXCHANGE_WEAK_SEQ(ALCdevice*, &DeviceList, &head, device));
}
TRACE("Created device %p, \"%s\"\n", device, al_string_get_cstr(device->DeviceName));
return device;
}
ALC_API ALCboolean ALC_APIENTRY alcCaptureCloseDevice(ALCdevice *device)
{
ALCdevice *iter, *origdev;
LockLists();
iter = ATOMIC_LOAD_SEQ(&DeviceList);
do {
if(iter == device)
break;
} while((iter=iter->next) != NULL);
if(!iter || iter->Type != Capture)
{
alcSetError(iter, ALC_INVALID_DEVICE);
UnlockLists();
return ALC_FALSE;
}
origdev = device;
if(!ATOMIC_COMPARE_EXCHANGE_STRONG_SEQ(ALCdevice*, &DeviceList, &origdev, device->next))
{
ALCdevice *volatile*list = &origdev->next;
while(*list)
{
if(*list == device)
{
*list = (*list)->next;
break;
}
list = &(*list)->next;
}
}
UnlockLists();
ALCdevice_DecRef(device);
return ALC_TRUE;
}
ALC_API void ALC_APIENTRY alcCaptureStart(ALCdevice *device)
{
if(!VerifyDevice(&device) || device->Type != Capture)
alcSetError(device, ALC_INVALID_DEVICE);
else
{
almtx_lock(&device->BackendLock);
if(!device->Connected)
alcSetError(device, ALC_INVALID_DEVICE);
else if(!(device->Flags&DEVICE_RUNNING))
{
if(V0(device->Backend,start)())
device->Flags |= DEVICE_RUNNING;
else
{
aluHandleDisconnect(device);
alcSetError(device, ALC_INVALID_DEVICE);
}
}
almtx_unlock(&device->BackendLock);
}
if(device) ALCdevice_DecRef(device);
}
ALC_API void ALC_APIENTRY alcCaptureStop(ALCdevice *device)
{
if(!VerifyDevice(&device) || device->Type != Capture)
alcSetError(device, ALC_INVALID_DEVICE);
else
{
almtx_lock(&device->BackendLock);
if((device->Flags&DEVICE_RUNNING))
V0(device->Backend,stop)();
device->Flags &= ~DEVICE_RUNNING;
almtx_unlock(&device->BackendLock);
}
if(device) ALCdevice_DecRef(device);
}
ALC_API void ALC_APIENTRY alcCaptureSamples(ALCdevice *device, ALCvoid *buffer, ALCsizei samples)
{
if(!VerifyDevice(&device) || device->Type != Capture)
alcSetError(device, ALC_INVALID_DEVICE);
else
{
ALCenum err = ALC_INVALID_VALUE;
almtx_lock(&device->BackendLock);
if(samples >= 0 && V0(device->Backend,availableSamples)() >= (ALCuint)samples)
err = V(device->Backend,captureSamples)(buffer, samples);
almtx_unlock(&device->BackendLock);
if(err != ALC_NO_ERROR)
alcSetError(device, err);
}
if(device) ALCdevice_DecRef(device);
}
/************************************************
* ALC loopback functions
************************************************/
/* alcLoopbackOpenDeviceSOFT
*
* Open a loopback device, for manual rendering.
*/
ALC_API ALCdevice* ALC_APIENTRY alcLoopbackOpenDeviceSOFT(const ALCchar *deviceName)
{
ALCbackendFactory *factory;
ALCdevice *device;
DO_INITCONFIG();
/* Make sure the device name, if specified, is us. */
if(deviceName && strcmp(deviceName, alcDefaultName) != 0)
{
alcSetError(NULL, ALC_INVALID_VALUE);
return NULL;
}
device = al_calloc(16, sizeof(ALCdevice));
if(!device)
{
alcSetError(NULL, ALC_OUT_OF_MEMORY);
return NULL;
}
//Validate device
InitRef(&device->ref, 1);
device->Connected = ALC_TRUE;
device->Type = Loopback;
ATOMIC_INIT(&device->LastError, ALC_NO_ERROR);
device->Flags = 0;
VECTOR_INIT(device->Hrtf.List);
AL_STRING_INIT(device->Hrtf.Name);
device->Bs2b = NULL;
device->Uhj_Encoder = NULL;
device->Render_Mode = NormalRender;
AL_STRING_INIT(device->DeviceName);
device->Dry.Buffer = NULL;
device->Dry.NumChannels = 0;
device->FOAOut.Buffer = NULL;
device->FOAOut.NumChannels = 0;
device->RealOut.Buffer = NULL;
device->RealOut.NumChannels = 0;
ATOMIC_INIT(&device->ContextList, NULL);
device->ClockBase = 0;
device->SamplesDone = 0;
device->SourcesMax = 256;
device->AuxiliaryEffectSlotMax = 4;
device->NumAuxSends = MAX_SENDS;
InitUIntMap(&device->BufferMap, ~0);
InitUIntMap(&device->EffectMap, ~0);
InitUIntMap(&device->FilterMap, ~0);
factory = ALCloopbackFactory_getFactory();
device->Backend = V(factory,createBackend)(device, ALCbackend_Loopback);
if(!device->Backend)
{
al_free(device);
alcSetError(NULL, ALC_OUT_OF_MEMORY);
return NULL;
}
almtx_init(&device->BackendLock, almtx_plain);
//Set output format
device->NumUpdates = 0;
device->UpdateSize = 0;
device->Frequency = DEFAULT_OUTPUT_RATE;
device->FmtChans = DevFmtChannelsDefault;
device->FmtType = DevFmtTypeDefault;
device->IsHeadphones = AL_FALSE;
device->AmbiFmt = AmbiFormat_Default;
ConfigValueUInt(NULL, NULL, "sources", &device->SourcesMax);
if(device->SourcesMax == 0) device->SourcesMax = 256;
ConfigValueUInt(NULL, NULL, "slots", &device->AuxiliaryEffectSlotMax);
if(device->AuxiliaryEffectSlotMax == 0) device->AuxiliaryEffectSlotMax = 4;
ConfigValueUInt(NULL, NULL, "sends", &device->NumAuxSends);
if(device->NumAuxSends > MAX_SENDS) device->NumAuxSends = MAX_SENDS;
device->NumStereoSources = 1;
device->NumMonoSources = device->SourcesMax - device->NumStereoSources;
// Open the "backend"
V(device->Backend,open)("Loopback");
{
ALCdevice *head = ATOMIC_LOAD_SEQ(&DeviceList);
do {
device->next = head;
} while(!ATOMIC_COMPARE_EXCHANGE_WEAK_SEQ(ALCdevice*, &DeviceList, &head, device));
}
TRACE("Created device %p\n", device);
return device;
}
/* alcIsRenderFormatSupportedSOFT
*
* Determines if the loopback device supports the given format for rendering.
*/
ALC_API ALCboolean ALC_APIENTRY alcIsRenderFormatSupportedSOFT(ALCdevice *device, ALCsizei freq, ALCenum channels, ALCenum type)
{
ALCboolean ret = ALC_FALSE;
if(!VerifyDevice(&device) || device->Type != Loopback)
alcSetError(device, ALC_INVALID_DEVICE);
else if(freq <= 0)
alcSetError(device, ALC_INVALID_VALUE);
else
{
if(IsValidALCType(type) && BytesFromDevFmt(type) > 0 &&
IsValidALCChannels(channels) && ChannelsFromDevFmt(channels) > 0 &&
freq >= MIN_OUTPUT_RATE)
ret = ALC_TRUE;
}
if(device) ALCdevice_DecRef(device);
return ret;
}
/* alcRenderSamplesSOFT
*
* Renders some samples into a buffer, using the format last set by the
* attributes given to alcCreateContext.
*/
FORCE_ALIGN ALC_API void ALC_APIENTRY alcRenderSamplesSOFT(ALCdevice *device, ALCvoid *buffer, ALCsizei samples)
{
if(!VerifyDevice(&device) || device->Type != Loopback)
alcSetError(device, ALC_INVALID_DEVICE);
else if(samples < 0 || (samples > 0 && buffer == NULL))
alcSetError(device, ALC_INVALID_VALUE);
else
{
V0(device->Backend,lock)();
aluMixData(device, buffer, samples);
V0(device->Backend,unlock)();
}
if(device) ALCdevice_DecRef(device);
}
/************************************************
* ALC DSP pause/resume functions
************************************************/
/* alcDevicePauseSOFT
*
* Pause the DSP to stop audio processing.
*/
ALC_API void ALC_APIENTRY alcDevicePauseSOFT(ALCdevice *device)
{
if(!VerifyDevice(&device) || device->Type != Playback)
alcSetError(device, ALC_INVALID_DEVICE);
else
{
almtx_lock(&device->BackendLock);
if((device->Flags&DEVICE_RUNNING))
V0(device->Backend,stop)();
device->Flags &= ~DEVICE_RUNNING;
device->Flags |= DEVICE_PAUSED;
almtx_unlock(&device->BackendLock);
}
if(device) ALCdevice_DecRef(device);
}
/* alcDeviceResumeSOFT
*
* Resume the DSP to restart audio processing.
*/
ALC_API void ALC_APIENTRY alcDeviceResumeSOFT(ALCdevice *device)
{
if(!VerifyDevice(&device) || device->Type != Playback)
alcSetError(device, ALC_INVALID_DEVICE);
else
{
almtx_lock(&device->BackendLock);
if((device->Flags&DEVICE_PAUSED))
{
device->Flags &= ~DEVICE_PAUSED;
if(ATOMIC_LOAD_SEQ(&device->ContextList) != NULL)
{
if(V0(device->Backend,start)() != ALC_FALSE)
device->Flags |= DEVICE_RUNNING;
else
{
alcSetError(device, ALC_INVALID_DEVICE);
V0(device->Backend,lock)();
aluHandleDisconnect(device);
V0(device->Backend,unlock)();
}
}
}
almtx_unlock(&device->BackendLock);
}
if(device) ALCdevice_DecRef(device);
}
/************************************************
* ALC HRTF functions
************************************************/
/* alcGetStringiSOFT
*
* Gets a string parameter at the given index.
*/
ALC_API const ALCchar* ALC_APIENTRY alcGetStringiSOFT(ALCdevice *device, ALCenum paramName, ALCsizei index)
{
const ALCchar *str = NULL;
if(!VerifyDevice(&device) || device->Type == Capture)
alcSetError(device, ALC_INVALID_DEVICE);
else switch(paramName)
{
case ALC_HRTF_SPECIFIER_SOFT:
if(index >= 0 && (size_t)index < VECTOR_SIZE(device->Hrtf.List))
str = al_string_get_cstr(VECTOR_ELEM(device->Hrtf.List, index).name);
else
alcSetError(device, ALC_INVALID_VALUE);
break;
default:
alcSetError(device, ALC_INVALID_ENUM);
break;
}
if(device) ALCdevice_DecRef(device);
return str;
}
/* alcResetDeviceSOFT
*
* Resets the given device output, using the specified attribute list.
*/
ALC_API ALCboolean ALC_APIENTRY alcResetDeviceSOFT(ALCdevice *device, const ALCint *attribs)
{
ALCenum err;
LockLists();
if(!VerifyDevice(&device) || device->Type == Capture || !device->Connected)
{
UnlockLists();
alcSetError(device, ALC_INVALID_DEVICE);
if(device) ALCdevice_DecRef(device);
return ALC_FALSE;
}
almtx_lock(&device->BackendLock);
UnlockLists();
err = UpdateDeviceParams(device, attribs);
almtx_unlock(&device->BackendLock);
if(err != ALC_NO_ERROR)
{
alcSetError(device, err);
if(err == ALC_INVALID_DEVICE)
{
V0(device->Backend,lock)();
aluHandleDisconnect(device);
V0(device->Backend,unlock)();
}
ALCdevice_DecRef(device);
return ALC_FALSE;
}
ALCdevice_DecRef(device);
return ALC_TRUE;
}