AuroraOpenALSoft/Alc/alcReverb.c
2009-05-29 16:51:00 -07:00

776 lines
30 KiB
C

/**
* Reverb for the OpenAL cross platform audio library
* Copyright (C) 2008-2009 by Christopher Fitzgerald.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alAuxEffectSlot.h"
#include "alEffect.h"
#include "alu.h"
typedef struct DelayLine
{
// The delay lines use sample lengths that are powers of 2 to allow
// bitmasking instead of modulus wrapping.
ALuint Mask;
ALfloat *Line;
} DelayLine;
typedef struct ALverbState {
// Must be first in all effects!
ALeffectState state;
// All delay lines are allocated as a single buffer to reduce memory
// fragmentation and management code.
ALfloat *SampleBuffer;
// Master effect low-pass filter (2 chained 1-pole filters).
ALfloat LpCoeff;
ALfloat LpSamples[2];
// Initial effect delay and decorrelation.
DelayLine Delay;
// The tap points for the initial delay. First tap goes to early
// reflections, the last four decorrelate to late reverb.
ALuint Tap[5];
struct {
// Total gain for early reflections.
ALfloat Gain;
// Early reflections are done with 4 delay lines.
ALfloat Coeff[4];
DelayLine Delay[4];
ALuint Offset[4];
// The gain for each output channel based on 3D panning.
ALfloat PanGain[OUTPUTCHANNELS];
} Early;
struct {
// Total gain for late reverb.
ALfloat Gain;
// Attenuation to compensate for modal density and decay rate.
ALfloat DensityGain;
// The feed-back and feed-forward all-pass coefficient.
ALfloat ApFeedCoeff;
// Mixing matrix coefficient.
ALfloat MixCoeff;
// Late reverb has 4 parallel all-pass filters.
ALfloat ApCoeff[4];
DelayLine ApDelay[4];
ALuint ApOffset[4];
// In addition to 4 cyclical delay lines.
ALfloat Coeff[4];
DelayLine Delay[4];
ALuint Offset[4];
// The cyclical delay lines are 1-pole low-pass filtered.
ALfloat LpCoeff[4];
ALfloat LpSample[4];
// The gain for each output channel based on 3D panning.
ALfloat PanGain[OUTPUTCHANNELS];
} Late;
// The current read offset for all delay lines.
ALuint Offset;
} ALverbState;
// All delay line lengths are specified in seconds.
// The lengths of the early delay lines.
static const ALfloat EARLY_LINE_LENGTH[4] =
{
0.0015f, 0.0045f, 0.0135f, 0.0405f
};
// The lengths of the late all-pass delay lines.
static const ALfloat ALLPASS_LINE_LENGTH[4] =
{
0.0151f, 0.0167f, 0.0183f, 0.0200f,
};
// The lengths of the late cyclical delay lines.
static const ALfloat LATE_LINE_LENGTH[4] =
{
0.0211f, 0.0311f, 0.0461f, 0.0680f
};
// The late cyclical delay lines have a variable length dependent on the
// effect's density parameter (inverted for some reason) and this multiplier.
static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
// Input into the late reverb is decorrelated between four channels. Their
// timings are dependent on a fraction and multiplier. See VerbUpdate() for
// the calculations involved.
static const ALfloat DECO_FRACTION = 1.0f / 32.0f;
static const ALfloat DECO_MULTIPLIER = 2.0f;
// The maximum length of initial delay for the master delay line (a sum of
// the maximum early reflection and late reverb delays).
static const ALfloat MASTER_LINE_LENGTH = 0.3f + 0.1f;
// Find the next power of 2. Actually, this will return the input value if
// it is already a power of 2.
static ALuint NextPowerOf2(ALuint value)
{
ALuint powerOf2 = 1;
if(value)
{
value--;
while(value)
{
value >>= 1;
powerOf2 <<= 1;
}
}
return powerOf2;
}
// Basic delay line input/output routines.
static __inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
{
return Delay->Line[offset&Delay->Mask];
}
static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
{
Delay->Line[offset&Delay->Mask] = in;
}
// Delay line output routine for early reflections.
static __inline ALfloat EarlyDelayLineOut(ALverbState *State, ALuint index)
{
return State->Early.Coeff[index] *
DelayLineOut(&State->Early.Delay[index],
State->Offset - State->Early.Offset[index]);
}
// Given an input sample, this function produces stereo output for early
// reflections.
static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *out)
{
ALfloat d[4], v, f[4];
// Obtain the decayed results of each early delay line.
d[0] = EarlyDelayLineOut(State, 0);
d[1] = EarlyDelayLineOut(State, 1);
d[2] = EarlyDelayLineOut(State, 2);
d[3] = EarlyDelayLineOut(State, 3);
/* The following uses a lossless scattering junction from waveguide
* theory. It actually amounts to a householder mixing matrix, which
* will produce a maximally diffuse response, and means this can probably
* be considered a simple feedback delay network (FDN).
* N
* ---
* \
* v = 2/N / d_i
* ---
* i=1
*/
v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
// The junction is loaded with the input here.
v += in;
// Calculate the feed values for the delay lines.
f[0] = v - d[0];
f[1] = v - d[1];
f[2] = v - d[2];
f[3] = v - d[3];
// Refeed the delay lines.
DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]);
DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]);
DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]);
DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]);
// Output the results of the junction for all four lines.
out[0] = State->Early.Gain * f[0];
out[1] = State->Early.Gain * f[1];
out[2] = State->Early.Gain * f[2];
out[3] = State->Early.Gain * f[3];
}
// All-pass input/output routine for late reverb.
static __inline ALfloat LateAllPassInOut(ALverbState *State, ALuint index, ALfloat in)
{
ALfloat out;
out = State->Late.ApCoeff[index] *
DelayLineOut(&State->Late.ApDelay[index],
State->Offset - State->Late.ApOffset[index]);
out -= (State->Late.ApFeedCoeff * in);
DelayLineIn(&State->Late.ApDelay[index], State->Offset,
(State->Late.ApFeedCoeff * out) + in);
return out;
}
// Delay line output routine for late reverb.
static __inline ALfloat LateDelayLineOut(ALverbState *State, ALuint index)
{
return State->Late.Coeff[index] *
DelayLineOut(&State->Late.Delay[index],
State->Offset - State->Late.Offset[index]);
}
// Low-pass filter input/output routine for late reverb.
static __inline ALfloat LateLowPassInOut(ALverbState *State, ALuint index, ALfloat in)
{
State->Late.LpSample[index] = in +
((State->Late.LpSample[index] - in) * State->Late.LpCoeff[index]);
return State->Late.LpSample[index];
}
// Given four decorrelated input samples, this function produces stereo
// output for late reverb.
static __inline ALvoid LateReverb(ALverbState *State, ALfloat *in, ALfloat *out)
{
ALfloat d[4], f[4];
// Obtain the decayed results of the cyclical delay lines, and add the
// corresponding input channels attenuated by density. Then pass the
// results through the low-pass filters.
d[0] = LateLowPassInOut(State, 0, (State->Late.DensityGain * in[0]) +
LateDelayLineOut(State, 0));
d[1] = LateLowPassInOut(State, 1, (State->Late.DensityGain * in[1]) +
LateDelayLineOut(State, 1));
d[2] = LateLowPassInOut(State, 2, (State->Late.DensityGain * in[2]) +
LateDelayLineOut(State, 2));
d[3] = LateLowPassInOut(State, 3, (State->Late.DensityGain * in[3]) +
LateDelayLineOut(State, 3));
// To help increase diffusion, run each line through an all-pass filter.
// The order of the all-pass filters is selected so that the shortest
// all-pass filter will feed the shortest delay line.
d[0] = LateAllPassInOut(State, 1, d[0]);
d[1] = LateAllPassInOut(State, 3, d[1]);
d[2] = LateAllPassInOut(State, 0, d[2]);
d[3] = LateAllPassInOut(State, 2, d[3]);
/* Late reverb is done with a modified feedback delay network (FDN)
* topology. Four input lines are each fed through their own all-pass
* filter and then into the mixing matrix. The four outputs of the
* mixing matrix are then cycled back to the inputs. Each output feeds
* a different input to form a circlular feed cycle.
*
* The mixing matrix used is a 4D skew-symmetric rotation matrix derived
* using a single unitary rotational parameter:
*
* [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
* [ -a, d, c, -b ]
* [ -b, -c, d, a ]
* [ -c, b, -a, d ]
*
* The rotation is constructed from the effect's diffusion parameter,
* yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
* with differing signs, and d is the coefficient x. The matrix is thus:
*
* [ x, y, -y, y ] x = 1 - (0.5 diffusion^3)
* [ -y, x, y, y ] y = sqrt((1 - x^2) / 3)
* [ y, -y, x, y ]
* [ -y, -y, -y, x ]
*
* To reduce the number of multiplies, the x coefficient is applied with
* the cyclical delay line coefficients. Thus only the y coefficient is
* applied when mixing, and is modified to be: y / x.
*/
f[0] = d[0] + (State->Late.MixCoeff * ( d[1] - d[2] + d[3]));
f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
f[2] = d[2] + (State->Late.MixCoeff * ( d[0] - d[1] + d[3]));
f[3] = d[3] + (State->Late.MixCoeff * (-d[0] - d[1] - d[2]));
// Output the results of the matrix for all four cyclical delay lines,
// attenuated by the late reverb gain (which is attenuated by the 'x'
// mix coefficient).
out[0] = State->Late.Gain * f[0];
out[1] = State->Late.Gain * f[1];
out[2] = State->Late.Gain * f[2];
out[3] = State->Late.Gain * f[3];
// The delay lines are fed circularly in the order:
// 0 -> 1 -> 3 -> 2 -> 0 ...
DelayLineIn(&State->Late.Delay[0], State->Offset, f[2]);
DelayLineIn(&State->Late.Delay[1], State->Offset, f[0]);
DelayLineIn(&State->Late.Delay[2], State->Offset, f[3]);
DelayLineIn(&State->Late.Delay[3], State->Offset, f[1]);
}
// Process the reverb for a given input sample, resulting in separate four-
// channel output for both early reflections and late reverb.
static __inline ALvoid ReverbInOut(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late)
{
ALfloat taps[4];
// Low-pass filter the incoming sample.
in = in + ((State->LpSamples[0] - in) * State->LpCoeff);
State->LpSamples[0] = in;
in = in + ((State->LpSamples[1] - in) * State->LpCoeff);
State->LpSamples[1] = in;
// Feed the initial delay line.
DelayLineIn(&State->Delay, State->Offset, in);
// Calculate the early reflection from the first delay tap.
in = DelayLineOut(&State->Delay, State->Offset - State->Tap[0]);
EarlyReflection(State, in, early);
// Calculate the late reverb from the last four delay taps.
taps[0] = DelayLineOut(&State->Delay, State->Offset - State->Tap[1]);
taps[1] = DelayLineOut(&State->Delay, State->Offset - State->Tap[2]);
taps[2] = DelayLineOut(&State->Delay, State->Offset - State->Tap[3]);
taps[3] = DelayLineOut(&State->Delay, State->Offset - State->Tap[4]);
LateReverb(State, taps, late);
// Step all delays forward one sample.
State->Offset++;
}
// This destroys the reverb state. It should be called only when the effect
// slot has a different (or no) effect loaded over the reverb effect.
ALvoid VerbDestroy(ALeffectState *effect)
{
ALverbState *State = (ALverbState*)effect;
if(State)
{
free(State->SampleBuffer);
State->SampleBuffer = NULL;
free(State);
}
}
// NOTE: Temp, remove later.
static __inline ALint aluCart2LUTpos(ALfloat re, ALfloat im)
{
ALint pos = 0;
ALfloat denom = aluFabs(re) + aluFabs(im);
if(denom > 0.0f)
pos = (ALint)(QUADRANT_NUM*aluFabs(im) / denom + 0.5);
if(re < 0.0)
pos = 2 * QUADRANT_NUM - pos;
if(im < 0.0)
pos = LUT_NUM - pos;
return pos%LUT_NUM;
}
// This updates the reverb state. This is called any time the reverb effect
// is loaded into a slot.
ALvoid VerbUpdate(ALeffectState *effect, ALCcontext *Context, ALeffect *Effect)
{
ALverbState *State = (ALverbState*)effect;
ALuint index;
ALfloat length, mixCoeff, cw, g, coeff;
ALfloat hfRatio = Effect->Reverb.DecayHFRatio;
// Calculate the master low-pass filter (from the master effect HF gain).
cw = cos(2.0 * M_PI * Effect->Reverb.HFReference / Context->Frequency);
g = __max(Effect->Reverb.GainHF, 0.0001f);
State->LpCoeff = 0.0f;
if(g < 0.9999f) // 1-epsilon
State->LpCoeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
// Calculate the initial delay taps.
length = Effect->Reverb.ReflectionsDelay;
State->Tap[0] = (ALuint)(length * Context->Frequency);
length += Effect->Reverb.LateReverbDelay;
/* The four inputs to the late reverb are decorrelated to smooth the
* initial reverb and reduce harsh echos. The timings are calculated as
* multiples of a fraction of the smallest cyclical delay time. This
* result is then adjusted so that the first tap occurs immediately (all
* taps are reduced by the shortest fraction).
*
* offset[index] = ((FRACTION MULTIPLIER^index) - 1) delay
*/
for(index = 0;index < 4;index++)
{
length += LATE_LINE_LENGTH[0] *
(1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER)) *
(DECO_FRACTION * (pow(DECO_MULTIPLIER, (ALfloat)index) - 1.0f));
State->Tap[1 + index] = (ALuint)(length * Context->Frequency);
}
// Calculate the early reflections gain (from the slot gain, master
// effect gain, and reflections gain parameters).
State->Early.Gain = Effect->Reverb.Gain * Effect->Reverb.ReflectionsGain;
// Calculate the gain (coefficient) for each early delay line.
for(index = 0;index < 4;index++)
State->Early.Coeff[index] = pow(10.0f, EARLY_LINE_LENGTH[index] /
Effect->Reverb.LateReverbDelay *
-60.0f / 20.0f);
// Calculate the first mixing matrix coefficient (x).
mixCoeff = 1.0f - (0.5f * pow(Effect->Reverb.Diffusion, 3.0f));
// Calculate the late reverb gain (from the slot gain, master effect
// gain, and late reverb gain parameters). Since the output is tapped
// prior to the application of the delay line coefficients, this gain
// needs to be attenuated by the 'x' mix coefficient from above.
State->Late.Gain = Effect->Reverb.Gain * Effect->Reverb.LateReverbGain * mixCoeff;
/* To compensate for changes in modal density and decay time of the late
* reverb signal, the input is attenuated based on the maximal energy of
* the outgoing signal. This is calculated as the ratio between a
* reference value and the current approximation of energy for the output
* signal.
*
* Reverb output matches exponential decay of the form Sum(a^n), where a
* is the attenuation coefficient, and n is the sample ranging from 0 to
* infinity. The signal energy can thus be approximated using the area
* under this curve, calculated as: 1 / (1 - a).
*
* The reference energy is calculated from a signal at the lowest (effect
* at 1.0) density with a decay time of one second.
*
* The coefficient is calculated as the average length of the cyclical
* delay lines. This produces a better result than calculating the gain
* for each line individually (most likely a side effect of diffusion).
*
* The final result is the square root of the ratio bound to a maximum
* value of 1 (no amplification).
*/
length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]);
g = length * (1.0f + LATE_LINE_MULTIPLIER) * 0.25f;
g = pow(10.0f, g * -60.0f / 20.0f);
g = 1.0f / (1.0f - (g * g));
length *= 1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER) * 0.25f;
length = pow(10.0f, length / Effect->Reverb.DecayTime * -60.0f / 20.0f);
length = 1.0f / (1.0f - (length * length));
State->Late.DensityGain = __min(aluSqrt(g / length), 1.0f);
// Calculate the all-pass feed-back and feed-forward coefficient.
State->Late.ApFeedCoeff = 0.6f * pow(Effect->Reverb.Diffusion, 3.0f);
// Calculate the mixing matrix coefficient (y / x).
g = aluSqrt((1.0f - (mixCoeff * mixCoeff)) / 3.0f);
State->Late.MixCoeff = g / mixCoeff;
for(index = 0;index < 4;index++)
{
// Calculate the gain (coefficient) for each all-pass line.
State->Late.ApCoeff[index] = pow(10.0f, ALLPASS_LINE_LENGTH[index] /
Effect->Reverb.DecayTime *
-60.0f / 20.0f);
}
// If the HF limit parameter is flagged, calculate an appropriate limit
// based on the air absorption parameter.
if(Effect->Reverb.DecayHFLimit && Effect->Reverb.AirAbsorptionGainHF < 1.0f)
{
ALfloat limitRatio;
// For each of the cyclical delays, find the attenuation due to air
// absorption in dB (converting delay time to meters using the speed
// of sound). Then reversing the decay equation, solve for HF ratio.
// The delay length is cancelled out of the equation, so it can be
// calculated once for all lines.
limitRatio = 1.0f / (log10(Effect->Reverb.AirAbsorptionGainHF) *
SPEEDOFSOUNDMETRESPERSEC *
Effect->Reverb.DecayTime / -60.0f * 20.0f);
// Need to limit the result to a minimum of 0.1, just like the HF
// ratio parameter.
limitRatio = __max(limitRatio, 0.1f);
// Using the limit calculated above, apply the upper bound to the
// HF ratio.
hfRatio = __min(hfRatio, limitRatio);
}
// Calculate the low-pass filter frequency.
cw = cos(2.0f * M_PI * Effect->Reverb.HFReference / Context->Frequency);
for(index = 0;index < 4;index++)
{
// Calculate the length (in seconds) of each cyclical delay line.
length = LATE_LINE_LENGTH[index] * (1.0f + (Effect->Reverb.Density *
LATE_LINE_MULTIPLIER));
// Calculate the delay offset for the cyclical delay lines.
State->Late.Offset[index] = (ALuint)(length * Context->Frequency);
// Calculate the gain (coefficient) for each cyclical line.
State->Late.Coeff[index] = pow(10.0f, length / Effect->Reverb.DecayTime *
-60.0f / 20.0f);
// Eventually this should boost the high frequencies when the ratio
// exceeds 1.
coeff = 0.0f;
if (hfRatio < 1.0f)
{
// Calculate the decay equation for each low-pass filter.
g = pow(10.0f, length / (Effect->Reverb.DecayTime * hfRatio) *
-60.0f / 20.0f) / State->Late.Coeff[index];
g = __max(g, 0.1f);
g *= g;
// Calculate the gain (coefficient) for each low-pass filter.
if(g < 0.9999f) // 1-epsilon
coeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
// Very low decay times will produce minimal output, so apply an
// upper bound to the coefficient.
coeff = __min(coeff, 0.98f);
}
State->Late.LpCoeff[index] = coeff;
// Attenuate the cyclical line coefficients by the mixing coefficient
// (x).
State->Late.Coeff[index] *= mixCoeff;
}
// Calculate the 3D-panning gains for the early reflections and late
// reverb (for EAX mode).
{
ALfloat *earlyPan = Effect->Reverb.ReflectionsPan;
ALfloat *latePan = Effect->Reverb.LateReverbPan;
ALfloat *speakerGain, dirGain, ambientGain;
ALint pos;
// This code applies directional reverb just like the mixer applies
// directional sources. It diffuses the sound toward all speakers
// as the magnitude of the panning vector drops, which is only an
// approximation of the expansion of sound across the speakers from
// the panning direction.
pos = aluCart2LUTpos(earlyPan[2], earlyPan[0]);
speakerGain = &Context->PanningLUT[OUTPUTCHANNELS * pos];
dirGain = aluSqrt((earlyPan[0] * earlyPan[0]) + (earlyPan[2] * earlyPan[2]));
ambientGain = 1.0 / aluSqrt(Context->NumChan) * (1.0 - dirGain);
for(index = 0;index < OUTPUTCHANNELS;index++)
State->Early.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
pos = aluCart2LUTpos(latePan[2], latePan[0]);
speakerGain = &Context->PanningLUT[OUTPUTCHANNELS * pos];
dirGain = aluSqrt((latePan[0] * latePan[0]) + (latePan[2] * latePan[2]));
ambientGain = 1.0 / aluSqrt(Context->NumChan) * (1.0 - dirGain);
for(index = 0;index < OUTPUTCHANNELS;index++)
State->Late.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
}
}
// This processes the reverb state, given the input samples and an output
// buffer.
ALvoid VerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
{
ALverbState *State = (ALverbState*)effect;
ALuint index;
ALfloat early[4], late[4], out[4];
ALfloat gain = Slot->Gain;
for(index = 0;index < SamplesToDo;index++)
{
// Process reverb for this sample.
ReverbInOut(State, SamplesIn[index], early, late);
// Mix early reflections and late reverb.
out[0] = (early[0] + late[0]) * gain;
out[1] = (early[1] + late[1]) * gain;
out[2] = (early[2] + late[2]) * gain;
out[3] = (early[3] + late[3]) * gain;
// Output the results.
SamplesOut[index][FRONT_LEFT] += out[0];
SamplesOut[index][FRONT_RIGHT] += out[1];
SamplesOut[index][FRONT_CENTER] += out[3];
SamplesOut[index][SIDE_LEFT] += out[0];
SamplesOut[index][SIDE_RIGHT] += out[1];
SamplesOut[index][BACK_LEFT] += out[0];
SamplesOut[index][BACK_RIGHT] += out[1];
SamplesOut[index][BACK_CENTER] += out[2];
}
}
// This processes the EAX reverb state, given the input samples and an output
// buffer.
ALvoid EAXVerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
{
ALverbState *State = (ALverbState*)effect;
ALuint index;
ALfloat early[4], late[4];
ALfloat gain = Slot->Gain;
for(index = 0;index < SamplesToDo;index++)
{
// Process reverb for this sample.
ReverbInOut(State, SamplesIn[index], early, late);
// Unfortunately, while the number and configuration of gains for
// panning adjust according to OUTPUTCHANNELS, the output from the
// reverb engine is not so scalable.
SamplesOut[index][FRONT_LEFT] +=
(State->Early.PanGain[FRONT_LEFT]*early[0] +
State->Late.PanGain[FRONT_LEFT]*late[0]) * gain;
SamplesOut[index][FRONT_RIGHT] +=
(State->Early.PanGain[FRONT_RIGHT]*early[1] +
State->Late.PanGain[FRONT_RIGHT]*late[1]) * gain;
SamplesOut[index][FRONT_CENTER] +=
(State->Early.PanGain[FRONT_CENTER]*early[3] +
State->Late.PanGain[FRONT_CENTER]*late[3]) * gain;
SamplesOut[index][SIDE_LEFT] +=
(State->Early.PanGain[SIDE_LEFT]*early[0] +
State->Late.PanGain[SIDE_LEFT]*late[0]) * gain;
SamplesOut[index][SIDE_RIGHT] +=
(State->Early.PanGain[SIDE_RIGHT]*early[1] +
State->Late.PanGain[SIDE_RIGHT]*late[1]) * gain;
SamplesOut[index][BACK_LEFT] +=
(State->Early.PanGain[BACK_LEFT]*early[0] +
State->Late.PanGain[BACK_LEFT]*late[0]) * gain;
SamplesOut[index][BACK_RIGHT] +=
(State->Early.PanGain[BACK_RIGHT]*early[1] +
State->Late.PanGain[BACK_RIGHT]*late[1]) * gain;
SamplesOut[index][BACK_CENTER] +=
(State->Early.PanGain[BACK_CENTER]*early[2] +
State->Late.PanGain[BACK_CENTER]*late[2]) * gain;
}
}
// This creates the reverb state. It should be called only when the reverb
// effect is loaded into a slot that doesn't already have a reverb effect.
ALeffectState *VerbCreate(ALCcontext *Context)
{
ALverbState *State = NULL;
ALuint samples, length[13], totalLength, index;
State = malloc(sizeof(ALverbState));
if(!State)
return NULL;
State->state.Destroy = VerbDestroy;
State->state.Update = VerbUpdate;
State->state.Process = VerbProcess;
// All line lengths are powers of 2, calculated from their lengths, with
// an additional sample in case of rounding errors.
// See VerbUpdate() for an explanation of the additional calculation
// added to the master line length.
samples = (ALuint)
((MASTER_LINE_LENGTH +
(LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER) *
(DECO_FRACTION * ((DECO_MULTIPLIER * DECO_MULTIPLIER *
DECO_MULTIPLIER) - 1.0f)))) *
Context->Frequency) + 1;
length[0] = NextPowerOf2(samples);
totalLength = length[0];
for(index = 0;index < 4;index++)
{
samples = (ALuint)(EARLY_LINE_LENGTH[index] * Context->Frequency) + 1;
length[1 + index] = NextPowerOf2(samples);
totalLength += length[1 + index];
}
for(index = 0;index < 4;index++)
{
samples = (ALuint)(ALLPASS_LINE_LENGTH[index] * Context->Frequency) + 1;
length[5 + index] = NextPowerOf2(samples);
totalLength += length[5 + index];
}
for(index = 0;index < 4;index++)
{
samples = (ALuint)(LATE_LINE_LENGTH[index] *
(1.0f + LATE_LINE_MULTIPLIER) * Context->Frequency) + 1;
length[9 + index] = NextPowerOf2(samples);
totalLength += length[9 + index];
}
// All lines share a single sample buffer and have their masks and start
// addresses calculated once.
State->SampleBuffer = malloc(totalLength * sizeof(ALfloat));
if(!State->SampleBuffer)
{
free(State);
return NULL;
}
for(index = 0; index < totalLength;index++)
State->SampleBuffer[index] = 0.0f;
State->LpCoeff = 0.0f;
State->LpSamples[0] = 0.0f;
State->LpSamples[1] = 0.0f;
State->Delay.Mask = length[0] - 1;
State->Delay.Line = &State->SampleBuffer[0];
totalLength = length[0];
State->Tap[0] = 0;
State->Tap[1] = 0;
State->Tap[2] = 0;
State->Tap[3] = 0;
State->Tap[4] = 0;
State->Early.Gain = 0.0f;
for(index = 0;index < 4;index++)
{
State->Early.Coeff[index] = 0.0f;
State->Early.Delay[index].Mask = length[1 + index] - 1;
State->Early.Delay[index].Line = &State->SampleBuffer[totalLength];
totalLength += length[1 + index];
// The early delay lines have their read offsets calculated once.
State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] *
Context->Frequency);
}
State->Late.Gain = 0.0f;
State->Late.DensityGain = 0.0f;
State->Late.ApFeedCoeff = 0.0f;
State->Late.MixCoeff = 0.0f;
for(index = 0;index < 4;index++)
{
State->Late.ApCoeff[index] = 0.0f;
State->Late.ApDelay[index].Mask = length[5 + index] - 1;
State->Late.ApDelay[index].Line = &State->SampleBuffer[totalLength];
totalLength += length[5 + index];
// The late all-pass lines have their read offsets calculated once.
State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] *
Context->Frequency);
}
for(index = 0;index < 4;index++)
{
State->Late.Coeff[index] = 0.0f;
State->Late.Delay[index].Mask = length[9 + index] - 1;
State->Late.Delay[index].Line = &State->SampleBuffer[totalLength];
totalLength += length[9 + index];
State->Late.Offset[index] = 0;
State->Late.LpCoeff[index] = 0.0f;
State->Late.LpSample[index] = 0.0f;
}
// Panning is applied as an independent gain for each output channel.
for(index = 0;index < OUTPUTCHANNELS;index++)
{
State->Early.PanGain[index] = 0.0f;
State->Late.PanGain[index] = 0.0f;
}
State->Offset = 0;
return &State->state;
}
ALeffectState *EAXVerbCreate(ALCcontext *Context)
{
ALeffectState *State = VerbCreate(Context);
if(State) State->Process = EAXVerbProcess;
return State;
}