AuroraOpenALSoft/Alc/hrtf.c

1466 lines
43 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2011 by Chris Robinson
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <stdlib.h>
#include <ctype.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alSource.h"
#include "alu.h"
#include "hrtf.h"
#include "alconfig.h"
#include "filters/splitter.h"
#include "compat.h"
#include "almalloc.h"
/* Current data set limits defined by the makehrtf utility. */
#define MIN_IR_SIZE (8)
#define MAX_IR_SIZE (512)
#define MOD_IR_SIZE (8)
#define MIN_FD_COUNT (1)
#define MAX_FD_COUNT (16)
#define MIN_FD_DISTANCE (50)
#define MAX_FD_DISTANCE (2500)
#define MIN_EV_COUNT (5)
#define MAX_EV_COUNT (128)
#define MIN_AZ_COUNT (1)
#define MAX_AZ_COUNT (128)
#define MAX_HRIR_DELAY (HRTF_HISTORY_LENGTH-1)
struct HrtfEntry {
struct HrtfEntry *next;
struct Hrtf *handle;
char filename[];
};
static const ALchar magicMarker00[8] = "MinPHR00";
static const ALchar magicMarker01[8] = "MinPHR01";
static const ALchar magicMarker02[8] = "MinPHR02";
/* First value for pass-through coefficients (remaining are 0), used for omni-
* directional sounds. */
static const ALfloat PassthruCoeff = 0.707106781187f/*sqrt(0.5)*/;
static ATOMIC_FLAG LoadedHrtfLock = ATOMIC_FLAG_INIT;
static struct HrtfEntry *LoadedHrtfs = NULL;
/* Calculate the elevation index given the polar elevation in radians. This
* will return an index between 0 and (evcount - 1).
*/
static ALsizei CalcEvIndex(ALsizei evcount, ALfloat ev, ALfloat *mu)
{
ALsizei idx;
ev = (F_PI_2+ev) * (evcount-1) / F_PI;
idx = float2int(ev);
*mu = ev - idx;
return mini(idx, evcount-1);
}
/* Calculate the azimuth index given the polar azimuth in radians. This will
* return an index between 0 and (azcount - 1).
*/
static ALsizei CalcAzIndex(ALsizei azcount, ALfloat az, ALfloat *mu)
{
ALsizei idx;
az = (F_TAU+az) * azcount / F_TAU;
idx = float2int(az);
*mu = az - idx;
return idx % azcount;
}
/* Calculates static HRIR coefficients and delays for the given polar elevation
* and azimuth in radians. The coefficients are normalized.
*/
void GetHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat spread,
ALfloat (*restrict coeffs)[2], ALsizei *delays)
{
ALsizei evidx, azidx, idx[4];
ALsizei evoffset;
ALfloat emu, amu[2];
ALfloat blend[4];
ALfloat dirfact;
ALsizei i, c;
dirfact = 1.0f - (spread / F_TAU);
/* Claculate the lower elevation index. */
evidx = CalcEvIndex(Hrtf->evCount, elevation, &emu);
evoffset = Hrtf->evOffset[evidx];
/* Calculate lower azimuth index. */
azidx= CalcAzIndex(Hrtf->azCount[evidx], azimuth, &amu[0]);
/* Calculate the lower HRIR indices. */
idx[0] = evoffset + azidx;
idx[1] = evoffset + ((azidx+1) % Hrtf->azCount[evidx]);
if(evidx < Hrtf->evCount-1)
{
/* Increment elevation to the next (upper) index. */
evidx++;
evoffset = Hrtf->evOffset[evidx];
/* Calculate upper azimuth index. */
azidx = CalcAzIndex(Hrtf->azCount[evidx], azimuth, &amu[1]);
/* Calculate the upper HRIR indices. */
idx[2] = evoffset + azidx;
idx[3] = evoffset + ((azidx+1) % Hrtf->azCount[evidx]);
}
else
{
/* If the lower elevation is the top index, the upper elevation is the
* same as the lower.
*/
amu[1] = amu[0];
idx[2] = idx[0];
idx[3] = idx[1];
}
/* Calculate bilinear blending weights, attenuated according to the
* directional panning factor.
*/
blend[0] = (1.0f-emu) * (1.0f-amu[0]) * dirfact;
blend[1] = (1.0f-emu) * ( amu[0]) * dirfact;
blend[2] = ( emu) * (1.0f-amu[1]) * dirfact;
blend[3] = ( emu) * ( amu[1]) * dirfact;
/* Calculate the blended HRIR delays. */
delays[0] = fastf2i(
Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] +
Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]
);
delays[1] = fastf2i(
Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] +
Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3]
);
/* Calculate the sample offsets for the HRIR indices. */
idx[0] *= Hrtf->irSize;
idx[1] *= Hrtf->irSize;
idx[2] *= Hrtf->irSize;
idx[3] *= Hrtf->irSize;
ASSUME(Hrtf->irSize >= MIN_IR_SIZE && (Hrtf->irSize%MOD_IR_SIZE) == 0);
coeffs = ASSUME_ALIGNED(coeffs, 16);
/* Calculate the blended HRIR coefficients. */
coeffs[0][0] = PassthruCoeff * (1.0f-dirfact);
coeffs[0][1] = PassthruCoeff * (1.0f-dirfact);
for(i = 1;i < Hrtf->irSize;i++)
{
coeffs[i][0] = 0.0f;
coeffs[i][1] = 0.0f;
}
for(c = 0;c < 4;c++)
{
const ALfloat (*restrict srccoeffs)[2] = ASSUME_ALIGNED(Hrtf->coeffs+idx[c], 16);
for(i = 0;i < Hrtf->irSize;i++)
{
coeffs[i][0] += srccoeffs[i][0] * blend[c];
coeffs[i][1] += srccoeffs[i][1] * blend[c];
}
}
}
void BuildBFormatHrtf(const struct Hrtf *Hrtf, DirectHrtfState *state, ALsizei NumChannels, const struct AngularPoint *AmbiPoints, const ALfloat (*restrict AmbiMatrix)[MAX_AMBI_COEFFS], ALsizei AmbiCount, const ALfloat *restrict AmbiOrderHFGain)
{
/* Set this to 2 for dual-band HRTF processing. May require a higher quality
* band-splitter, or better calculation of the new IR length to deal with the
* tail generated by the filter.
*/
#define NUM_BANDS 2
BandSplitter splitter;
ALdouble (*tmpres)[HRIR_LENGTH][2];
ALsizei *restrict idx;
ALsizei min_delay = HRTF_HISTORY_LENGTH;
ALsizei max_delay = 0;
ALfloat temps[3][HRIR_LENGTH];
ALsizei max_length;
ALsizei i, c, b;
idx = al_calloc(DEF_ALIGN, AmbiCount*sizeof(*idx));
for(c = 0;c < AmbiCount;c++)
{
ALuint evidx, azidx;
ALuint evoffset;
ALuint azcount;
/* Calculate elevation index. */
evidx = (ALsizei)((F_PI_2+AmbiPoints[c].Elev) * (Hrtf->evCount-1) / F_PI + 0.5f);
evidx = clampi(evidx, 0, Hrtf->evCount-1);
azcount = Hrtf->azCount[evidx];
evoffset = Hrtf->evOffset[evidx];
/* Calculate azimuth index for this elevation. */
azidx = (ALsizei)((F_TAU+AmbiPoints[c].Azim) * azcount / F_TAU + 0.5f) % azcount;
/* Calculate indices for left and right channels. */
idx[c] = evoffset + azidx;
min_delay = mini(min_delay, mini(Hrtf->delays[idx[c]][0], Hrtf->delays[idx[c]][1]));
max_delay = maxi(max_delay, maxi(Hrtf->delays[idx[c]][0], Hrtf->delays[idx[c]][1]));
}
tmpres = al_calloc(16, NumChannels * sizeof(*tmpres));
memset(temps, 0, sizeof(temps));
bandsplit_init(&splitter, 400.0f / (ALfloat)Hrtf->sampleRate);
for(c = 0;c < AmbiCount;c++)
{
const ALfloat (*fir)[2] = &Hrtf->coeffs[idx[c] * Hrtf->irSize];
ALsizei ldelay = Hrtf->delays[idx[c]][0] - min_delay;
ALsizei rdelay = Hrtf->delays[idx[c]][1] - min_delay;
if(NUM_BANDS == 1)
{
for(i = 0;i < NumChannels;++i)
{
ALdouble mult = (ALdouble)AmbiOrderHFGain[(ALsizei)sqrt(i)] * AmbiMatrix[c][i];
ALsizei lidx = ldelay, ridx = rdelay;
ALsizei j = 0;
while(lidx < HRIR_LENGTH && ridx < HRIR_LENGTH && j < Hrtf->irSize)
{
tmpres[i][lidx++][0] += fir[j][0] * mult;
tmpres[i][ridx++][1] += fir[j][1] * mult;
j++;
}
}
}
else
{
/* Band-split left HRIR into low and high frequency responses. */
bandsplit_clear(&splitter);
for(i = 0;i < Hrtf->irSize;i++)
temps[2][i] = fir[i][0];
bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH);
/* Apply left ear response with delay. */
for(i = 0;i < NumChannels;++i)
{
ALfloat hfgain = AmbiOrderHFGain[(ALsizei)sqrt(i)];
for(b = 0;b < NUM_BANDS;b++)
{
ALdouble mult = AmbiMatrix[c][i] * (ALdouble)((b==0) ? hfgain : 1.0);
ALsizei lidx = ldelay;
ALsizei j = 0;
while(lidx < HRIR_LENGTH)
tmpres[i][lidx++][0] += temps[b][j++] * mult;
}
}
/* Band-split right HRIR into low and high frequency responses. */
bandsplit_clear(&splitter);
for(i = 0;i < Hrtf->irSize;i++)
temps[2][i] = fir[i][1];
bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH);
/* Apply right ear response with delay. */
for(i = 0;i < NumChannels;++i)
{
ALfloat hfgain = AmbiOrderHFGain[(ALsizei)sqrt(i)];
for(b = 0;b < NUM_BANDS;b++)
{
ALdouble mult = AmbiMatrix[c][i] * (ALdouble)((b==0) ? hfgain : 1.0);
ALsizei ridx = rdelay;
ALsizei j = 0;
while(ridx < HRIR_LENGTH)
tmpres[i][ridx++][1] += temps[b][j++] * mult;
}
}
}
}
for(i = 0;i < NumChannels;++i)
{
int idx;
for(idx = 0;idx < HRIR_LENGTH;idx++)
{
state->Chan[i].Coeffs[idx][0] = (ALfloat)tmpres[i][idx][0];
state->Chan[i].Coeffs[idx][1] = (ALfloat)tmpres[i][idx][1];
}
}
al_free(tmpres);
tmpres = NULL;
al_free(idx);
idx = NULL;
if(NUM_BANDS == 1)
max_length = mini(max_delay-min_delay + Hrtf->irSize, HRIR_LENGTH);
else
{
/* Increase the IR size by 2/3rds to account for the tail generated by
* the band-split filter.
*/
const ALsizei irsize = mini(Hrtf->irSize*5/3, HRIR_LENGTH);
max_length = mini(max_delay-min_delay + irsize, HRIR_LENGTH);
}
/* Round up to the next IR size multiple. */
max_length += MOD_IR_SIZE-1;
max_length -= max_length%MOD_IR_SIZE;
TRACE("Skipped delay: %d, max delay: %d, new FIR length: %d\n",
min_delay, max_delay-min_delay, max_length);
state->IrSize = max_length;
#undef NUM_BANDS
}
static struct Hrtf *CreateHrtfStore(ALuint rate, ALsizei irSize,
ALfloat distance, ALsizei evCount, ALsizei irCount, const ALubyte *azCount,
const ALushort *evOffset, const ALfloat (*coeffs)[2], const ALubyte (*delays)[2],
const char *filename)
{
struct Hrtf *Hrtf;
size_t total;
total = sizeof(struct Hrtf);
total += sizeof(Hrtf->azCount[0])*evCount;
total = RoundUp(total, sizeof(ALushort)); /* Align for ushort fields */
total += sizeof(Hrtf->evOffset[0])*evCount;
total = RoundUp(total, 16); /* Align for coefficients using SIMD */
total += sizeof(Hrtf->coeffs[0])*irSize*irCount;
total += sizeof(Hrtf->delays[0])*irCount;
Hrtf = al_calloc(16, total);
if(Hrtf == NULL)
ERR("Out of memory allocating storage for %s.\n", filename);
else
{
uintptr_t offset = sizeof(struct Hrtf);
char *base = (char*)Hrtf;
ALushort *_evOffset;
ALubyte *_azCount;
ALubyte (*_delays)[2];
ALfloat (*_coeffs)[2];
ALsizei i;
InitRef(&Hrtf->ref, 0);
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->distance = distance;
Hrtf->evCount = evCount;
/* Set up pointers to storage following the main HRTF struct. */
_azCount = (ALubyte*)(base + offset);
offset += sizeof(_azCount[0])*evCount;
offset = RoundUp(offset, sizeof(ALushort)); /* Align for ushort fields */
_evOffset = (ALushort*)(base + offset);
offset += sizeof(_evOffset[0])*evCount;
offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */
_coeffs = (ALfloat(*)[2])(base + offset);
offset += sizeof(_coeffs[0])*irSize*irCount;
_delays = (ALubyte(*)[2])(base + offset);
offset += sizeof(_delays[0])*irCount;
assert(offset == total);
/* Copy input data to storage. */
for(i = 0;i < evCount;i++) _azCount[i] = azCount[i];
for(i = 0;i < evCount;i++) _evOffset[i] = evOffset[i];
for(i = 0;i < irSize*irCount;i++)
{
_coeffs[i][0] = coeffs[i][0];
_coeffs[i][1] = coeffs[i][1];
}
for(i = 0;i < irCount;i++)
{
_delays[i][0] = delays[i][0];
_delays[i][1] = delays[i][1];
}
/* Finally, assign the storage pointers. */
Hrtf->azCount = _azCount;
Hrtf->evOffset = _evOffset;
Hrtf->coeffs = _coeffs;
Hrtf->delays = _delays;
}
return Hrtf;
}
static ALubyte GetLE_ALubyte(const ALubyte **data, size_t *len)
{
ALubyte ret = (*data)[0];
*data += 1; *len -= 1;
return ret;
}
static ALshort GetLE_ALshort(const ALubyte **data, size_t *len)
{
ALshort ret = (*data)[0] | ((*data)[1]<<8);
*data += 2; *len -= 2;
return ret;
}
static ALushort GetLE_ALushort(const ALubyte **data, size_t *len)
{
ALushort ret = (*data)[0] | ((*data)[1]<<8);
*data += 2; *len -= 2;
return ret;
}
static ALint GetLE_ALint24(const ALubyte **data, size_t *len)
{
ALint ret = (*data)[0] | ((*data)[1]<<8) | ((*data)[2]<<16);
*data += 3; *len -= 3;
return (ret^0x800000) - 0x800000;
}
static ALuint GetLE_ALuint(const ALubyte **data, size_t *len)
{
ALuint ret = (*data)[0] | ((*data)[1]<<8) | ((*data)[2]<<16) | ((*data)[3]<<24);
*data += 4; *len -= 4;
return ret;
}
static const ALubyte *Get_ALubytePtr(const ALubyte **data, size_t *len, size_t size)
{
const ALubyte *ret = *data;
*data += size; *len -= size;
return ret;
}
static struct Hrtf *LoadHrtf00(const ALubyte *data, size_t datalen, const char *filename)
{
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0;
ALushort irCount = 0;
ALushort irSize = 0;
ALubyte evCount = 0;
ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALfloat (*coeffs)[2] = NULL;
ALubyte (*delays)[2] = NULL;
ALsizei i, j;
if(datalen < 9)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n", filename, 9, datalen);
return NULL;
}
rate = GetLE_ALuint(&data, &datalen);
irCount = GetLE_ALushort(&data, &datalen);
irSize = GetLE_ALushort(&data, &datalen);
evCount = GetLE_ALubyte(&data, &datalen);
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
if(datalen < evCount*2u)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n", filename, evCount*2, datalen);
return NULL;
}
azCount = malloc(sizeof(azCount[0])*evCount);
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
evOffset[0] = GetLE_ALushort(&data, &datalen);
for(i = 1;i < evCount;i++)
{
evOffset[i] = GetLE_ALushort(&data, &datalen);
if(evOffset[i] <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
i, evOffset[i], evOffset[i-1]);
failed = AL_TRUE;
}
azCount[i-1] = evOffset[i] - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(irCount <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n",
i-1, evOffset[i-1], irCount);
failed = AL_TRUE;
}
azCount[i-1] = irCount - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(!failed)
{
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
delays = malloc(sizeof(delays[0])*irCount);
if(coeffs == NULL || delays == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
size_t reqsize = 2*irSize*irCount + irCount;
if(datalen < reqsize)
{
ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT")\n",
filename, reqsize, datalen);
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount;i++)
{
for(j = 0;j < irSize;j++)
coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f;
}
for(i = 0;i < irCount;i++)
{
delays[i][0] = GetLE_ALubyte(&data, &datalen);
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
failed = AL_TRUE;
}
}
}
if(!failed)
{
/* Mirror the left ear responses to the right ear. */
for(i = 0;i < evCount;i++)
{
ALushort evoffset = evOffset[i];
ALubyte azcount = azCount[i];
for(j = 0;j < azcount;j++)
{
ALsizei lidx = evoffset + j;
ALsizei ridx = evoffset + ((azcount-j) % azcount);
ALsizei k;
for(k = 0;k < irSize;k++)
coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
delays[ridx][1] = delays[lidx][0];
}
}
Hrtf = CreateHrtfStore(rate, irSize, 0.0f, evCount, irCount, azCount,
evOffset, coeffs, delays, filename);
}
free(azCount);
free(evOffset);
free(coeffs);
free(delays);
return Hrtf;
}
static struct Hrtf *LoadHrtf01(const ALubyte *data, size_t datalen, const char *filename)
{
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0;
ALushort irCount = 0;
ALushort irSize = 0;
ALubyte evCount = 0;
const ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALfloat (*coeffs)[2] = NULL;
ALubyte (*delays)[2] = NULL;
ALsizei i, j;
if(datalen < 6)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, 6, datalen);
return NULL;
}
rate = GetLE_ALuint(&data, &datalen);
irSize = GetLE_ALubyte(&data, &datalen);
evCount = GetLE_ALubyte(&data, &datalen);
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
if(datalen < evCount)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, evCount, datalen);
return NULL;
}
azCount = Get_ALubytePtr(&data, &datalen, evCount);
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
for(i = 0;i < evCount;i++)
{
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
}
if(!failed)
{
evOffset[0] = 0;
irCount = azCount[0];
for(i = 1;i < evCount;i++)
{
evOffset[i] = evOffset[i-1] + azCount[i-1];
irCount += azCount[i];
}
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
delays = malloc(sizeof(delays[0])*irCount);
if(coeffs == NULL || delays == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
size_t reqsize = 2*irSize*irCount + irCount;
if(datalen < reqsize)
{
ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n",
filename, reqsize, datalen);
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount;i++)
{
for(j = 0;j < irSize;j++)
coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f;
}
for(i = 0;i < irCount;i++)
{
delays[i][0] = GetLE_ALubyte(&data, &datalen);
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
failed = AL_TRUE;
}
}
}
if(!failed)
{
/* Mirror the left ear responses to the right ear. */
for(i = 0;i < evCount;i++)
{
ALushort evoffset = evOffset[i];
ALubyte azcount = azCount[i];
for(j = 0;j < azcount;j++)
{
ALsizei lidx = evoffset + j;
ALsizei ridx = evoffset + ((azcount-j) % azcount);
ALsizei k;
for(k = 0;k < irSize;k++)
coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
delays[ridx][1] = delays[lidx][0];
}
}
Hrtf = CreateHrtfStore(rate, irSize, 0.0f, evCount, irCount, azCount,
evOffset, coeffs, delays, filename);
}
free(evOffset);
free(coeffs);
free(delays);
return Hrtf;
}
#define SAMPLETYPE_S16 0
#define SAMPLETYPE_S24 1
#define CHANTYPE_LEFTONLY 0
#define CHANTYPE_LEFTRIGHT 1
static struct Hrtf *LoadHrtf02(const ALubyte *data, size_t datalen, const char *filename)
{
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0;
ALubyte sampleType;
ALubyte channelType;
ALushort irCount = 0;
ALushort irSize = 0;
ALubyte fdCount = 0;
ALushort distance = 0;
ALubyte evCount = 0;
const ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALfloat (*coeffs)[2] = NULL;
ALubyte (*delays)[2] = NULL;
ALsizei i, j;
if(datalen < 8)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, 8, datalen);
return NULL;
}
rate = GetLE_ALuint(&data, &datalen);
sampleType = GetLE_ALubyte(&data, &datalen);
channelType = GetLE_ALubyte(&data, &datalen);
irSize = GetLE_ALubyte(&data, &datalen);
fdCount = GetLE_ALubyte(&data, &datalen);
if(sampleType > SAMPLETYPE_S24)
{
ERR("Unsupported sample type: %d\n", sampleType);
failed = AL_TRUE;
}
if(channelType > CHANTYPE_LEFTRIGHT)
{
ERR("Unsupported channel type: %d\n", channelType);
failed = AL_TRUE;
}
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(fdCount != 1)
{
ERR("Multiple field-depths not supported: fdCount=%d (%d to %d)\n",
evCount, MIN_FD_COUNT, MAX_FD_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
for(i = 0;i < fdCount;i++)
{
if(datalen < 3)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, 3, datalen);
return NULL;
}
distance = GetLE_ALushort(&data, &datalen);
if(distance < MIN_FD_DISTANCE || distance > MAX_FD_DISTANCE)
{
ERR("Unsupported field distance: distance=%d (%dmm to %dmm)\n",
distance, MIN_FD_DISTANCE, MAX_FD_DISTANCE);
failed = AL_TRUE;
}
evCount = GetLE_ALubyte(&data, &datalen);
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
if(datalen < evCount)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, evCount, datalen);
return NULL;
}
azCount = Get_ALubytePtr(&data, &datalen, evCount);
for(j = 0;j < evCount;j++)
{
if(azCount[j] < MIN_AZ_COUNT || azCount[j] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
j, azCount[j], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
}
if(failed)
return NULL;
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
evOffset[0] = 0;
irCount = azCount[0];
for(i = 1;i < evCount;i++)
{
evOffset[i] = evOffset[i-1] + azCount[i-1];
irCount += azCount[i];
}
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
delays = malloc(sizeof(delays[0])*irCount);
if(coeffs == NULL || delays == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
size_t reqsize = 2*irSize*irCount + irCount;
if(datalen < reqsize)
{
ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n",
filename, reqsize, datalen);
failed = AL_TRUE;
}
}
if(!failed)
{
if(channelType == CHANTYPE_LEFTONLY)
{
if(sampleType == SAMPLETYPE_S16)
for(i = 0;i < irCount;i++)
{
for(j = 0;j < irSize;j++)
coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f;
}
else if(sampleType == SAMPLETYPE_S24)
for(i = 0;i < irCount;i++)
{
for(j = 0;j < irSize;j++)
coeffs[i*irSize + j][0] = GetLE_ALint24(&data, &datalen) / 8388608.0f;
}
for(i = 0;i < irCount;i++)
{
delays[i][0] = GetLE_ALubyte(&data, &datalen);
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
failed = AL_TRUE;
}
}
}
else if(channelType == CHANTYPE_LEFTRIGHT)
{
if(sampleType == SAMPLETYPE_S16)
for(i = 0;i < irCount;i++)
{
for(j = 0;j < irSize;j++)
{
coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f;
coeffs[i*irSize + j][1] = GetLE_ALshort(&data, &datalen) / 32768.0f;
}
}
else if(sampleType == SAMPLETYPE_S24)
for(i = 0;i < irCount;i++)
{
for(j = 0;j < irSize;j++)
{
coeffs[i*irSize + j][0] = GetLE_ALint24(&data, &datalen) / 8388608.0f;
coeffs[i*irSize + j][1] = GetLE_ALint24(&data, &datalen) / 8388608.0f;
}
}
for(i = 0;i < irCount;i++)
{
delays[i][0] = GetLE_ALubyte(&data, &datalen);
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
failed = AL_TRUE;
}
delays[i][1] = GetLE_ALubyte(&data, &datalen);
if(delays[i][1] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%d][1]: %d (%d)\n", i, delays[i][1], MAX_HRIR_DELAY);
failed = AL_TRUE;
}
}
}
}
if(!failed)
{
if(channelType == CHANTYPE_LEFTONLY)
{
/* Mirror the left ear responses to the right ear. */
for(i = 0;i < evCount;i++)
{
ALushort evoffset = evOffset[i];
ALubyte azcount = azCount[i];
for(j = 0;j < azcount;j++)
{
ALsizei lidx = evoffset + j;
ALsizei ridx = evoffset + ((azcount-j) % azcount);
ALsizei k;
for(k = 0;k < irSize;k++)
coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
delays[ridx][1] = delays[lidx][0];
}
}
}
Hrtf = CreateHrtfStore(rate, irSize,
(ALfloat)distance / 1000.0f, evCount, irCount, azCount, evOffset,
coeffs, delays, filename
);
}
free(evOffset);
free(coeffs);
free(delays);
return Hrtf;
}
static void AddFileEntry(vector_EnumeratedHrtf *list, const_al_string filename)
{
EnumeratedHrtf entry = { AL_STRING_INIT_STATIC(), NULL };
struct HrtfEntry *loaded_entry;
const EnumeratedHrtf *iter;
const char *name;
const char *ext;
int i;
/* Check if this file has already been loaded globally. */
loaded_entry = LoadedHrtfs;
while(loaded_entry)
{
if(alstr_cmp_cstr(filename, loaded_entry->filename) == 0)
{
/* Check if this entry has already been added to the list. */
#define MATCH_ENTRY(i) (loaded_entry == (i)->hrtf)
VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_ENTRY);
#undef MATCH_ENTRY
if(iter != VECTOR_END(*list))
{
TRACE("Skipping duplicate file entry %s\n", alstr_get_cstr(filename));
return;
}
break;
}
loaded_entry = loaded_entry->next;
}
if(!loaded_entry)
{
TRACE("Got new file \"%s\"\n", alstr_get_cstr(filename));
loaded_entry = al_calloc(DEF_ALIGN,
FAM_SIZE(struct HrtfEntry, filename, alstr_length(filename)+1)
);
loaded_entry->next = LoadedHrtfs;
loaded_entry->handle = NULL;
strcpy(loaded_entry->filename, alstr_get_cstr(filename));
LoadedHrtfs = loaded_entry;
}
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
name = strrchr(alstr_get_cstr(filename), '/');
if(!name) name = strrchr(alstr_get_cstr(filename), '\\');
if(!name) name = alstr_get_cstr(filename);
else ++name;
ext = strrchr(name, '.');
i = 0;
do {
if(!ext)
alstr_copy_cstr(&entry.name, name);
else
alstr_copy_range(&entry.name, name, ext);
if(i != 0)
{
char str[64];
snprintf(str, sizeof(str), " #%d", i+1);
alstr_append_cstr(&entry.name, str);
}
++i;
#define MATCH_NAME(i) (alstr_cmp(entry.name, (i)->name) == 0)
VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_NAME);
#undef MATCH_NAME
} while(iter != VECTOR_END(*list));
entry.hrtf = loaded_entry;
TRACE("Adding entry \"%s\" from file \"%s\"\n", alstr_get_cstr(entry.name),
alstr_get_cstr(filename));
VECTOR_PUSH_BACK(*list, entry);
}
/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
* for input instead of opening the given filename.
*/
static void AddBuiltInEntry(vector_EnumeratedHrtf *list, const_al_string filename, ALuint residx)
{
EnumeratedHrtf entry = { AL_STRING_INIT_STATIC(), NULL };
struct HrtfEntry *loaded_entry;
struct Hrtf *hrtf = NULL;
const EnumeratedHrtf *iter;
const char *name;
const char *ext;
int i;
loaded_entry = LoadedHrtfs;
while(loaded_entry)
{
if(alstr_cmp_cstr(filename, loaded_entry->filename) == 0)
{
#define MATCH_ENTRY(i) (loaded_entry == (i)->hrtf)
VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_ENTRY);
#undef MATCH_ENTRY
if(iter != VECTOR_END(*list))
{
TRACE("Skipping duplicate file entry %s\n", alstr_get_cstr(filename));
return;
}
break;
}
loaded_entry = loaded_entry->next;
}
if(!loaded_entry)
{
size_t namelen = alstr_length(filename)+32;
TRACE("Got new file \"%s\"\n", alstr_get_cstr(filename));
loaded_entry = al_calloc(DEF_ALIGN,
FAM_SIZE(struct HrtfEntry, filename, namelen)
);
loaded_entry->next = LoadedHrtfs;
loaded_entry->handle = hrtf;
snprintf(loaded_entry->filename, namelen, "!%u_%s",
residx, alstr_get_cstr(filename));
LoadedHrtfs = loaded_entry;
}
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
name = strrchr(alstr_get_cstr(filename), '/');
if(!name) name = strrchr(alstr_get_cstr(filename), '\\');
if(!name) name = alstr_get_cstr(filename);
else ++name;
ext = strrchr(name, '.');
i = 0;
do {
if(!ext)
alstr_copy_cstr(&entry.name, name);
else
alstr_copy_range(&entry.name, name, ext);
if(i != 0)
{
char str[64];
snprintf(str, sizeof(str), " #%d", i+1);
alstr_append_cstr(&entry.name, str);
}
++i;
#define MATCH_NAME(i) (alstr_cmp(entry.name, (i)->name) == 0)
VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_NAME);
#undef MATCH_NAME
} while(iter != VECTOR_END(*list));
entry.hrtf = loaded_entry;
TRACE("Adding built-in entry \"%s\"\n", alstr_get_cstr(entry.name));
VECTOR_PUSH_BACK(*list, entry);
}
#define IDR_DEFAULT_44100_MHR 1
#define IDR_DEFAULT_48000_MHR 2
#ifndef ALSOFT_EMBED_HRTF_DATA
static const ALubyte *GetResource(int UNUSED(name), size_t *size)
{
*size = 0;
return NULL;
}
#else
#include "default-44100.mhr.h"
#include "default-48000.mhr.h"
static const ALubyte *GetResource(int name, size_t *size)
{
if(name == IDR_DEFAULT_44100_MHR)
{
*size = sizeof(hrtf_default_44100);
return hrtf_default_44100;
}
if(name == IDR_DEFAULT_48000_MHR)
{
*size = sizeof(hrtf_default_48000);
return hrtf_default_48000;
}
*size = 0;
return NULL;
}
#endif
vector_EnumeratedHrtf EnumerateHrtf(const_al_string devname)
{
vector_EnumeratedHrtf list = VECTOR_INIT_STATIC();
const char *defaulthrtf = "";
const char *pathlist = "";
bool usedefaults = true;
if(ConfigValueStr(alstr_get_cstr(devname), NULL, "hrtf-paths", &pathlist))
{
al_string pname = AL_STRING_INIT_STATIC();
while(pathlist && *pathlist)
{
const char *next, *end;
while(isspace(*pathlist) || *pathlist == ',')
pathlist++;
if(*pathlist == '\0')
continue;
next = strchr(pathlist, ',');
if(next)
end = next++;
else
{
end = pathlist + strlen(pathlist);
usedefaults = false;
}
while(end != pathlist && isspace(*(end-1)))
--end;
if(end != pathlist)
{
vector_al_string flist;
size_t i;
alstr_copy_range(&pname, pathlist, end);
flist = SearchDataFiles(".mhr", alstr_get_cstr(pname));
for(i = 0;i < VECTOR_SIZE(flist);i++)
AddFileEntry(&list, VECTOR_ELEM(flist, i));
VECTOR_FOR_EACH(al_string, flist, alstr_reset);
VECTOR_DEINIT(flist);
}
pathlist = next;
}
alstr_reset(&pname);
}
else if(ConfigValueExists(alstr_get_cstr(devname), NULL, "hrtf_tables"))
ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n");
if(usedefaults)
{
al_string ename = AL_STRING_INIT_STATIC();
vector_al_string flist;
const ALubyte *rdata;
size_t rsize, i;
flist = SearchDataFiles(".mhr", "openal/hrtf");
for(i = 0;i < VECTOR_SIZE(flist);i++)
AddFileEntry(&list, VECTOR_ELEM(flist, i));
VECTOR_FOR_EACH(al_string, flist, alstr_reset);
VECTOR_DEINIT(flist);
rdata = GetResource(IDR_DEFAULT_44100_MHR, &rsize);
if(rdata != NULL && rsize > 0)
{
alstr_copy_cstr(&ename, "Built-In 44100hz");
AddBuiltInEntry(&list, ename, IDR_DEFAULT_44100_MHR);
}
rdata = GetResource(IDR_DEFAULT_48000_MHR, &rsize);
if(rdata != NULL && rsize > 0)
{
alstr_copy_cstr(&ename, "Built-In 48000hz");
AddBuiltInEntry(&list, ename, IDR_DEFAULT_48000_MHR);
}
alstr_reset(&ename);
}
if(VECTOR_SIZE(list) > 1 && ConfigValueStr(alstr_get_cstr(devname), NULL, "default-hrtf", &defaulthrtf))
{
const EnumeratedHrtf *iter;
/* Find the preferred HRTF and move it to the front of the list. */
#define FIND_ENTRY(i) (alstr_cmp_cstr((i)->name, defaulthrtf) == 0)
VECTOR_FIND_IF(iter, const EnumeratedHrtf, list, FIND_ENTRY);
#undef FIND_ENTRY
if(iter == VECTOR_END(list))
WARN("Failed to find default HRTF \"%s\"\n", defaulthrtf);
else if(iter != VECTOR_BEGIN(list))
{
EnumeratedHrtf entry = *iter;
memmove(&VECTOR_ELEM(list,1), &VECTOR_ELEM(list,0),
(iter-VECTOR_BEGIN(list))*sizeof(EnumeratedHrtf));
VECTOR_ELEM(list,0) = entry;
}
}
return list;
}
void FreeHrtfList(vector_EnumeratedHrtf *list)
{
#define CLEAR_ENTRY(i) alstr_reset(&(i)->name)
VECTOR_FOR_EACH(EnumeratedHrtf, *list, CLEAR_ENTRY);
VECTOR_DEINIT(*list);
#undef CLEAR_ENTRY
}
struct Hrtf *GetLoadedHrtf(struct HrtfEntry *entry)
{
struct Hrtf *hrtf = NULL;
struct FileMapping fmap;
const ALubyte *rdata;
const char *name;
ALuint residx;
size_t rsize;
char ch;
while(ATOMIC_FLAG_TEST_AND_SET(&LoadedHrtfLock, almemory_order_seq_cst))
althrd_yield();
if(entry->handle)
{
hrtf = entry->handle;
Hrtf_IncRef(hrtf);
goto done;
}
fmap.ptr = NULL;
fmap.len = 0;
if(sscanf(entry->filename, "!%u%c", &residx, &ch) == 2 && ch == '_')
{
name = strchr(entry->filename, ch)+1;
TRACE("Loading %s...\n", name);
rdata = GetResource(residx, &rsize);
if(rdata == NULL || rsize == 0)
{
ERR("Could not get resource %u, %s\n", residx, name);
goto done;
}
}
else
{
name = entry->filename;
TRACE("Loading %s...\n", entry->filename);
fmap = MapFileToMem(entry->filename);
if(fmap.ptr == NULL)
{
ERR("Could not open %s\n", entry->filename);
goto done;
}
rdata = fmap.ptr;
rsize = fmap.len;
}
if(rsize < sizeof(magicMarker02))
ERR("%s data is too short ("SZFMT" bytes)\n", name, rsize);
else if(memcmp(rdata, magicMarker02, sizeof(magicMarker02)) == 0)
{
TRACE("Detected data set format v2\n");
hrtf = LoadHrtf02(rdata+sizeof(magicMarker02),
rsize-sizeof(magicMarker02), name
);
}
else if(memcmp(rdata, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
hrtf = LoadHrtf01(rdata+sizeof(magicMarker01),
rsize-sizeof(magicMarker01), name
);
}
else if(memcmp(rdata, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
hrtf = LoadHrtf00(rdata+sizeof(magicMarker00),
rsize-sizeof(magicMarker00), name
);
}
else
ERR("Invalid header in %s: \"%.8s\"\n", name, (const char*)rdata);
if(fmap.ptr)
UnmapFileMem(&fmap);
if(!hrtf)
{
ERR("Failed to load %s\n", name);
goto done;
}
entry->handle = hrtf;
Hrtf_IncRef(hrtf);
TRACE("Loaded HRTF support for format: %s %uhz\n",
DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
done:
ATOMIC_FLAG_CLEAR(&LoadedHrtfLock, almemory_order_seq_cst);
return hrtf;
}
void Hrtf_IncRef(struct Hrtf *hrtf)
{
uint ref = IncrementRef(&hrtf->ref);
TRACEREF("%p increasing refcount to %u\n", hrtf, ref);
}
void Hrtf_DecRef(struct Hrtf *hrtf)
{
struct HrtfEntry *Hrtf;
uint ref = DecrementRef(&hrtf->ref);
TRACEREF("%p decreasing refcount to %u\n", hrtf, ref);
if(ref == 0)
{
while(ATOMIC_FLAG_TEST_AND_SET(&LoadedHrtfLock, almemory_order_seq_cst))
althrd_yield();
Hrtf = LoadedHrtfs;
while(Hrtf != NULL)
{
/* Need to double-check that it's still unused, as another device
* could've reacquired this HRTF after its reference went to 0 and
* before the lock was taken.
*/
if(hrtf == Hrtf->handle && ReadRef(&hrtf->ref) == 0)
{
al_free(Hrtf->handle);
Hrtf->handle = NULL;
TRACE("Unloaded unused HRTF %s\n", Hrtf->filename);
}
Hrtf = Hrtf->next;
}
ATOMIC_FLAG_CLEAR(&LoadedHrtfLock, almemory_order_seq_cst);
}
}
void FreeHrtfs(void)
{
struct HrtfEntry *Hrtf = LoadedHrtfs;
LoadedHrtfs = NULL;
while(Hrtf != NULL)
{
struct HrtfEntry *next = Hrtf->next;
al_free(Hrtf->handle);
al_free(Hrtf);
Hrtf = next;
}
}