AuroraOpenALSoft/Alc/hrtf.c
Chris Robinson 43e7323adb Rebalance the frequencies for B-Format HRTF coefficients
The original pseudo-inverse method that generated the LF matrix expects the
high frequencies to be scaled up by ~2.645751 over the low frequencies (or
sqrt(7), ~8.45dB). However, the AllRAD method used to generate the HF matrix
produced a matrix that was only scaled up by 1.46551981258 (based on the
average of the W coefficients).

Previously, the LF matrix was scaled down by sqrt(7), as the difference
specified in the pseudo-inverse results. This failed to account for the
increase already present in the HF matrix, so now the LF matrix is scaled down
by the remaining difference between the expected scaling and the scaling
already present in the HF matrix (sqrt(7) / 1.46551981258 = 1.80533302205, or
roughly 5.13dB, where the reciprocal is 0.553914423 for -5.13 dB).
2016-11-01 02:20:19 -07:00

1068 lines
34 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2011 by Chris Robinson
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <stdlib.h>
#include <ctype.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alSource.h"
#include "alu.h"
#include "bformatdec.h"
#include "hrtf.h"
#include "compat.h"
#include "almalloc.h"
/* Current data set limits defined by the makehrtf utility. */
#define MIN_IR_SIZE (8)
#define MAX_IR_SIZE (128)
#define MOD_IR_SIZE (8)
#define MIN_EV_COUNT (5)
#define MAX_EV_COUNT (128)
#define MIN_AZ_COUNT (1)
#define MAX_AZ_COUNT (128)
static const ALchar magicMarker00[8] = "MinPHR00";
static const ALchar magicMarker01[8] = "MinPHR01";
/* First value for pass-through coefficients (remaining are 0), used for omni-
* directional sounds. */
static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/;
static struct Hrtf *LoadedHrtfs = NULL;
/* Calculate the elevation index given the polar elevation in radians. This
* will return an index between 0 and (evcount - 1). Assumes the FPU is in
* round-to-zero mode.
*/
static ALuint CalcEvIndex(ALuint evcount, ALfloat ev)
{
ev = (F_PI_2 + ev) * (evcount-1) / F_PI;
return minu(fastf2u(ev + 0.5f), evcount-1);
}
/* Calculate the azimuth index given the polar azimuth in radians. This will
* return an index between 0 and (azcount - 1). Assumes the FPU is in round-to-
* zero mode.
*/
static ALuint CalcAzIndex(ALuint azcount, ALfloat az)
{
az = (F_TAU + az) * azcount / F_TAU;
return fastf2u(az + 0.5f) % azcount;
}
/* Calculates static HRIR coefficients and delays for the given polar elevation
* and azimuth in radians. The coefficients are normalized and attenuated by
* the specified gain.
*/
void GetHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat spread, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
{
ALuint evidx, azidx, lidx, ridx;
ALuint azcount, evoffset;
ALfloat dirfact;
ALuint i;
dirfact = 1.0f - (spread / F_TAU);
/* Claculate elevation index. */
evidx = CalcEvIndex(Hrtf->evCount, elevation);
azcount = Hrtf->azCount[evidx];
evoffset = Hrtf->evOffset[evidx];
/* Calculate azimuth index. */
azidx = CalcAzIndex(Hrtf->azCount[evidx], azimuth);
/* Calculate the HRIR indices for left and right channels. */
lidx = evoffset + azidx;
ridx = evoffset + ((azcount-azidx) % azcount);
/* Calculate the HRIR delays. */
delays[0] = fastf2u(Hrtf->delays[lidx]*dirfact + 0.5f) << HRTFDELAY_BITS;
delays[1] = fastf2u(Hrtf->delays[ridx]*dirfact + 0.5f) << HRTFDELAY_BITS;
/* Calculate the sample offsets for the HRIR indices. */
lidx *= Hrtf->irSize;
ridx *= Hrtf->irSize;
/* Calculate the normalized and attenuated HRIR coefficients. Zero the
* coefficients if gain is too low.
*/
if(gain > 0.0001f)
{
gain /= 32767.0f;
i = 0;
coeffs[i][0] = lerp(PassthruCoeff, Hrtf->coeffs[lidx+i], dirfact)*gain;
coeffs[i][1] = lerp(PassthruCoeff, Hrtf->coeffs[ridx+i], dirfact)*gain;
for(i = 1;i < Hrtf->irSize;i++)
{
coeffs[i][0] = Hrtf->coeffs[lidx+i]*gain * dirfact;
coeffs[i][1] = Hrtf->coeffs[ridx+i]*gain * dirfact;
}
}
else
{
for(i = 0;i < Hrtf->irSize;i++)
{
coeffs[i][0] = 0.0f;
coeffs[i][1] = 0.0f;
}
}
}
ALuint BuildBFormatHrtf(const struct Hrtf *Hrtf, ALfloat (*coeffs)[HRIR_LENGTH][2], ALuint NumChannels)
{
static const struct {
ALfloat elevation;
ALfloat azimuth;
} Ambi3DPoints[14] = {
{ DEG2RAD( 90.0f), DEG2RAD( 0.0f) },
{ DEG2RAD( 35.0f), DEG2RAD( -45.0f) },
{ DEG2RAD( 35.0f), DEG2RAD( 45.0f) },
{ DEG2RAD( 35.0f), DEG2RAD( 135.0f) },
{ DEG2RAD( 35.0f), DEG2RAD(-135.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 0.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 90.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 180.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( -90.0f) },
{ DEG2RAD(-35.0f), DEG2RAD( -45.0f) },
{ DEG2RAD(-35.0f), DEG2RAD( 45.0f) },
{ DEG2RAD(-35.0f), DEG2RAD( 135.0f) },
{ DEG2RAD(-35.0f), DEG2RAD(-135.0f) },
{ DEG2RAD(-90.0f), DEG2RAD( 0.0f) },
};
static const ALfloat Ambi3DMatrix[14][2][MAX_AMBI_COEFFS] = {
{ { 0.078851598f, 0.000000000f, 0.070561967f, 0.000000000f }, { 0.0714285714f, 0.0000000000f, 0.1237180798f, 0.0000000000f } },
{ { 0.124051278f, 0.059847972f, 0.059847972f, 0.059847972f }, { 0.0714285714f, 0.0714285714f, 0.0714285714f, 0.0714285714f } },
{ { 0.124051278f, -0.059847972f, 0.059847972f, 0.059847972f }, { 0.0714285714f, -0.0714285714f, 0.0714285714f, 0.0714285714f } },
{ { 0.124051278f, -0.059847972f, 0.059847972f, -0.059847972f }, { 0.0714285714f, -0.0714285714f, 0.0714285714f, -0.0714285714f } },
{ { 0.124051278f, 0.059847972f, 0.059847972f, -0.059847972f }, { 0.0714285714f, 0.0714285714f, 0.0714285714f, -0.0714285714f } },
{ { 0.078851598f, 0.000000000f, 0.000000000f, 0.070561967f }, { 0.0714285714f, 0.0000000000f, 0.0000000000f, 0.1237180798f } },
{ { 0.078851598f, -0.070561967f, 0.000000000f, 0.000000000f }, { 0.0714285714f, -0.1237180798f, 0.0000000000f, 0.0000000000f } },
{ { 0.078851598f, 0.000000000f, 0.000000000f, -0.070561967f }, { 0.0714285714f, 0.0000000000f, 0.0000000000f, -0.1237180798f } },
{ { 0.078851598f, 0.070561967f, 0.000000000f, 0.000000000f }, { 0.0714285714f, 0.1237180798f, 0.0000000000f, 0.0000000000f } },
{ { 0.124051278f, 0.059847972f, -0.059847972f, 0.059847972f }, { 0.0714285714f, 0.0714285714f, -0.0714285714f, 0.0714285714f } },
{ { 0.124051278f, -0.059847972f, -0.059847972f, 0.059847972f }, { 0.0714285714f, -0.0714285714f, -0.0714285714f, 0.0714285714f } },
{ { 0.124051278f, -0.059847972f, -0.059847972f, -0.059847972f }, { 0.0714285714f, -0.0714285714f, -0.0714285714f, -0.0714285714f } },
{ { 0.124051278f, 0.059847972f, -0.059847972f, -0.059847972f }, { 0.0714285714f, 0.0714285714f, -0.0714285714f, -0.0714285714f } },
{ { 0.078851598f, 0.000000000f, -0.070561967f, 0.000000000f }, { 0.0714285714f, 0.0000000000f, -0.1237180798f, 0.0000000000f } },
};
#define AMBIHF_GAIN 1.0f
#define AMBILF_GAIN 0.553914423f /* -5.13dB */
/* Change this to 2 for dual-band HRTF processing. May require a higher quality
* band-splitter, or better calculation of the new IR length to deal with the
* tail generated by the filter.
*/
#define NUM_BANDS 2
BandSplitter splitter;
ALfloat temps[3][HRIR_LENGTH];
ALuint lidx[14], ridx[14];
ALuint min_delay = HRTF_HISTORY_LENGTH;
ALuint max_length = 0;
ALuint i, j, c, b;
assert(NumChannels == 4);
for(c = 0;c < COUNTOF(Ambi3DPoints);c++)
{
ALuint evidx, azidx;
ALuint evoffset;
ALuint azcount;
/* Calculate elevation index. */
evidx = (ALuint)floorf((F_PI_2 + Ambi3DPoints[c].elevation) *
(Hrtf->evCount-1)/F_PI + 0.5f);
evidx = minu(evidx, Hrtf->evCount-1);
azcount = Hrtf->azCount[evidx];
evoffset = Hrtf->evOffset[evidx];
/* Calculate azimuth index for this elevation. */
azidx = (ALuint)floorf((F_TAU+Ambi3DPoints[c].azimuth) *
azcount/F_TAU + 0.5f) % azcount;
/* Calculate indices for left and right channels. */
lidx[c] = evoffset + azidx;
ridx[c] = evoffset + ((azcount-azidx) % azcount);
min_delay = minu(min_delay, minu(Hrtf->delays[lidx[c]], Hrtf->delays[ridx[c]]));
}
memset(temps, 0, sizeof(temps));
bandsplit_init(&splitter, 400.0f / (ALfloat)Hrtf->sampleRate);
for(c = 0;c < COUNTOF(Ambi3DMatrix);c++)
{
const ALshort *fir;
ALuint delay;
/* Convert the left FIR from shorts to float */
fir = &Hrtf->coeffs[lidx[c] * Hrtf->irSize];
if(NUM_BANDS == 1)
{
for(i = 0;i < Hrtf->irSize;i++)
temps[0][i] = fir[i] / 32767.0f;
}
else
{
/* Band-split left HRIR into low and high frequency responses. */
bandsplit_clear(&splitter);
for(i = 0;i < Hrtf->irSize;i++)
temps[2][i] = fir[i] / 32767.0f;
bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH);
/* Scale the low and high frequency responses. */
for(i = 0;i < HRIR_LENGTH;i++)
temps[0][i] *= AMBIHF_GAIN;
for(i = 0;i < HRIR_LENGTH;i++)
temps[1][i] *= AMBILF_GAIN;
}
/* Add to the left output coefficients with the specified delay. */
delay = Hrtf->delays[lidx[c]] - min_delay;
for(i = 0;i < NumChannels;++i)
{
for(b = 0;b < NUM_BANDS;b++)
{
ALuint k = 0;
for(j = delay;j < HRIR_LENGTH;++j)
coeffs[i][j][0] += temps[b][k++] * Ambi3DMatrix[c][b][i];
}
}
max_length = maxu(max_length, minu(delay + Hrtf->irSize, HRIR_LENGTH));
/* Convert the right FIR from shorts to float */
fir = &Hrtf->coeffs[ridx[c] * Hrtf->irSize];
if(NUM_BANDS == 1)
{
for(i = 0;i < Hrtf->irSize;i++)
temps[0][i] = fir[i] / 32767.0f;
}
else
{
/* Band-split right HRIR into low and high frequency responses. */
bandsplit_clear(&splitter);
for(i = 0;i < Hrtf->irSize;i++)
temps[2][i] = fir[i] / 32767.0f;
bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH);
/* Scale the low and high frequency responses. */
for(i = 0;i < HRIR_LENGTH;i++)
temps[0][i] *= AMBIHF_GAIN;
for(i = 0;i < HRIR_LENGTH;i++)
temps[1][i] *= AMBILF_GAIN;
}
/* Add to the right output coefficients with the specified delay. */
delay = Hrtf->delays[ridx[c]] - min_delay;
for(i = 0;i < NumChannels;++i)
{
for(b = 0;b < NUM_BANDS;b++)
{
ALuint k = 0;
for(j = delay;j < HRIR_LENGTH;++j)
coeffs[i][j][1] += temps[b][k++] * Ambi3DMatrix[c][b][i];
}
}
max_length = maxu(max_length, minu(delay + Hrtf->irSize, HRIR_LENGTH));
}
TRACE("Skipped min delay: %u, new combined length: %u\n", min_delay, max_length);
#undef NUM_BANDS
return max_length;
}
static struct Hrtf *LoadHrtf00(const ALubyte *data, size_t datalen, const_al_string filename)
{
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALushort irSize = 0;
ALubyte evCount = 0;
ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
const ALubyte *delays = NULL;
ALuint i, j;
if(datalen < 9)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n",
al_string_get_cstr(filename), 9, datalen);
return NULL;
}
rate = *(data++);
rate |= *(data++)<<8;
rate |= *(data++)<<16;
rate |= *(data++)<<24;
datalen -= 4;
irCount = *(data++);
irCount |= *(data++)<<8;
datalen -= 2;
irSize = *(data++);
irSize |= *(data++)<<8;
datalen -= 2;
evCount = *(data++);
datalen -= 1;
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
if(datalen < evCount*2)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n",
al_string_get_cstr(filename), evCount*2, datalen);
return NULL;
}
azCount = malloc(sizeof(azCount[0])*evCount);
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
evOffset[0] = *(data++);
evOffset[0] |= *(data++)<<8;
datalen -= 2;
for(i = 1;i < evCount;i++)
{
evOffset[i] = *(data++);
evOffset[i] |= *(data++)<<8;
datalen -= 2;
if(evOffset[i] <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
i, evOffset[i], evOffset[i-1]);
failed = AL_TRUE;
}
azCount[i-1] = evOffset[i] - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(irCount <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n",
i-1, evOffset[i-1], irCount);
failed = AL_TRUE;
}
azCount[i-1] = irCount - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(!failed)
{
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
if(coeffs == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
size_t reqsize = 2*irSize*irCount + irCount;
if(datalen < reqsize)
{
ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT")\n",
al_string_get_cstr(filename), reqsize, datalen);
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
coeffs[i+j] = *(data++);
coeffs[i+j] |= *(data++)<<8;
datalen -= 2;
}
}
delays = data;
data += irCount;
datalen -= irCount;
for(i = 0;i < irCount;i++)
{
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
}
if(!failed)
{
size_t total = sizeof(struct Hrtf);
total += sizeof(azCount[0])*evCount;
total = (total+1)&~1; /* Align for (u)short fields */
total += sizeof(evOffset[0])*evCount;
total += sizeof(coeffs[0])*irSize*irCount;
total += sizeof(delays[0])*irCount;
total += al_string_length(filename)+1;
Hrtf = al_calloc(16, total);
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
char *base = (char*)Hrtf;
uintptr_t offset = sizeof(*Hrtf);
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = ((ALubyte*)(base + offset)); offset += evCount*sizeof(Hrtf->azCount[0]);
offset = (offset+1)&~1; /* Align for (u)short fields */
Hrtf->evOffset = ((ALushort*)(base + offset)); offset += evCount*sizeof(Hrtf->evOffset[0]);
Hrtf->coeffs = ((ALshort*)(base + offset)); offset += irSize*irCount*sizeof(Hrtf->coeffs[0]);
Hrtf->delays = ((ALubyte*)(base + offset)); offset += irCount*sizeof(Hrtf->delays[0]);
Hrtf->filename = ((char*)(base + offset));
Hrtf->next = NULL;
memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount);
memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount);
memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount);
memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount);
memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1);
}
free(azCount);
free(evOffset);
free(coeffs);
return Hrtf;
}
static struct Hrtf *LoadHrtf01(const ALubyte *data, size_t datalen, const_al_string filename)
{
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALubyte irSize = 0, evCount = 0;
const ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
const ALubyte *delays = NULL;
ALuint i, j;
if(datalen < 6)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n",
al_string_get_cstr(filename), 6, datalen);
return NULL;
}
rate = *(data++);
rate |= *(data++)<<8;
rate |= *(data++)<<16;
rate |= *(data++)<<24;
datalen -= 4;
irSize = *(data++);
datalen -= 1;
evCount = *(data++);
datalen -= 1;
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
if(datalen < evCount)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n",
al_string_get_cstr(filename), evCount, datalen);
return NULL;
}
azCount = data;
data += evCount;
datalen -= evCount;
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
for(i = 0;i < evCount;i++)
{
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
}
if(!failed)
{
evOffset[0] = 0;
irCount = azCount[0];
for(i = 1;i < evCount;i++)
{
evOffset[i] = evOffset[i-1] + azCount[i-1];
irCount += azCount[i];
}
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
if(coeffs == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
size_t reqsize = 2*irSize*irCount + irCount;
if(datalen < reqsize)
{
ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n",
al_string_get_cstr(filename), reqsize, datalen);
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
ALshort coeff;
coeff = *(data++);
coeff |= *(data++)<<8;
datalen -= 2;
coeffs[i+j] = coeff;
}
}
delays = data;
data += irCount;
datalen -= irCount;
for(i = 0;i < irCount;i++)
{
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
}
if(!failed)
{
size_t total = sizeof(struct Hrtf);
total += sizeof(azCount[0])*evCount;
total = (total+1)&~1; /* Align for (u)short fields */
total += sizeof(evOffset[0])*evCount;
total += sizeof(coeffs[0])*irSize*irCount;
total += sizeof(delays[0])*irCount;
total += al_string_length(filename)+1;
Hrtf = al_calloc(16, total);
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
char *base = (char*)Hrtf;
uintptr_t offset = sizeof(*Hrtf);
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = ((ALubyte*)(base + offset)); offset += evCount*sizeof(Hrtf->azCount[0]);
offset = (offset+1)&~1; /* Align for (u)short fields */
Hrtf->evOffset = ((ALushort*)(base + offset)); offset += evCount*sizeof(Hrtf->evOffset[0]);
Hrtf->coeffs = ((ALshort*)(base + offset)); offset += irSize*irCount*sizeof(Hrtf->coeffs[0]);
Hrtf->delays = ((ALubyte*)(base + offset)); offset += irCount*sizeof(Hrtf->delays[0]);
Hrtf->filename = ((char*)(base + offset));
Hrtf->next = NULL;
memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount);
memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount);
memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount);
memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount);
memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1);
}
free(evOffset);
free(coeffs);
return Hrtf;
}
static void AddFileEntry(vector_HrtfEntry *list, al_string *filename)
{
HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL };
struct Hrtf *hrtf = NULL;
const HrtfEntry *iter;
struct FileMapping fmap;
const char *name;
const char *ext;
int i;
#define MATCH_FNAME(i) (al_string_cmp_cstr(*filename, (i)->hrtf->filename) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_FNAME);
if(iter != VECTOR_END(*list))
{
TRACE("Skipping duplicate file entry %s\n", al_string_get_cstr(*filename));
goto done;
}
#undef MATCH_FNAME
entry.hrtf = LoadedHrtfs;
while(entry.hrtf)
{
if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0)
{
TRACE("Skipping load of already-loaded file %s\n", al_string_get_cstr(*filename));
goto skip_load;
}
entry.hrtf = entry.hrtf->next;
}
TRACE("Loading %s...\n", al_string_get_cstr(*filename));
fmap = MapFileToMem(al_string_get_cstr(*filename));
if(fmap.ptr == NULL)
{
ERR("Could not open %s\n", al_string_get_cstr(*filename));
goto done;
}
if(fmap.len < sizeof(magicMarker01))
ERR("%s data is too short ("SZFMT" bytes)\n", al_string_get_cstr(*filename), fmap.len);
else if(memcmp(fmap.ptr, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
hrtf = LoadHrtf01((const ALubyte*)fmap.ptr+sizeof(magicMarker01),
fmap.len-sizeof(magicMarker01), *filename
);
}
else if(memcmp(fmap.ptr, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
hrtf = LoadHrtf00((const ALubyte*)fmap.ptr+sizeof(magicMarker00),
fmap.len-sizeof(magicMarker00), *filename
);
}
else
ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), (const char*)fmap.ptr);
UnmapFileMem(&fmap);
if(!hrtf)
{
ERR("Failed to load %s\n", al_string_get_cstr(*filename));
goto done;
}
hrtf->next = LoadedHrtfs;
LoadedHrtfs = hrtf;
TRACE("Loaded HRTF support for format: %s %uhz\n",
DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
entry.hrtf = hrtf;
skip_load:
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
name = strrchr(al_string_get_cstr(*filename), '/');
if(!name) name = strrchr(al_string_get_cstr(*filename), '\\');
if(!name) name = al_string_get_cstr(*filename);
else ++name;
ext = strrchr(name, '.');
i = 0;
do {
if(!ext)
al_string_copy_cstr(&entry.name, name);
else
al_string_copy_range(&entry.name, name, ext);
if(i != 0)
{
char str[64];
snprintf(str, sizeof(str), " #%d", i+1);
al_string_append_cstr(&entry.name, str);
}
++i;
#define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_NAME);
#undef MATCH_NAME
} while(iter != VECTOR_END(*list));
TRACE("Adding entry \"%s\" from file \"%s\"\n", al_string_get_cstr(entry.name),
al_string_get_cstr(*filename));
VECTOR_PUSH_BACK(*list, entry);
done:
al_string_deinit(filename);
}
/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
* for input instead of opening the given filename.
*/
static void AddBuiltInEntry(vector_HrtfEntry *list, const ALubyte *data, size_t datalen, al_string *filename)
{
HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL };
struct Hrtf *hrtf = NULL;
const HrtfEntry *iter;
int i;
#define MATCH_FNAME(i) (al_string_cmp_cstr(*filename, (i)->hrtf->filename) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_FNAME);
if(iter != VECTOR_END(*list))
{
TRACE("Skipping duplicate file entry %s\n", al_string_get_cstr(*filename));
goto done;
}
#undef MATCH_FNAME
entry.hrtf = LoadedHrtfs;
while(entry.hrtf)
{
if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0)
{
TRACE("Skipping load of already-loaded file %s\n", al_string_get_cstr(*filename));
goto skip_load;
}
entry.hrtf = entry.hrtf->next;
}
TRACE("Loading %s...\n", al_string_get_cstr(*filename));
if(datalen < sizeof(magicMarker01))
{
ERR("%s data is too short ("SZFMT" bytes)\n", al_string_get_cstr(*filename), datalen);
goto done;
}
if(memcmp(data, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
hrtf = LoadHrtf01(data+sizeof(magicMarker01),
datalen-sizeof(magicMarker01), *filename
);
}
else if(memcmp(data, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
hrtf = LoadHrtf00(data+sizeof(magicMarker00),
datalen-sizeof(magicMarker00), *filename
);
}
else
ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), data);
if(!hrtf)
{
ERR("Failed to load %s\n", al_string_get_cstr(*filename));
goto done;
}
hrtf->next = LoadedHrtfs;
LoadedHrtfs = hrtf;
TRACE("Loaded HRTF support for format: %s %uhz\n",
DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
entry.hrtf = hrtf;
skip_load:
i = 0;
do {
al_string_copy(&entry.name, *filename);
if(i != 0)
{
char str[64];
snprintf(str, sizeof(str), " #%d", i+1);
al_string_append_cstr(&entry.name, str);
}
++i;
#define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_NAME);
#undef MATCH_NAME
} while(iter != VECTOR_END(*list));
TRACE("Adding built-in entry \"%s\"\n", al_string_get_cstr(entry.name));
VECTOR_PUSH_BACK(*list, entry);
done:
al_string_deinit(filename);
}
#ifndef ALSOFT_EMBED_HRTF_DATA
#define IDR_DEFAULT_44100_MHR 0
#define IDR_DEFAULT_48000_MHR 1
static const ALubyte *GetResource(int UNUSED(name), size_t *size)
{
*size = 0;
return NULL;
}
#else
#include "hrtf_res.h"
#ifdef _WIN32
static const ALubyte *GetResource(int name, size_t *size)
{
HMODULE handle;
HGLOBAL res;
HRSRC rc;
GetModuleHandleExW(
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
(LPCWSTR)GetResource, &handle
);
rc = FindResourceW(handle, MAKEINTRESOURCEW(name), MAKEINTRESOURCEW(MHRTYPE));
res = LoadResource(handle, rc);
*size = SizeofResource(handle, rc);
return LockResource(res);
}
#else
extern const ALubyte _binary_default_44100_mhr_start[] HIDDEN_DECL;
extern const ALubyte _binary_default_44100_mhr_end[] HIDDEN_DECL;
extern const ALubyte _binary_default_44100_mhr_size[] HIDDEN_DECL;
extern const ALubyte _binary_default_48000_mhr_start[] HIDDEN_DECL;
extern const ALubyte _binary_default_48000_mhr_end[] HIDDEN_DECL;
extern const ALubyte _binary_default_48000_mhr_size[] HIDDEN_DECL;
static const ALubyte *GetResource(int name, size_t *size)
{
if(name == IDR_DEFAULT_44100_MHR)
{
/* Make sure all symbols are referenced, to ensure the compiler won't
* ignore the declarations and lose the visibility attribute used to
* hide them (would be nice if ld or objcopy could automatically mark
* them as hidden when generating them, but apparently they can't).
*/
const void *volatile ptr =_binary_default_44100_mhr_size;
(void)ptr;
*size = _binary_default_44100_mhr_end - _binary_default_44100_mhr_start;
return _binary_default_44100_mhr_start;
}
if(name == IDR_DEFAULT_48000_MHR)
{
const void *volatile ptr =_binary_default_48000_mhr_size;
(void)ptr;
*size = _binary_default_48000_mhr_end - _binary_default_48000_mhr_start;
return _binary_default_48000_mhr_start;
}
*size = 0;
return NULL;
}
#endif
#endif
vector_HrtfEntry EnumerateHrtf(const_al_string devname)
{
vector_HrtfEntry list = VECTOR_INIT_STATIC();
const char *defaulthrtf = "";
const char *pathlist = "";
bool usedefaults = true;
if(ConfigValueStr(al_string_get_cstr(devname), NULL, "hrtf-paths", &pathlist))
{
while(pathlist && *pathlist)
{
const char *next, *end;
while(isspace(*pathlist) || *pathlist == ',')
pathlist++;
if(*pathlist == '\0')
continue;
next = strchr(pathlist, ',');
if(next)
end = next++;
else
{
end = pathlist + strlen(pathlist);
usedefaults = false;
}
while(end != pathlist && isspace(*(end-1)))
--end;
if(end != pathlist)
{
al_string pname = AL_STRING_INIT_STATIC();
vector_al_string flist;
al_string_append_range(&pname, pathlist, end);
flist = SearchDataFiles(".mhr", al_string_get_cstr(pname));
VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list);
VECTOR_DEINIT(flist);
al_string_deinit(&pname);
}
pathlist = next;
}
}
else if(ConfigValueExists(al_string_get_cstr(devname), NULL, "hrtf_tables"))
ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n");
if(usedefaults)
{
vector_al_string flist;
const ALubyte *rdata;
size_t rsize;
flist = SearchDataFiles(".mhr", "openal/hrtf");
VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list);
VECTOR_DEINIT(flist);
rdata = GetResource(IDR_DEFAULT_44100_MHR, &rsize);
if(rdata != NULL && rsize > 0)
{
al_string ename = AL_STRING_INIT_STATIC();
al_string_copy_cstr(&ename, "Built-In 44100hz");
AddBuiltInEntry(&list, rdata, rsize, &ename);
}
rdata = GetResource(IDR_DEFAULT_48000_MHR, &rsize);
if(rdata != NULL && rsize > 0)
{
al_string ename = AL_STRING_INIT_STATIC();
al_string_copy_cstr(&ename, "Built-In 48000hz");
AddBuiltInEntry(&list, rdata, rsize, &ename);
}
}
if(VECTOR_SIZE(list) > 1 && ConfigValueStr(al_string_get_cstr(devname), NULL, "default-hrtf", &defaulthrtf))
{
const HrtfEntry *iter;
/* Find the preferred HRTF and move it to the front of the list. */
#define FIND_ENTRY(i) (al_string_cmp_cstr((i)->name, defaulthrtf) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, list, FIND_ENTRY);
#undef FIND_ENTRY
if(iter == VECTOR_END(list))
WARN("Failed to find default HRTF \"%s\"\n", defaulthrtf);
else if(iter != VECTOR_BEGIN(list))
{
HrtfEntry entry = *iter;
memmove(&VECTOR_ELEM(list,1), &VECTOR_ELEM(list,0),
(iter-VECTOR_BEGIN(list))*sizeof(HrtfEntry));
VECTOR_ELEM(list,0) = entry;
}
}
return list;
}
void FreeHrtfList(vector_HrtfEntry *list)
{
#define CLEAR_ENTRY(i) do { \
al_string_deinit(&(i)->name); \
} while(0)
VECTOR_FOR_EACH(HrtfEntry, *list, CLEAR_ENTRY);
VECTOR_DEINIT(*list);
#undef CLEAR_ENTRY
}
void FreeHrtfs(void)
{
struct Hrtf *Hrtf = LoadedHrtfs;
LoadedHrtfs = NULL;
while(Hrtf != NULL)
{
struct Hrtf *next = Hrtf->next;
al_free(Hrtf);
Hrtf = next;
}
}