186 lines
6.2 KiB
C
186 lines
6.2 KiB
C
#include "config.h"
|
|
|
|
#ifdef HAVE_ARM_NEON_H
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "alMain.h"
|
|
#include "alu.h"
|
|
#include "hrtf.h"
|
|
|
|
|
|
static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2],
|
|
const ALuint IrSize,
|
|
ALfloat (*restrict Coeffs)[2],
|
|
const ALfloat (*restrict CoeffStep)[2],
|
|
ALfloat left, ALfloat right)
|
|
{
|
|
ALuint c;
|
|
float32x4_t leftright4;
|
|
{
|
|
float32x2_t leftright2 = vdup_n_f32(0.0);
|
|
leftright2 = vset_lane_f32(left, leftright2, 0);
|
|
leftright2 = vset_lane_f32(right, leftright2, 1);
|
|
leftright4 = vcombine_f32(leftright2, leftright2);
|
|
}
|
|
for(c = 0;c < IrSize;c += 2)
|
|
{
|
|
const ALuint o0 = (Offset+c)&HRIR_MASK;
|
|
const ALuint o1 = (o0+1)&HRIR_MASK;
|
|
float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]),
|
|
vld1_f32((float32_t*)&Values[o1][0]));
|
|
float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
|
|
float32x4_t deltas = vld1q_f32(&CoeffStep[c][0]);
|
|
|
|
vals = vmlaq_f32(vals, coefs, leftright4);
|
|
coefs = vaddq_f32(coefs, deltas);
|
|
|
|
vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals));
|
|
vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals));
|
|
vst1q_f32(&Coeffs[c][0], coefs);
|
|
}
|
|
}
|
|
|
|
static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2],
|
|
const ALuint IrSize,
|
|
ALfloat (*restrict Coeffs)[2],
|
|
ALfloat left, ALfloat right)
|
|
{
|
|
ALuint c;
|
|
float32x4_t leftright4;
|
|
{
|
|
float32x2_t leftright2 = vdup_n_f32(0.0);
|
|
leftright2 = vset_lane_f32(left, leftright2, 0);
|
|
leftright2 = vset_lane_f32(right, leftright2, 1);
|
|
leftright4 = vcombine_f32(leftright2, leftright2);
|
|
}
|
|
for(c = 0;c < IrSize;c += 2)
|
|
{
|
|
const ALuint o0 = (Offset+c)&HRIR_MASK;
|
|
const ALuint o1 = (o0+1)&HRIR_MASK;
|
|
float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]),
|
|
vld1_f32((float32_t*)&Values[o1][0]));
|
|
float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
|
|
|
|
vals = vmlaq_f32(vals, coefs, leftright4);
|
|
|
|
vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals));
|
|
vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals));
|
|
}
|
|
}
|
|
|
|
|
|
#define SUFFIX Neon
|
|
#include "mixer_inc.c"
|
|
#undef SUFFIX
|
|
|
|
|
|
void MixDirect_Neon(DirectParams *params, const ALfloat *restrict data, ALuint srcchan,
|
|
ALuint OutPos, ALuint BufferSize)
|
|
{
|
|
ALfloat (*restrict OutBuffer)[BUFFERSIZE] = params->OutBuffer;
|
|
ALuint Counter = maxu(params->Counter, OutPos) - OutPos;
|
|
ALfloat DrySend, Step;
|
|
float32x4_t gain;
|
|
ALuint c;
|
|
|
|
for(c = 0;c < MaxChannels;c++)
|
|
{
|
|
ALuint pos = 0;
|
|
Step = params->Mix.Gains.Step[srcchan][c];
|
|
if(Step != 1.0f && Counter > 0)
|
|
{
|
|
DrySend = params->Mix.Gains.Current[srcchan][c];
|
|
for(;BufferSize-pos > 3 && Counter-pos > 3;pos+=4)
|
|
{
|
|
OutBuffer[c][OutPos+pos ] += data[pos ]*DrySend;
|
|
DrySend *= Step;
|
|
OutBuffer[c][OutPos+pos+1] += data[pos+1]*DrySend;
|
|
DrySend *= Step;
|
|
OutBuffer[c][OutPos+pos+2] += data[pos+2]*DrySend;
|
|
DrySend *= Step;
|
|
OutBuffer[c][OutPos+pos+4] += data[pos+3]*DrySend;
|
|
DrySend *= Step;
|
|
}
|
|
if(!(BufferSize-pos > 3))
|
|
{
|
|
for(;pos < BufferSize && pos < Counter;pos++)
|
|
{
|
|
OutBuffer[c][OutPos+pos] += data[pos]*DrySend;
|
|
DrySend *= Step;
|
|
}
|
|
}
|
|
params->Mix.Gains.Current[srcchan][c] = DrySend;
|
|
}
|
|
|
|
DrySend = params->Mix.Gains.Target[srcchan][c];
|
|
if(!(DrySend > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
gain = vdupq_n_f32(DrySend);
|
|
for(;BufferSize-pos > 3;pos += 4)
|
|
{
|
|
const float32x4_t val4 = vld1q_f32(&data[pos]);
|
|
float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
|
|
dry4 = vaddq_f32(dry4, vmulq_f32(val4, gain));
|
|
vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
|
|
}
|
|
for(;pos < BufferSize;pos++)
|
|
OutBuffer[c][OutPos+pos] += data[pos]*DrySend;
|
|
}
|
|
}
|
|
|
|
|
|
void MixSend_Neon(SendParams *params, const ALfloat *restrict data,
|
|
ALuint OutPos, ALuint BufferSize)
|
|
{
|
|
ALfloat (*restrict OutBuffer)[BUFFERSIZE] = params->OutBuffer;
|
|
ALuint Counter = maxu(params->Counter, OutPos) - OutPos;
|
|
ALfloat WetGain, Step;
|
|
float32x4_t gain;
|
|
|
|
{
|
|
ALuint pos = 0;
|
|
Step = params->Gain.Step;
|
|
if(Step != 1.0f && Counter > 0)
|
|
{
|
|
WetGain = params->Gain.Current;
|
|
for(;BufferSize-pos > 3 && Counter-pos > 3;pos+=4)
|
|
{
|
|
OutBuffer[0][OutPos+pos ] += data[pos ]*WetGain;
|
|
WetGain *= Step;
|
|
OutBuffer[0][OutPos+pos+1] += data[pos+1]*WetGain;
|
|
WetGain *= Step;
|
|
OutBuffer[0][OutPos+pos+2] += data[pos+2]*WetGain;
|
|
WetGain *= Step;
|
|
OutBuffer[0][OutPos+pos+4] += data[pos+3]*WetGain;
|
|
WetGain *= Step;
|
|
}
|
|
if(!(BufferSize-pos > 3))
|
|
{
|
|
for(;pos < BufferSize && pos < Counter;pos++)
|
|
{
|
|
OutBuffer[0][OutPos+pos] += data[pos]*WetGain;
|
|
WetGain *= Step;
|
|
}
|
|
}
|
|
params->Gain.Current = WetGain;
|
|
}
|
|
|
|
WetGain = params->Gain.Target;
|
|
if(!(WetGain > GAIN_SILENCE_THRESHOLD))
|
|
return;
|
|
gain = vdupq_n_f32(WetGain);
|
|
for(;BufferSize-pos > 3;pos += 4)
|
|
{
|
|
const float32x4_t val4 = vld1q_f32(&data[pos]);
|
|
float32x4_t wet4 = vld1q_f32(&OutBuffer[0][OutPos+pos]);
|
|
wet4 = vaddq_f32(wet4, vmulq_f32(val4, gain));
|
|
vst1q_f32(&OutBuffer[0][OutPos+pos], wet4);
|
|
}
|
|
for(;pos < BufferSize;pos++)
|
|
OutBuffer[0][OutPos+pos] += data[pos] * WetGain;
|
|
}
|
|
}
|