AuroraOpenALSoft/Alc/converter.c

453 lines
16 KiB
C

#include "config.h"
#include "converter.h"
#include "mixer_defs.h"
SampleConverter *CreateSampleConverter(enum DevFmtType srcType, enum DevFmtType dstType, ALsizei numchans, ALsizei srcRate, ALsizei dstRate)
{
SampleConverter *converter;
if(numchans <= 0 || srcRate <= 0 || dstRate <= 0)
return NULL;
converter = al_calloc(16, FAM_SIZE(SampleConverter, Chan, numchans));
converter->mSrcType = srcType;
converter->mDstType = dstType;
converter->mNumChannels = numchans;
converter->mSrcTypeSize = BytesFromDevFmt(srcType);
converter->mDstTypeSize = BytesFromDevFmt(dstType);
converter->mSrcPrepCount = 0;
converter->mFracOffset = 0;
converter->mIncrement = (ALsizei)clampu64((ALuint64)srcRate*FRACTIONONE/dstRate,
1, MAX_PITCH*FRACTIONONE);
if(converter->mIncrement == FRACTIONONE)
converter->mResample = Resample_copy32_C;
else
{
/* TODO: Allow other resamplers. */
converter->mResample = SelectResampler(LinearResampler);
}
return converter;
}
void DestroySampleConverter(SampleConverter **converter)
{
if(converter)
{
al_free(*converter);
*converter = NULL;
}
}
static inline ALfloat Sample_ALbyte(ALbyte val)
{ return val * (1.0f/128.0f); }
static inline ALfloat Sample_ALubyte(ALubyte val)
{ return Sample_ALbyte((ALint)val - 128); }
static inline ALfloat Sample_ALshort(ALshort val)
{ return val * (1.0f/32768.0f); }
static inline ALfloat Sample_ALushort(ALushort val)
{ return Sample_ALshort((ALint)val - 32768); }
static inline ALfloat Sample_ALint(ALint val)
{ return (val>>7) * (1.0f/16777216.0f); }
static inline ALfloat Sample_ALuint(ALuint val)
{ return ((ALint)(val>>7) - 16777216) * (1.0f/16777216.0f); }
static inline ALfloat Sample_ALfloat(ALfloat val)
{ return val; }
#define DECL_TEMPLATE(T) \
static inline void Load_##T(ALfloat *restrict dst, const T *restrict src, \
ALint srcstep, ALsizei samples) \
{ \
ALsizei i; \
for(i = 0;i < samples;i++) \
dst[i] = Sample_##T(src[i*srcstep]); \
}
DECL_TEMPLATE(ALbyte)
DECL_TEMPLATE(ALubyte)
DECL_TEMPLATE(ALshort)
DECL_TEMPLATE(ALushort)
DECL_TEMPLATE(ALint)
DECL_TEMPLATE(ALuint)
DECL_TEMPLATE(ALfloat)
#undef DECL_TEMPLATE
static void LoadSamples(ALfloat *dst, const ALvoid *src, ALint srcstep, enum DevFmtType srctype, ALsizei samples)
{
switch(srctype)
{
case DevFmtByte:
Load_ALbyte(dst, src, srcstep, samples);
break;
case DevFmtUByte:
Load_ALubyte(dst, src, srcstep, samples);
break;
case DevFmtShort:
Load_ALshort(dst, src, srcstep, samples);
break;
case DevFmtUShort:
Load_ALushort(dst, src, srcstep, samples);
break;
case DevFmtInt:
Load_ALint(dst, src, srcstep, samples);
break;
case DevFmtUInt:
Load_ALuint(dst, src, srcstep, samples);
break;
case DevFmtFloat:
Load_ALfloat(dst, src, srcstep, samples);
break;
}
}
static inline ALbyte ALbyte_Sample(ALfloat val)
{ return (ALbyte)clampf(val*128.0f, -128.0f, 127.0f); }
static inline ALubyte ALubyte_Sample(ALfloat val)
{ return ALbyte_Sample(val)+128; }
static inline ALshort ALshort_Sample(ALfloat val)
{ return (ALshort)clampf(val*32768.0f, -32768.0f, 32767.0f); }
static inline ALushort ALushort_Sample(ALfloat val)
{ return ALshort_Sample(val)+32768; }
static inline ALint ALint_Sample(ALfloat val)
{ return (ALint)clampf(val*16777216.0f, -16777216.0f, 16777215.0f) << 7; }
static inline ALuint ALuint_Sample(ALfloat val)
{ return ALint_Sample(val)+INT_MAX+1; }
static inline ALfloat ALfloat_Sample(ALfloat val)
{ return val; }
#define DECL_TEMPLATE(T) \
static inline void Store_##T(T *restrict dst, const ALfloat *restrict src, \
ALint dststep, ALsizei samples) \
{ \
ALsizei i; \
for(i = 0;i < samples;i++) \
dst[i*dststep] = T##_Sample(src[i]); \
}
DECL_TEMPLATE(ALbyte)
DECL_TEMPLATE(ALubyte)
DECL_TEMPLATE(ALshort)
DECL_TEMPLATE(ALushort)
DECL_TEMPLATE(ALint)
DECL_TEMPLATE(ALuint)
DECL_TEMPLATE(ALfloat)
#undef DECL_TEMPLATE
static void StoreSamples(ALvoid *dst, const ALfloat *src, ALint dststep, enum DevFmtType dsttype, ALsizei samples)
{
switch(dsttype)
{
case DevFmtByte:
Store_ALbyte(dst, src, dststep, samples);
break;
case DevFmtUByte:
Store_ALubyte(dst, src, dststep, samples);
break;
case DevFmtShort:
Store_ALshort(dst, src, dststep, samples);
break;
case DevFmtUShort:
Store_ALushort(dst, src, dststep, samples);
break;
case DevFmtInt:
Store_ALint(dst, src, dststep, samples);
break;
case DevFmtUInt:
Store_ALuint(dst, src, dststep, samples);
break;
case DevFmtFloat:
Store_ALfloat(dst, src, dststep, samples);
break;
}
}
ALsizei SampleConverterAvailableOut(SampleConverter *converter, ALsizei srcframes)
{
ALint prepcount = converter->mSrcPrepCount;
ALsizei increment = converter->mIncrement;
ALsizei DataPosFrac = converter->mFracOffset;
ALuint64 DataSize64;
if(prepcount < 0)
{
/* Negative prepcount means we need to skip that many input samples. */
if(-prepcount >= srcframes)
return 0;
srcframes += prepcount;
prepcount = 0;
}
if(prepcount < MAX_POST_SAMPLES+MAX_PRE_SAMPLES &&
MAX_POST_SAMPLES+MAX_PRE_SAMPLES-prepcount >= srcframes)
{
/* Not enough input samples to generate an output sample. */
return 0;
}
DataSize64 = prepcount;
DataSize64 += srcframes;
DataSize64 -= MAX_POST_SAMPLES+MAX_PRE_SAMPLES;
DataSize64 <<= FRACTIONBITS;
DataSize64 -= DataPosFrac;
/* If we have a full prep, we can generate at least one sample. */
return (ALsizei)clampu64(DataSize64/increment, 1, INT_MAX);
}
ALsizei SampleConverterInput(SampleConverter *converter, const ALvoid **src, ALsizei *srcframes, ALvoid *dst, ALsizei dstframes)
{
const ALsizei SrcFrameSize = converter->mNumChannels * converter->mSrcTypeSize;
const ALsizei DstFrameSize = converter->mNumChannels * converter->mDstTypeSize;
const ALsizei increment = converter->mIncrement;
ALsizei pos = 0;
while(pos < dstframes)
{
ALfloat *restrict SrcData = ASSUME_ALIGNED(converter->mSrcSamples, 16);
ALfloat *restrict DstData = ASSUME_ALIGNED(converter->mDstSamples, 16);
ALint prepcount = converter->mSrcPrepCount;
ALsizei DataPosFrac = converter->mFracOffset;
ALuint64 DataSize64;
ALsizei DstSize;
ALint toread;
ALsizei chan;
if(prepcount < 0)
{
/* Negative prepcount means we need to skip that many input samples. */
if(-prepcount >= *srcframes)
{
converter->mSrcPrepCount = prepcount + *srcframes;
*srcframes = 0;
break;
}
*src = (const ALbyte*)*src + SrcFrameSize*-prepcount;
*srcframes += prepcount;
prepcount = 0;
}
toread = mini(*srcframes, BUFFERSIZE-(MAX_POST_SAMPLES+MAX_PRE_SAMPLES));
if(prepcount < MAX_POST_SAMPLES+MAX_PRE_SAMPLES &&
MAX_POST_SAMPLES+MAX_PRE_SAMPLES-prepcount >= toread)
{
/* Not enough input samples to generate an output sample. Store
* what we're given for later.
*/
for(chan = 0;chan < converter->mNumChannels;chan++)
LoadSamples(&converter->Chan[chan].mPrevSamples[prepcount],
(const ALbyte*)src + converter->mSrcTypeSize*chan,
converter->mNumChannels, converter->mSrcType, toread
);
converter->mSrcPrepCount = prepcount + toread;
*srcframes = 0;
break;
}
DataSize64 = prepcount;
DataSize64 += toread;
DataSize64 -= MAX_POST_SAMPLES+MAX_PRE_SAMPLES;
DataSize64 <<= FRACTIONBITS;
DataSize64 -= DataPosFrac;
/* If we have a full prep, we can generate at least one sample. */
DstSize = (ALsizei)clampu64(DataSize64/increment, 1, BUFFERSIZE);
DstSize = mini(DstSize, dstframes-pos);
for(chan = 0;chan < converter->mNumChannels;chan++)
{
const ALbyte *SrcSamples = (const ALbyte*)*src + converter->mSrcTypeSize*chan;
ALbyte *DstSamples = (ALbyte*)dst + converter->mSrcTypeSize*chan;
const ALfloat *ResampledData;
ALsizei SrcDataEnd;
/* Load the previous samples into the source data first, then the
* new samples from the input buffer.
*/
memcpy(SrcData, converter->Chan[chan].mPrevSamples,
prepcount*sizeof(ALfloat));
LoadSamples(SrcData + prepcount, SrcSamples,
converter->mNumChannels, converter->mSrcType, toread
);
/* Store as many prep samples for next time as possible, given the
* number of output samples being generated.
*/
SrcDataEnd = (DataPosFrac + increment*DstSize)>>FRACTIONBITS;
if(SrcDataEnd >= prepcount+toread)
memset(converter->Chan[chan].mPrevSamples, 0,
sizeof(converter->Chan[chan].mPrevSamples));
else
{
size_t len = mini(MAX_PRE_SAMPLES+MAX_POST_SAMPLES, prepcount+toread-SrcDataEnd);
memcpy(converter->Chan[chan].mPrevSamples, &SrcData[SrcDataEnd],
len*sizeof(ALfloat));
memset(converter->Chan[chan].mPrevSamples+len, 0,
sizeof(converter->Chan[chan].mPrevSamples) - len*sizeof(ALfloat));
}
/* Now resample, and store the result in the output buffer. */
ResampledData = converter->mResample(NULL,
SrcData+MAX_PRE_SAMPLES, DataPosFrac, increment,
DstData, DstSize
);
StoreSamples(DstSamples, ResampledData, converter->mNumChannels,
converter->mDstType, DstSize);
}
/* Update the number of prep samples still available, as well as the
* fractional offset.
*/
DataPosFrac += increment*DstSize;
converter->mSrcPrepCount = mini(MAX_PRE_SAMPLES+MAX_POST_SAMPLES,
prepcount+toread-(DataPosFrac>>FRACTIONBITS));
converter->mFracOffset = DataPosFrac & FRACTIONMASK;
/* Update the src and dst pointers in case there's still more to do. */
*src = (const ALbyte*)*src + SrcFrameSize*(DataPosFrac>>FRACTIONBITS);
*srcframes -= mini(*srcframes, (DataPosFrac>>FRACTIONBITS));
dst = (ALbyte*)dst + DstFrameSize*DstSize;
pos += DstSize;
}
return pos;
}
ChannelConverter *CreateChannelConverter(enum DevFmtType srcType, enum DevFmtChannels srcChans, enum DevFmtChannels dstChans)
{
ChannelConverter *converter;
if(srcChans != dstChans && !((srcChans == DevFmtMono && dstChans == DevFmtStereo) ||
(srcChans == DevFmtStereo && dstChans == DevFmtMono)))
return NULL;
converter = al_calloc(DEF_ALIGN, sizeof(*converter));
converter->mSrcType = srcType;
converter->mSrcChans = srcChans;
converter->mDstChans = dstChans;
return converter;
}
void DestroyChannelConverter(ChannelConverter **converter)
{
if(converter)
{
al_free(*converter);
*converter = NULL;
}
}
#define DECL_TEMPLATE(T) \
static void Mono2Stereo##T(ALfloat *restrict dst, const T *src, ALsizei frames)\
{ \
ALsizei i; \
for(i = 0;i < frames;i++) \
dst[i*2 + 1] = dst[i*2 + 0] = Sample_##T(src[i]) * 0.707106781187f; \
} \
\
static void Stereo2Mono##T(ALfloat *restrict dst, const T *src, ALsizei frames)\
{ \
ALsizei i; \
for(i = 0;i < frames;i++) \
dst[i] = (Sample_##T(src[i*2 + 0])+Sample_##T(src[i*2 + 1])) * \
0.707106781187f; \
}
DECL_TEMPLATE(ALbyte)
DECL_TEMPLATE(ALubyte)
DECL_TEMPLATE(ALshort)
DECL_TEMPLATE(ALushort)
DECL_TEMPLATE(ALint)
DECL_TEMPLATE(ALuint)
DECL_TEMPLATE(ALfloat)
#undef DECL_TEMPLATE
void ChannelConverterInput(ChannelConverter *converter, const ALvoid *src, ALfloat *dst, ALsizei frames)
{
if(converter->mSrcChans == converter->mDstChans)
{
LoadSamples(dst, src, 1, converter->mSrcType,
frames*ChannelsFromDevFmt(converter->mSrcChans, 0));
return;
}
if(converter->mSrcChans == DevFmtStereo && converter->mDstChans == DevFmtMono)
{
switch(converter->mSrcType)
{
case DevFmtByte:
Stereo2MonoALbyte(dst, src, frames);
break;
case DevFmtUByte:
Stereo2MonoALubyte(dst, src, frames);
break;
case DevFmtShort:
Stereo2MonoALshort(dst, src, frames);
break;
case DevFmtUShort:
Stereo2MonoALushort(dst, src, frames);
break;
case DevFmtInt:
Stereo2MonoALint(dst, src, frames);
break;
case DevFmtUInt:
Stereo2MonoALuint(dst, src, frames);
break;
case DevFmtFloat:
Stereo2MonoALfloat(dst, src, frames);
break;
}
}
else /*if(converter->mSrcChans == DevFmtMono && converter->mDstChans == DevFmtStereo)*/
{
switch(converter->mSrcType)
{
case DevFmtByte:
Mono2StereoALbyte(dst, src, frames);
break;
case DevFmtUByte:
Mono2StereoALubyte(dst, src, frames);
break;
case DevFmtShort:
Mono2StereoALshort(dst, src, frames);
break;
case DevFmtUShort:
Mono2StereoALushort(dst, src, frames);
break;
case DevFmtInt:
Mono2StereoALint(dst, src, frames);
break;
case DevFmtUInt:
Mono2StereoALuint(dst, src, frames);
break;
case DevFmtFloat:
Mono2StereoALfloat(dst, src, frames);
break;
}
}
}