AuroraOpenALSoft/Alc/alcEqualizer.c
2013-05-22 15:11:39 -07:00

500 lines
18 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2013 by Mike Gorchak
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alFilter.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
typedef struct ALequalizerStateFactory {
DERIVE_FROM_TYPE(ALeffectStateFactory);
} ALequalizerStateFactory;
static ALequalizerStateFactory EqualizerFactory;
/* The document "Effects Extension Guide.pdf" says that low and high *
* frequencies are cutoff frequencies. This is not fully correct, they *
* are corner frequencies for low and high shelf filters. If they were *
* just cutoff frequencies, there would be no need in cutoff frequency *
* gains, which are present. Documentation for "Creative Proteus X2" *
* software describes 4-band equalizer functionality in a much better *
* way. This equalizer seems to be a predecessor of OpenAL 4-band *
* equalizer. With low and high shelf filters we are able to cutoff *
* frequencies below and/or above corner frequencies using attenuation *
* gains (below 1.0) and amplify all low and/or high frequencies using *
* gains above 1.0. *
* *
* Low-shelf Low Mid Band High Mid Band High-shelf *
* corner center center corner *
* frequency frequency frequency frequency *
* 50Hz..800Hz 200Hz..3000Hz 1000Hz..8000Hz 4000Hz..16000Hz *
* *
* | | | | *
* | | | | *
* B -----+ /--+--\ /--+--\ +----- *
* O |\ | | | | | | /| *
* O | \ - | - - | - / | *
* S + | \ | | | | | | / | *
* T | | | | | | | | | | *
* ---------+---------------+------------------+---------------+-------- *
* C | | | | | | | | | | *
* U - | / | | | | | | \ | *
* T | / - | - - | - \ | *
* O |/ | | | | | | \| *
* F -----+ \--+--/ \--+--/ +----- *
* F | | | | *
* | | | | *
* *
* Gains vary from 0.126 up to 7.943, which means from -18dB attenuation *
* up to +18dB amplification. Band width varies from 0.01 up to 1.0 in *
* octaves for two mid bands. *
* *
* Implementation is based on the "Cookbook formulae for audio EQ biquad *
* filter coefficients" by Robert Bristow-Johnson *
* http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt */
typedef enum ALEQFilterType {
LOW_SHELF,
HIGH_SHELF,
PEAKING
} ALEQFilterType;
typedef struct ALEQFilter {
ALEQFilterType type;
ALfloat x[2]; /* History of two last input samples */
ALfloat y[2]; /* History of two last output samples */
ALfloat a[3]; /* Transfer function coefficients "a" */
ALfloat b[3]; /* Transfer function coefficients "b" */
} ALEQFilter;
typedef struct ALequalizerState {
DERIVE_FROM_TYPE(ALeffectState);
/* Effect gains for each channel */
ALfloat Gain[MaxChannels];
/* Effect parameters */
ALEQFilter bandfilter[4];
} ALequalizerState;
static ALvoid ALequalizerState_Destruct(ALequalizerState *state)
{
(void)state;
}
static ALboolean ALequalizerState_DeviceUpdate(ALequalizerState *state, ALCdevice *device)
{
return AL_TRUE;
(void)state;
(void)device;
}
static ALvoid ALequalizerState_Update(ALequalizerState *state, ALCdevice *device, const ALeffectslot *slot)
{
ALfloat frequency = (ALfloat)device->Frequency;
ALfloat gain = sqrtf(1.0f / device->NumChan) * slot->Gain;
ALuint it;
for(it = 0;it < MaxChannels;it++)
state->Gain[it] = 0.0f;
for(it = 0; it < device->NumChan; it++)
{
enum Channel chan = device->Speaker2Chan[it];
state->Gain[chan] = gain;
}
/* Calculate coefficients for the each type of filter */
for(it = 0; it < 4; it++)
{
ALfloat gain;
ALfloat filter_frequency;
ALfloat bandwidth = 0.0f;
ALfloat w0;
ALfloat alpha = 0.0f;
/* convert linear gains to filter gains */
switch (it)
{
case 0: /* Low Shelf */
gain = powf(10.0f, (20.0f * log10f(slot->effect.Equalizer.LowGain)) / 40.0f);
filter_frequency = slot->effect.Equalizer.LowCutoff;
break;
case 1: /* Peaking */
gain = powf(10.0f, (20.0f * log10f(slot->effect.Equalizer.Mid1Gain)) / 40.0f);
filter_frequency = slot->effect.Equalizer.Mid1Center;
bandwidth = slot->effect.Equalizer.Mid1Width;
break;
case 2: /* Peaking */
gain = powf(10.0f, (20.0f * log10f(slot->effect.Equalizer.Mid2Gain)) / 40.0f);
filter_frequency = slot->effect.Equalizer.Mid2Center;
bandwidth = slot->effect.Equalizer.Mid2Width;
break;
case 3: /* High Shelf */
gain = powf(10.0f, (20.0f * log10f(slot->effect.Equalizer.HighGain)) / 40.0f);
filter_frequency = slot->effect.Equalizer.HighCutoff;
break;
}
w0 = 2.0f*F_PI * filter_frequency / frequency;
/* Calculate filter coefficients depending on filter type */
switch(state->bandfilter[it].type)
{
case LOW_SHELF:
alpha = sinf(w0) / 2.0f * sqrtf((gain + 1.0f / gain) *
(1.0f / 0.75f - 1.0f) + 2.0f);
state->bandfilter[it].b[0] = gain * ((gain + 1.0f) -
(gain - 1.0f) * cosf(w0) +
2.0f * sqrtf(gain) * alpha);
state->bandfilter[it].b[1] = 2.0f * gain * ((gain - 1.0f) -
(gain + 1.0f) * cosf(w0));
state->bandfilter[it].b[2] = gain * ((gain + 1.0f) -
(gain - 1.0f) * cosf(w0) -
2.0f * sqrtf(gain) * alpha);
state->bandfilter[it].a[0] = (gain + 1.0f) +
(gain - 1.0f) * cosf(w0) +
2.0f * sqrtf(gain) * alpha;
state->bandfilter[it].a[1] = -2.0f * ((gain - 1.0f) +
(gain + 1.0f) * cosf(w0));
state->bandfilter[it].a[2] = (gain + 1.0f) +
(gain - 1.0f) * cosf(w0) -
2.0f * sqrtf(gain) * alpha;
break;
case HIGH_SHELF:
alpha = sinf(w0) / 2.0f * sqrtf((gain + 1.0f / gain) *
(1.0f / 0.75f - 1.0f) + 2.0f);
state->bandfilter[it].b[0] = gain * ((gain + 1.0f) +
(gain - 1.0f) * cosf(w0) +
2.0f * sqrtf(gain) * alpha);
state->bandfilter[it].b[1] = -2.0f * gain * ((gain - 1.0f) +
(gain + 1.0f) *
cosf(w0));
state->bandfilter[it].b[2] = gain * ((gain + 1.0f) +
(gain - 1.0f) * cosf(w0) -
2.0f * sqrtf(gain) * alpha);
state->bandfilter[it].a[0] = (gain + 1.0f) -
(gain - 1.0f) * cosf(w0) +
2.0f * sqrtf(gain) * alpha;
state->bandfilter[it].a[1] = 2.0f * ((gain - 1.0f) -
(gain + 1.0f) * cosf(w0));
state->bandfilter[it].a[2] = (gain + 1.0f) -
(gain - 1.0f) * cosf(w0) -
2.0f * sqrtf(gain) * alpha;
break;
case PEAKING:
alpha = sinf(w0) * sinhf(logf(2.0f) / 2.0f * bandwidth * w0 / sinf(w0));
state->bandfilter[it].b[0] = 1.0f + alpha * gain;
state->bandfilter[it].b[1] = -2.0f * cosf(w0);
state->bandfilter[it].b[2] = 1.0f - alpha * gain;
state->bandfilter[it].a[0] = 1.0f + alpha / gain;
state->bandfilter[it].a[1] = -2.0f * cosf(w0);
state->bandfilter[it].a[2] = 1.0f - alpha / gain;
break;
}
}
}
static ALvoid ALequalizerState_Process(ALequalizerState *state, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE])
{
ALuint base;
ALuint it;
ALuint kt;
ALuint ft;
for(base = 0;base < SamplesToDo;)
{
ALfloat temps[64];
ALuint td = minu(SamplesToDo-base, 64);
for(it = 0;it < td;it++)
{
ALfloat smp = SamplesIn[base+it];
ALfloat tempsmp;
for(ft = 0;ft < 4;ft++)
{
ALEQFilter *filter = &state->bandfilter[ft];
tempsmp = filter->b[0] / filter->a[0] * smp +
filter->b[1] / filter->a[0] * filter->x[0] +
filter->b[2] / filter->a[0] * filter->x[1] -
filter->a[1] / filter->a[0] * filter->y[0] -
filter->a[2] / filter->a[0] * filter->y[1];
filter->x[1] = filter->x[0];
filter->x[0] = smp;
filter->y[1] = filter->y[0];
filter->y[0] = tempsmp;
smp = tempsmp;
}
temps[it] = smp;
}
for(kt = 0;kt < MaxChannels;kt++)
{
ALfloat gain = state->Gain[kt];
if(!(gain > 0.00001f))
continue;
for(it = 0;it < td;it++)
SamplesOut[kt][base+it] += gain * temps[it];
}
base += td;
}
}
static ALeffectStateFactory *ALequalizerState_getCreator(void)
{
return STATIC_CAST(ALeffectStateFactory, &EqualizerFactory);
}
DEFINE_ALEFFECTSTATE_VTABLE(ALequalizerState);
ALeffectState *ALequalizerStateFactory_create(void)
{
ALequalizerState *state;
int it;
state = malloc(sizeof(*state));
if(!state) return NULL;
SET_VTABLE2(ALequalizerState, ALeffectState, state);
state->bandfilter[0].type = LOW_SHELF;
state->bandfilter[1].type = PEAKING;
state->bandfilter[2].type = PEAKING;
state->bandfilter[3].type = HIGH_SHELF;
/* Initialize sample history only on filter creation to avoid */
/* sound clicks if filter settings were changed in runtime. */
for(it = 0; it < 4; it++)
{
state->bandfilter[it].x[0] = 0.0f;
state->bandfilter[it].x[1] = 0.0f;
state->bandfilter[it].y[0] = 0.0f;
state->bandfilter[it].y[1] = 0.0f;
}
return STATIC_CAST(ALeffectState, state);
}
static ALvoid ALequalizerStateFactory_destroy(ALeffectState *effect)
{
ALequalizerState *state = STATIC_UPCAST(ALequalizerState, ALeffectState, effect);
ALequalizerState_Destruct(state);
free(state);
}
DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALequalizerStateFactory);
static void init_equalizer_factory(void)
{
SET_VTABLE2(ALequalizerStateFactory, ALeffectStateFactory, &EqualizerFactory);
}
ALeffectStateFactory *ALequalizerStateFactory_getFactory(void)
{
static pthread_once_t once = PTHREAD_ONCE_INIT;
pthread_once(&once, init_equalizer_factory);
return STATIC_CAST(ALeffectStateFactory, &EqualizerFactory);
}
void equalizer_SetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
effect=effect;
val=val;
switch(param)
{
default:
alSetError(context, AL_INVALID_ENUM);
break;
}
}
void equalizer_SetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
equalizer_SetParami(effect, context, param, vals[0]);
}
void equalizer_SetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
switch(param)
{
case AL_EQUALIZER_LOW_GAIN:
if(val >= AL_EQUALIZER_MIN_LOW_GAIN && val <= AL_EQUALIZER_MAX_LOW_GAIN)
effect->Equalizer.LowGain = val;
else
alSetError(context, AL_INVALID_VALUE);
break;
case AL_EQUALIZER_LOW_CUTOFF:
if(val >= AL_EQUALIZER_MIN_LOW_CUTOFF && val <= AL_EQUALIZER_MAX_LOW_CUTOFF)
effect->Equalizer.LowCutoff = val;
else
alSetError(context, AL_INVALID_VALUE);
break;
case AL_EQUALIZER_MID1_GAIN:
if(val >= AL_EQUALIZER_MIN_MID1_GAIN && val <= AL_EQUALIZER_MAX_MID1_GAIN)
effect->Equalizer.Mid1Gain = val;
else
alSetError(context, AL_INVALID_VALUE);
break;
case AL_EQUALIZER_MID1_CENTER:
if(val >= AL_EQUALIZER_MIN_MID1_CENTER && val <= AL_EQUALIZER_MAX_MID1_CENTER)
effect->Equalizer.Mid1Center = val;
else
alSetError(context, AL_INVALID_VALUE);
break;
case AL_EQUALIZER_MID1_WIDTH:
if(val >= AL_EQUALIZER_MIN_MID1_WIDTH && val <= AL_EQUALIZER_MAX_MID1_WIDTH)
effect->Equalizer.Mid1Width = val;
else
alSetError(context, AL_INVALID_VALUE);
break;
case AL_EQUALIZER_MID2_GAIN:
if(val >= AL_EQUALIZER_MIN_MID2_GAIN && val <= AL_EQUALIZER_MAX_MID2_GAIN)
effect->Equalizer.Mid2Gain = val;
else
alSetError(context, AL_INVALID_VALUE);
break;
case AL_EQUALIZER_MID2_CENTER:
if(val >= AL_EQUALIZER_MIN_MID2_CENTER && val <= AL_EQUALIZER_MAX_MID2_CENTER)
effect->Equalizer.Mid2Center = val;
else
alSetError(context, AL_INVALID_VALUE);
break;
case AL_EQUALIZER_MID2_WIDTH:
if(val >= AL_EQUALIZER_MIN_MID2_WIDTH && val <= AL_EQUALIZER_MAX_MID2_WIDTH)
effect->Equalizer.Mid2Width = val;
else
alSetError(context, AL_INVALID_VALUE);
break;
case AL_EQUALIZER_HIGH_GAIN:
if(val >= AL_EQUALIZER_MIN_HIGH_GAIN && val <= AL_EQUALIZER_MAX_HIGH_GAIN)
effect->Equalizer.HighGain = val;
else
alSetError(context, AL_INVALID_VALUE);
break;
case AL_EQUALIZER_HIGH_CUTOFF:
if(val >= AL_EQUALIZER_MIN_HIGH_CUTOFF && val <= AL_EQUALIZER_MAX_HIGH_CUTOFF)
effect->Equalizer.HighCutoff = val;
else
alSetError(context, AL_INVALID_VALUE);
break;
default:
alSetError(context, AL_INVALID_ENUM);
break;
}
}
void equalizer_SetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
equalizer_SetParamf(effect, context, param, vals[0]);
}
void equalizer_GetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
effect=effect;
val=val;
switch(param)
{
default:
alSetError(context, AL_INVALID_ENUM);
break;
}
}
void equalizer_GetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
equalizer_GetParami(effect, context, param, vals);
}
void equalizer_GetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
switch(param)
{
case AL_EQUALIZER_LOW_GAIN:
*val = effect->Equalizer.LowGain;
break;
case AL_EQUALIZER_LOW_CUTOFF:
*val = effect->Equalizer.LowCutoff;
break;
case AL_EQUALIZER_MID1_GAIN:
*val = effect->Equalizer.Mid1Gain;
break;
case AL_EQUALIZER_MID1_CENTER:
*val = effect->Equalizer.Mid1Center;
break;
case AL_EQUALIZER_MID1_WIDTH:
*val = effect->Equalizer.Mid1Width;
break;
case AL_EQUALIZER_MID2_GAIN:
*val = effect->Equalizer.Mid2Gain;
break;
case AL_EQUALIZER_MID2_CENTER:
*val = effect->Equalizer.Mid2Center;
break;
case AL_EQUALIZER_MID2_WIDTH:
*val = effect->Equalizer.Mid2Width;
break;
case AL_EQUALIZER_HIGH_GAIN:
*val = effect->Equalizer.HighGain;
break;
case AL_EQUALIZER_HIGH_CUTOFF:
*val = effect->Equalizer.HighCutoff;
break;
default:
alSetError(context, AL_INVALID_ENUM);
break;
}
}
void equalizer_GetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
equalizer_GetParamf(effect, context, param, vals);
}