AuroraOpenALSoft/Alc/ALu.c
2009-04-12 16:01:10 -07:00

1602 lines
62 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alThunk.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "bs2b.h"
#include "alReverb.h"
#if defined (HAVE_FLOAT_H)
#include <float.h>
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#define M_PI_2 1.57079632679489661923 /* pi/2 */
#endif
#if defined(HAVE_STDINT_H)
#include <stdint.h>
typedef int64_t ALint64;
#elif defined(HAVE___INT64)
typedef __int64 ALint64;
#elif (SIZEOF_LONG == 8)
typedef long ALint64;
#elif (SIZEOF_LONG_LONG == 8)
typedef long long ALint64;
#endif
#ifdef HAVE_SQRTF
#define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
#else
#define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
#endif
#ifdef HAVE_ACOSF
#define aluAcos(x) ((ALfloat)acosf((float)(x)))
#else
#define aluAcos(x) ((ALfloat)acos((double)(x)))
#endif
#ifdef HAVE_ATANF
#define aluAtan(x) ((ALfloat)atanf((float)(x)))
#else
#define aluAtan(x) ((ALfloat)atan((double)(x)))
#endif
#ifdef HAVE_FABSF
#define aluFabs(x) ((ALfloat)fabsf((float)(x)))
#else
#define aluFabs(x) ((ALfloat)fabs((double)(x)))
#endif
// fixes for mingw32.
#if defined(max) && !defined(__max)
#define __max max
#endif
#if defined(min) && !defined(__min)
#define __min min
#endif
#define FRACTIONBITS 14
#define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
#define MAX_PITCH 65536
/* Minimum ramp length in milliseconds. The value below was chosen to
* adequately reduce clicks and pops from harsh gain changes. */
#define MIN_RAMP_LENGTH 16
ALboolean DuplicateStereo = AL_FALSE;
/* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
* converted to AL_FORMAT_QUAD* when loaded */
__inline ALuint aluBytesFromFormat(ALenum format)
{
switch(format)
{
case AL_FORMAT_MONO8:
case AL_FORMAT_STEREO8:
case AL_FORMAT_QUAD8_LOKI:
case AL_FORMAT_QUAD8:
case AL_FORMAT_51CHN8:
case AL_FORMAT_61CHN8:
case AL_FORMAT_71CHN8:
return 1;
case AL_FORMAT_MONO16:
case AL_FORMAT_STEREO16:
case AL_FORMAT_QUAD16_LOKI:
case AL_FORMAT_QUAD16:
case AL_FORMAT_51CHN16:
case AL_FORMAT_61CHN16:
case AL_FORMAT_71CHN16:
return 2;
case AL_FORMAT_MONO_FLOAT32:
case AL_FORMAT_STEREO_FLOAT32:
case AL_FORMAT_QUAD32:
case AL_FORMAT_51CHN32:
case AL_FORMAT_61CHN32:
case AL_FORMAT_71CHN32:
return 4;
default:
return 0;
}
}
__inline ALuint aluChannelsFromFormat(ALenum format)
{
switch(format)
{
case AL_FORMAT_MONO8:
case AL_FORMAT_MONO16:
case AL_FORMAT_MONO_FLOAT32:
return 1;
case AL_FORMAT_STEREO8:
case AL_FORMAT_STEREO16:
case AL_FORMAT_STEREO_FLOAT32:
return 2;
case AL_FORMAT_QUAD8_LOKI:
case AL_FORMAT_QUAD16_LOKI:
case AL_FORMAT_QUAD8:
case AL_FORMAT_QUAD16:
case AL_FORMAT_QUAD32:
return 4;
case AL_FORMAT_51CHN8:
case AL_FORMAT_51CHN16:
case AL_FORMAT_51CHN32:
return 6;
case AL_FORMAT_61CHN8:
case AL_FORMAT_61CHN16:
case AL_FORMAT_61CHN32:
return 7;
case AL_FORMAT_71CHN8:
case AL_FORMAT_71CHN16:
case AL_FORMAT_71CHN32:
return 8;
default:
return 0;
}
}
static __inline ALfloat lpFilter(FILTER *iir, ALfloat input)
{
ALfloat *history = iir->history;
ALfloat a = iir->coeff;
ALfloat output = input;
output = output + (history[0]-output)*a;
history[0] = output;
output = output + (history[1]-output)*a;
history[1] = output;
output = output + (history[2]-output)*a;
history[2] = output;
output = output + (history[3]-output)*a;
history[3] = output;
return output;
}
static __inline ALfloat lpFilterMC(FILTER *iir, ALuint chan, ALfloat input)
{
ALfloat *history = &iir->history[chan*2];
ALfloat a = iir->coeff;
ALfloat output = input;
output = output + (history[0]-output)*a;
history[0] = output;
output = output + (history[1]-output)*a;
history[1] = output;
return output;
}
static __inline ALshort aluF2S(ALfloat Value)
{
ALint i;
i = (ALint)Value;
i = __min( 32767, i);
i = __max(-32768, i);
return ((ALshort)i);
}
static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
{
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
}
static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
{
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
inVector1[2]*inVector2[2];
}
static __inline ALvoid aluNormalize(ALfloat *inVector)
{
ALfloat length, inverse_length;
length = aluSqrt(aluDotproduct(inVector, inVector));
if(length != 0.0f)
{
inverse_length = 1.0f/length;
inVector[0] *= inverse_length;
inVector[1] *= inverse_length;
inVector[2] *= inverse_length;
}
}
static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
{
ALfloat result[3];
result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
memcpy(vector, result, sizeof(result));
}
static ALvoid SetSpeakerArrangement(const char *name, ALfloat SpeakerAngle[OUTPUTCHANNELS],
ALint Speaker2Chan[OUTPUTCHANNELS], ALint chans)
{
const char *confkey;
const char *next;
const char *sep;
const char *end;
int i, val;
confkey = GetConfigValue(NULL, name, "");
next = confkey;
while(next && *next)
{
confkey = next;
next = strchr(confkey, ',');
if(next)
{
do {
next++;
} while(isspace(*next));
}
sep = strchr(confkey, '=');
if(!sep || confkey == sep)
continue;
end = sep - 1;
while(isspace(*end) && end != confkey)
end--;
if(strncmp(confkey, "fl", end-confkey) == 0)
val = FRONT_LEFT;
else if(strncmp(confkey, "fr", end-confkey) == 0)
val = FRONT_RIGHT;
else if(strncmp(confkey, "fc", end-confkey) == 0)
val = FRONT_CENTER;
else if(strncmp(confkey, "bl", end-confkey) == 0)
val = BACK_LEFT;
else if(strncmp(confkey, "br", end-confkey) == 0)
val = BACK_RIGHT;
else if(strncmp(confkey, "bc", end-confkey) == 0)
val = BACK_CENTER;
else if(strncmp(confkey, "sl", end-confkey) == 0)
val = SIDE_LEFT;
else if(strncmp(confkey, "sr", end-confkey) == 0)
val = SIDE_RIGHT;
else
{
AL_PRINT("Unknown speaker for %s: \"%c%c\"\n", name, confkey[0], confkey[1]);
continue;
}
sep++;
while(isspace(*sep))
sep++;
for(i = 0;i < chans;i++)
{
if(Speaker2Chan[i] == val)
{
val = strtol(sep, NULL, 10);
if(val >= -180 && val <= 180)
SpeakerAngle[i] = val * M_PI/180.0f;
else
AL_PRINT("Invalid angle for speaker \"%c%c\": %d\n", confkey[0], confkey[1], val);
break;
}
}
}
for(i = 1;i < chans;i++)
{
if(SpeakerAngle[i] <= SpeakerAngle[i-1])
{
AL_PRINT("Speaker %d of %d does not follow previous: %f > %f\n", i, chans,
SpeakerAngle[i-1] * 180.0f/M_PI, SpeakerAngle[i] * 180.0f/M_PI);
SpeakerAngle[i] = SpeakerAngle[i-1] + 1 * 180.0f/M_PI;
}
}
}
static __inline ALfloat aluLUTpos2Angle(ALint pos)
{
if(pos < QUADRANT_NUM)
return aluAtan((ALfloat)pos / (ALfloat)(QUADRANT_NUM - pos));
if(pos < 2 * QUADRANT_NUM)
return M_PI_2 + aluAtan((ALfloat)(pos - QUADRANT_NUM) / (ALfloat)(2 * QUADRANT_NUM - pos));
if(pos < 3 * QUADRANT_NUM)
return aluAtan((ALfloat)(pos - 2 * QUADRANT_NUM) / (ALfloat)(3 * QUADRANT_NUM - pos)) - M_PI;
return aluAtan((ALfloat)(pos - 3 * QUADRANT_NUM) / (ALfloat)(4 * QUADRANT_NUM - pos)) - M_PI_2;
}
ALvoid aluInitPanning(ALCcontext *Context)
{
ALint pos, offset, s;
ALfloat Alpha, Theta;
ALfloat SpeakerAngle[OUTPUTCHANNELS];
ALint Speaker2Chan[OUTPUTCHANNELS];
for(s = 0;s < OUTPUTCHANNELS;s++)
{
int s2;
for(s2 = 0;s2 < OUTPUTCHANNELS;s2++)
Context->ChannelMatrix[s][s2] = ((s==s2) ? 1.0f : 0.0f);
}
switch(Context->Device->Format)
{
/* Mono is rendered as stereo, then downmixed during post-process */
case AL_FORMAT_MONO8:
case AL_FORMAT_MONO16:
case AL_FORMAT_MONO_FLOAT32:
Context->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = 1.0f;
Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = 1.0f;
Context->ChannelMatrix[BACK_LEFT][FRONT_LEFT] = 1.0f;
Context->ChannelMatrix[BACK_RIGHT][FRONT_RIGHT] = 1.0f;
Context->ChannelMatrix[BACK_CENTER][FRONT_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[BACK_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
Context->NumChan = 2;
Speaker2Chan[0] = FRONT_LEFT;
Speaker2Chan[1] = FRONT_RIGHT;
SpeakerAngle[0] = -90.0f * M_PI/180.0f;
SpeakerAngle[1] = 90.0f * M_PI/180.0f;
break;
case AL_FORMAT_STEREO8:
case AL_FORMAT_STEREO16:
case AL_FORMAT_STEREO_FLOAT32:
Context->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = 1.0f;
Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = 1.0f;
Context->ChannelMatrix[BACK_LEFT][FRONT_LEFT] = 1.0f;
Context->ChannelMatrix[BACK_RIGHT][FRONT_RIGHT] = 1.0f;
Context->ChannelMatrix[BACK_CENTER][FRONT_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[BACK_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
Context->NumChan = 2;
Speaker2Chan[0] = FRONT_LEFT;
Speaker2Chan[1] = FRONT_RIGHT;
SpeakerAngle[0] = -90.0f * M_PI/180.0f;
SpeakerAngle[1] = 90.0f * M_PI/180.0f;
SetSpeakerArrangement("layout_STEREO", SpeakerAngle, Speaker2Chan, Context->NumChan);
break;
case AL_FORMAT_QUAD8:
case AL_FORMAT_QUAD16:
case AL_FORMAT_QUAD32:
Context->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5);
Context->ChannelMatrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5);
Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
Context->NumChan = 4;
Speaker2Chan[0] = BACK_LEFT;
Speaker2Chan[1] = FRONT_LEFT;
Speaker2Chan[2] = FRONT_RIGHT;
Speaker2Chan[3] = BACK_RIGHT;
SpeakerAngle[0] = -135.0f * M_PI/180.0f;
SpeakerAngle[1] = -45.0f * M_PI/180.0f;
SpeakerAngle[2] = 45.0f * M_PI/180.0f;
SpeakerAngle[3] = 135.0f * M_PI/180.0f;
SetSpeakerArrangement("layout_QUAD", SpeakerAngle, Speaker2Chan, Context->NumChan);
break;
case AL_FORMAT_51CHN8:
case AL_FORMAT_51CHN16:
case AL_FORMAT_51CHN32:
Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5);
Context->ChannelMatrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5);
Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
Context->NumChan = 5;
Speaker2Chan[0] = BACK_LEFT;
Speaker2Chan[1] = FRONT_LEFT;
Speaker2Chan[2] = FRONT_CENTER;
Speaker2Chan[3] = FRONT_RIGHT;
Speaker2Chan[4] = BACK_RIGHT;
SpeakerAngle[0] = -110.0f * M_PI/180.0f;
SpeakerAngle[1] = -30.0f * M_PI/180.0f;
SpeakerAngle[2] = 0.0f * M_PI/180.0f;
SpeakerAngle[3] = 30.0f * M_PI/180.0f;
SpeakerAngle[4] = 110.0f * M_PI/180.0f;
SetSpeakerArrangement("layout_51CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
break;
case AL_FORMAT_61CHN8:
case AL_FORMAT_61CHN16:
case AL_FORMAT_61CHN32:
Context->ChannelMatrix[BACK_LEFT][BACK_CENTER] = aluSqrt(0.5);
Context->ChannelMatrix[BACK_LEFT][SIDE_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[BACK_RIGHT][BACK_CENTER] = aluSqrt(0.5);
Context->ChannelMatrix[BACK_RIGHT][SIDE_RIGHT] = aluSqrt(0.5);
Context->NumChan = 6;
Speaker2Chan[0] = SIDE_LEFT;
Speaker2Chan[1] = FRONT_LEFT;
Speaker2Chan[2] = FRONT_CENTER;
Speaker2Chan[3] = FRONT_RIGHT;
Speaker2Chan[4] = SIDE_RIGHT;
Speaker2Chan[5] = BACK_CENTER;
SpeakerAngle[0] = -90.0f * M_PI/180.0f;
SpeakerAngle[1] = -30.0f * M_PI/180.0f;
SpeakerAngle[2] = 0.0f * M_PI/180.0f;
SpeakerAngle[3] = 30.0f * M_PI/180.0f;
SpeakerAngle[4] = 90.0f * M_PI/180.0f;
SpeakerAngle[5] = 180.0f * M_PI/180.0f;
SetSpeakerArrangement("layout_61CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
break;
case AL_FORMAT_71CHN8:
case AL_FORMAT_71CHN16:
case AL_FORMAT_71CHN32:
Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
Context->NumChan = 7;
Speaker2Chan[0] = BACK_LEFT;
Speaker2Chan[1] = SIDE_LEFT;
Speaker2Chan[2] = FRONT_LEFT;
Speaker2Chan[3] = FRONT_CENTER;
Speaker2Chan[4] = FRONT_RIGHT;
Speaker2Chan[5] = SIDE_RIGHT;
Speaker2Chan[6] = BACK_RIGHT;
SpeakerAngle[0] = -150.0f * M_PI/180.0f;
SpeakerAngle[1] = -90.0f * M_PI/180.0f;
SpeakerAngle[2] = -30.0f * M_PI/180.0f;
SpeakerAngle[3] = 0.0f * M_PI/180.0f;
SpeakerAngle[4] = 30.0f * M_PI/180.0f;
SpeakerAngle[5] = 90.0f * M_PI/180.0f;
SpeakerAngle[6] = 150.0f * M_PI/180.0f;
SetSpeakerArrangement("layout_71CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
break;
default:
assert(0);
}
for(pos = 0; pos < LUT_NUM; pos++)
{
/* source angle */
Theta = aluLUTpos2Angle(pos);
/* clear all values */
offset = OUTPUTCHANNELS * pos;
for(s = 0; s < OUTPUTCHANNELS; s++)
Context->PanningLUT[offset+s] = 0.0f;
/* set panning values */
for(s = 0; s < Context->NumChan - 1; s++)
{
if(Theta >= SpeakerAngle[s] && Theta < SpeakerAngle[s+1])
{
/* source between speaker s and speaker s+1 */
Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) /
(SpeakerAngle[s+1]-SpeakerAngle[s]);
Context->PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha);
Context->PanningLUT[offset + Speaker2Chan[s+1]] = sin(Alpha);
break;
}
}
if(s == Context->NumChan - 1)
{
/* source between last and first speaker */
if(Theta < SpeakerAngle[0])
Theta += 2.0f * M_PI;
Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) /
(2.0f * M_PI + SpeakerAngle[0]-SpeakerAngle[s]);
Context->PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha);
Context->PanningLUT[offset + Speaker2Chan[0]] = sin(Alpha);
}
}
}
static __inline ALint aluCart2LUTpos(ALfloat re, ALfloat im)
{
ALint pos = 0;
ALfloat denom = aluFabs(re) + aluFabs(im);
if(denom > 0.0f)
pos = (ALint)(QUADRANT_NUM*aluFabs(im) / denom + 0.5);
if(re < 0.0)
pos = 2 * QUADRANT_NUM - pos;
if(im < 0.0)
pos = LUT_NUM - pos;
return pos%LUT_NUM;
}
static ALvoid CalcSourceParams(const ALCcontext *ALContext,
const ALsource *ALSource, ALenum isMono,
ALfloat *drysend, ALfloat *wetsend,
ALfloat *pitch, ALfloat *drygainhf,
ALfloat *wetgainhf)
{
ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix;
ALfloat Direction[3],Position[3],SourceToListener[3];
ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
ALfloat ConeVolume,SourceVolume,ListenerGain;
ALfloat U[3],V[3],N[3];
ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
ALfloat Matrix[3][3];
ALfloat flAttenuation;
ALfloat RoomAttenuation[MAX_SENDS];
ALfloat MetersPerUnit;
ALfloat RoomRolloff[MAX_SENDS];
ALfloat DryGainHF = 1.0f;
ALfloat DirGain, AmbientGain;
const ALfloat *SpeakerGain;
ALint pos, s, i;
//Get context properties
DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
DopplerVelocity = ALContext->DopplerVelocity;
flSpeedOfSound = ALContext->flSpeedOfSound;
//Get listener properties
ListenerGain = ALContext->Listener.Gain;
MetersPerUnit = ALContext->Listener.MetersPerUnit;
//Get source properties
SourceVolume = ALSource->flGain;
memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
MinVolume = ALSource->flMinGain;
MaxVolume = ALSource->flMaxGain;
MinDist = ALSource->flRefDistance;
MaxDist = ALSource->flMaxDistance;
Rolloff = ALSource->flRollOffFactor;
InnerAngle = ALSource->flInnerAngle;
OuterAngle = ALSource->flOuterAngle;
OuterGainHF = ALSource->OuterGainHF;
for(i = 0;i < MAX_SENDS;i++)
RoomRolloff[i] = ALSource->RoomRolloffFactor;
//Only apply 3D calculations for mono buffers
if(isMono != AL_FALSE)
{
//1. Translate Listener to origin (convert to head relative)
// Note that Direction and SourceToListener are *not* transformed.
// SourceToListener is used with the source and listener velocities,
// which are untransformed, and Direction is used with SourceToListener
// for the sound cone
if(ALSource->bHeadRelative==AL_FALSE)
{
// Build transform matrix
aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
aluNormalize(U); // Normalized Right-vector
memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
aluNormalize(V); // Normalized Up-vector
memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
aluNormalize(N); // Normalized At-vector
Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
// Translate source position into listener space
Position[0] -= ALContext->Listener.Position[0];
Position[1] -= ALContext->Listener.Position[1];
Position[2] -= ALContext->Listener.Position[2];
SourceToListener[0] = -Position[0];
SourceToListener[1] = -Position[1];
SourceToListener[2] = -Position[2];
// Transform source position into listener space
aluMatrixVector(Position, Matrix);
}
else
{
SourceToListener[0] = -Position[0];
SourceToListener[1] = -Position[1];
SourceToListener[2] = -Position[2];
}
aluNormalize(SourceToListener);
aluNormalize(Direction);
//2. Calculate distance attenuation
Distance = aluSqrt(aluDotproduct(Position, Position));
for(i = 0;i < MAX_SENDS;i++)
{
if(ALSource->Send[i].Slot &&
ALSource->Send[i].Slot->effect.type == AL_EFFECT_REVERB)
RoomRolloff[i] += ALSource->Send[i].Slot->effect.Reverb.RoomRolloffFactor;
}
flAttenuation = 1.0f;
for(i = 0;i < MAX_SENDS;i++)
RoomAttenuation[i] = 1.0f;
switch (ALSource->DistanceModel)
{
case AL_INVERSE_DISTANCE_CLAMPED:
Distance=__max(Distance,MinDist);
Distance=__min(Distance,MaxDist);
if (MaxDist < MinDist)
break;
//fall-through
case AL_INVERSE_DISTANCE:
if (MinDist > 0.0f)
{
if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
for(i = 0;i < MAX_SENDS;i++)
{
if ((MinDist + (RoomRolloff[i] * (Distance - MinDist))) > 0.0f)
RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (Distance - MinDist)));
}
}
break;
case AL_LINEAR_DISTANCE_CLAMPED:
Distance=__max(Distance,MinDist);
Distance=__min(Distance,MaxDist);
if (MaxDist < MinDist)
break;
//fall-through
case AL_LINEAR_DISTANCE:
Distance=__min(Distance,MaxDist);
if (MaxDist != MinDist)
{
flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
for(i = 0;i < MAX_SENDS;i++)
RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(Distance-MinDist)/(MaxDist - MinDist));
}
break;
case AL_EXPONENT_DISTANCE_CLAMPED:
Distance=__max(Distance,MinDist);
Distance=__min(Distance,MaxDist);
if (MaxDist < MinDist)
break;
//fall-through
case AL_EXPONENT_DISTANCE:
if ((Distance > 0.0f) && (MinDist > 0.0f))
{
flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
for(i = 0;i < MAX_SENDS;i++)
RoomAttenuation[i] = (ALfloat)pow(Distance/MinDist, -RoomRolloff[i]);
}
break;
case AL_NONE:
break;
}
// Source Gain + Attenuation and clamp to Min/Max Gain
DryMix = SourceVolume * flAttenuation;
DryMix = __min(DryMix,MaxVolume);
DryMix = __max(DryMix,MinVolume);
for(i = 0;i < MAX_SENDS;i++)
{
ALfloat WetMix = SourceVolume * RoomAttenuation[i];
WetMix = __min(WetMix,MaxVolume);
wetsend[i] = __max(WetMix,MinVolume);
wetgainhf[i] = 1.0f;
}
// Distance-based air absorption
if(ALSource->AirAbsorptionFactor > 0.0f && ALSource->DistanceModel != AL_NONE)
{
ALfloat dist = Distance-MinDist;
ALfloat absorb;
if(dist < 0.0f) dist = 0.0f;
// Absorption calculation is done in dB
absorb = (ALSource->AirAbsorptionFactor*AIRABSORBGAINDBHF) *
(dist*MetersPerUnit);
// Convert dB to linear gain before applying
absorb = pow(10.0, absorb/20.0);
DryGainHF *= absorb;
for(i = 0;i < MAX_SENDS;i++)
wetgainhf[i] *= absorb;
}
//3. Apply directional soundcones
Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f/M_PI;
if(Angle >= InnerAngle && Angle <= OuterAngle)
{
ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
DryMix *= ConeVolume;
if(ALSource->DryGainHFAuto)
DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
if(ALSource->WetGainAuto)
{
for(i = 0;i < MAX_SENDS;i++)
wetsend[i] *= ConeVolume;
}
if(ALSource->WetGainHFAuto)
{
for(i = 0;i < MAX_SENDS;i++)
wetgainhf[i] *= (1.0f+(OuterGainHF-1.0f)*scale);
}
}
else if(Angle > OuterAngle)
{
ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
DryMix *= ConeVolume;
if(ALSource->DryGainHFAuto)
DryGainHF *= (1.0f+(OuterGainHF-1.0f));
if(ALSource->WetGainAuto)
{
for(i = 0;i < MAX_SENDS;i++)
wetsend[i] *= ConeVolume;
}
if(ALSource->WetGainHFAuto)
{
for(i = 0;i < MAX_SENDS;i++)
wetgainhf[i] *= (1.0f+(OuterGainHF-1.0f));
}
}
//4. Calculate Velocity
if(DopplerFactor != 0.0f)
{
ALfloat flVSS, flVLS = 0.0f;
if(ALSource->bHeadRelative==AL_FALSE)
flVLS = aluDotproduct(ALContext->Listener.Velocity, SourceToListener);
flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
if (flVSS >= flMaxVelocity)
flVSS = (flMaxVelocity - 1.0f);
else if (flVSS <= -flMaxVelocity)
flVSS = -flMaxVelocity + 1.0f;
if (flVLS >= flMaxVelocity)
flVLS = (flMaxVelocity - 1.0f);
else if (flVLS <= -flMaxVelocity)
flVLS = -flMaxVelocity + 1.0f;
pitch[0] = ALSource->flPitch *
((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
}
else
pitch[0] = ALSource->flPitch;
for(i = 0;i < MAX_SENDS;i++)
{
if(ALSource->Send[i].Slot &&
ALSource->Send[i].Slot->effect.type != AL_EFFECT_NULL)
{
if(ALSource->Send[i].Slot->AuxSendAuto)
{
// Apply minimal attenuation in place of missing
// statistical reverb model.
wetsend[i] *= pow(DryMix, 1.0f / 2.0f);
}
else
{
// If the slot's auxilliary send auto is off, the data sent to the
// effect slot is the same as the dry path, sans filter effects
wetsend[i] = DryMix;
wetgainhf[i] = DryGainHF;
}
// Note that this is really applied by the effect slot. However,
// it's easier (more optimal) to handle it here.
if(ALSource->Send[i].Slot->effect.type == AL_EFFECT_REVERB)
wetgainhf[i] *= ALSource->Send[0].Slot->effect.Reverb.GainHF;
}
else
{
wetsend[i] = 0.0f;
wetgainhf[i] = 1.0f;
}
switch(ALSource->Send[i].WetFilter.type)
{
case AL_FILTER_LOWPASS:
wetsend[i] *= ALSource->Send[i].WetFilter.Gain;
wetgainhf[i] *= ALSource->Send[i].WetFilter.GainHF;
break;
}
wetsend[i] *= ListenerGain;
}
//5. Apply filter gains and filters
switch(ALSource->DirectFilter.type)
{
case AL_FILTER_LOWPASS:
DryMix *= ALSource->DirectFilter.Gain;
DryGainHF *= ALSource->DirectFilter.GainHF;
break;
}
DryMix *= ListenerGain;
// Use energy-preserving panning algorithm for multi-speaker playback
aluNormalize(Position);
pos = aluCart2LUTpos(-Position[2], Position[0]);
SpeakerGain = &ALContext->PanningLUT[OUTPUTCHANNELS * pos];
DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
// elevation adjustment for directional gain. this sucks, but
// has low complexity
AmbientGain = 1.0/aluSqrt(ALContext->NumChan) * (1.0-DirGain);
for(s = 0; s < OUTPUTCHANNELS; s++)
{
ALfloat gain = SpeakerGain[s]*DirGain + AmbientGain;
drysend[s] = DryMix * gain;
}
*drygainhf = DryGainHF;
}
else
{
//1. Multi-channel buffers always play "normal"
pitch[0] = ALSource->flPitch;
DryMix = SourceVolume;
DryMix = __min(DryMix,MaxVolume);
DryMix = __max(DryMix,MinVolume);
switch(ALSource->DirectFilter.type)
{
case AL_FILTER_LOWPASS:
DryMix *= ALSource->DirectFilter.Gain;
DryGainHF *= ALSource->DirectFilter.GainHF;
break;
}
drysend[FRONT_LEFT] = DryMix * ListenerGain;
drysend[FRONT_RIGHT] = DryMix * ListenerGain;
drysend[SIDE_LEFT] = DryMix * ListenerGain;
drysend[SIDE_RIGHT] = DryMix * ListenerGain;
drysend[BACK_LEFT] = DryMix * ListenerGain;
drysend[BACK_RIGHT] = DryMix * ListenerGain;
drysend[FRONT_CENTER] = DryMix * ListenerGain;
drysend[BACK_CENTER] = DryMix * ListenerGain;
drysend[LFE] = DryMix * ListenerGain;
*drygainhf = DryGainHF;
for(i = 0;i < MAX_SENDS;i++)
{
wetsend[i] = 0.0f;
wetgainhf[i] = 1.0f;
}
}
}
static __inline ALshort lerp(ALshort val1, ALshort val2, ALint frac)
{
return val1 + (((val2-val1)*frac)>>FRACTIONBITS);
}
ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
{
static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
static float DummyBuffer[BUFFERSIZE];
ALfloat *WetBuffer[MAX_SENDS];
ALfloat (*Matrix)[OUTPUTCHANNELS] = ALContext->ChannelMatrix;
ALfloat newDrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
ALfloat newWetSend[MAX_SENDS];
ALfloat DryGainHF = 0.0f;
ALfloat WetGainHF[MAX_SENDS];
ALfloat *DrySend;
ALfloat *WetSend;
ALuint rampLength;
ALfloat dryGainStep[OUTPUTCHANNELS];
ALfloat wetGainStep[MAX_SENDS];
ALuint BlockAlign,BufferSize;
ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
ALuint Channels,Frequency,ulExtraSamples;
ALfloat Pitch;
ALint Looping,State;
ALint increment;
ALuint Buffer;
ALuint SamplesToDo;
ALsource *ALSource;
ALbuffer *ALBuffer;
ALeffectslot *ALEffectSlot;
ALfloat values[OUTPUTCHANNELS];
ALfloat value;
ALshort *Data;
ALuint i,j,k,out;
ALfloat cw, a, g;
ALbufferlistitem *BufferListItem;
ALuint loop;
ALint64 DataSize64,DataPos64;
FILTER *DryFilter, *WetFilter[MAX_SENDS];
int fpuState;
SuspendContext(ALContext);
#if defined(HAVE_FESETROUND)
fpuState = fegetround();
fesetround(FE_TOWARDZERO);
#elif defined(HAVE__CONTROLFP)
fpuState = _controlfp(0, 0);
_controlfp(_RC_CHOP, _MCW_RC);
#else
(void)fpuState;
#endif
//Figure output format variables
BlockAlign = aluChannelsFromFormat(format);
BlockAlign *= aluBytesFromFormat(format);
size /= BlockAlign;
while(size > 0)
{
//Setup variables
SamplesToDo = min(size, BUFFERSIZE);
if(ALContext)
{
ALEffectSlot = ALContext->AuxiliaryEffectSlot;
ALSource = ALContext->Source;
rampLength = ALContext->Frequency * MIN_RAMP_LENGTH / 1000;
}
else
{
ALEffectSlot = NULL;
ALSource = NULL;
rampLength = 0;
}
rampLength = max(rampLength, SamplesToDo);
//Clear mixing buffer
memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
//Actual mixing loop
while(ALSource)
{
j = 0;
State = ALSource->state;
while(State == AL_PLAYING && j < SamplesToDo)
{
DataSize = 0;
DataPosInt = 0;
DataPosFrac = 0;
//Get buffer info
if((Buffer = ALSource->ulBufferID))
{
ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
Data = ALBuffer->data;
Channels = aluChannelsFromFormat(ALBuffer->format);
DataSize = ALBuffer->size;
DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
Frequency = ALBuffer->frequency;
DataPosInt = ALSource->position;
DataPosFrac = ALSource->position_fraction;
if(DataPosInt >= DataSize)
goto skipmix;
//Get source info
DryFilter = &ALSource->iirFilter;
for(i = 0;i < MAX_SENDS;i++)
{
WetFilter[i] = &ALSource->Send[i].iirFilter;
WetBuffer[i] = (ALSource->Send[i].Slot ?
ALSource->Send[i].Slot->WetBuffer :
DummyBuffer);
}
DrySend = ALSource->DryGains;
WetSend = ALSource->WetGains;
CalcSourceParams(ALContext, ALSource,
(Channels==1) ? AL_TRUE : AL_FALSE,
newDrySend, newWetSend, &Pitch,
&DryGainHF, WetGainHF);
Pitch = (Pitch*Frequency) / ALContext->Frequency;
if(Channels == 1)
{
// Update filter coefficients. Calculations based on
// the I3DL2 spec.
cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / ALContext->Frequency);
// We use four chained one-pole filters, so we need to
// take the fourth root of the squared gain, which is
// the same as the square root of the base gain.
// Be careful with gains < 0.0001, as that causes the
// coefficient to head towards 1, which will flatten
// the signal
g = aluSqrt(__max(DryGainHF, 0.0001f));
a = 0.0f;
if(g < 0.9999f) // 1-epsilon
a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
DryFilter->coeff = a;
for(i = 0;i < MAX_SENDS;i++)
{
g = aluSqrt(__max(WetGainHF[i], 0.0001f));
a = 0.0f;
if(g < 0.9999f) // 1-epsilon
a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
WetFilter[i]->coeff = a;
}
}
else
{
// Multi-channel sources use two chained one-pole
// filters, so take the base gain (square root of the
// squared gain)
cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / ALContext->Frequency);
g = __max(DryGainHF, 0.01f);
a = 0.0f;
if(g < 0.9999f) // 1-epsilon
a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
DryFilter->coeff = a;
for(i = 0;i < MAX_SENDS;i++)
WetFilter[i]->coeff = 0.0f;
if(DuplicateStereo && Channels == 2)
{
Matrix[FRONT_LEFT][SIDE_LEFT] = 1.0f;
Matrix[FRONT_RIGHT][SIDE_RIGHT] = 1.0f;
Matrix[FRONT_LEFT][BACK_LEFT] = 1.0f;
Matrix[FRONT_RIGHT][BACK_RIGHT] = 1.0f;
}
else if(DuplicateStereo)
{
Matrix[FRONT_LEFT][SIDE_LEFT] = 0.0f;
Matrix[FRONT_RIGHT][SIDE_RIGHT] = 0.0f;
Matrix[FRONT_LEFT][BACK_LEFT] = 0.0f;
Matrix[FRONT_RIGHT][BACK_RIGHT] = 0.0f;
}
}
//Compute the gain steps for each output channel
if(ALSource->FirstStart && DataPosInt == 0 && DataPosFrac == 0)
{
for(i = 0;i < OUTPUTCHANNELS;i++)
{
DrySend[i] = newDrySend[i];
dryGainStep[i] = 0;
}
for(i = 0;i < MAX_SENDS;i++)
{
WetSend[i] = newWetSend[i];
wetGainStep[i] = 0;
}
}
else
{
for(i = 0;i < OUTPUTCHANNELS;i++)
dryGainStep[i] = (newDrySend[i]-DrySend[i]) / rampLength;
for(i = 0;i < MAX_SENDS;i++)
wetGainStep[i] = (newWetSend[i]-WetSend[i]) / rampLength;
}
ALSource->FirstStart = AL_FALSE;
//Compute 18.14 fixed point step
if(Pitch > (float)MAX_PITCH)
Pitch = (float)MAX_PITCH;
increment = (ALint)(Pitch*(ALfloat)(1L<<FRACTIONBITS));
if(increment <= 0)
increment = (1<<FRACTIONBITS);
//Figure out how many samples we can mix.
DataSize64 = DataSize;
DataSize64 <<= FRACTIONBITS;
DataPos64 = DataPosInt;
DataPos64 <<= FRACTIONBITS;
DataPos64 += DataPosFrac;
BufferSize = (ALuint)((DataSize64-DataPos64+(increment-1)) / increment);
BufferListItem = ALSource->queue;
for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
{
if(BufferListItem)
BufferListItem = BufferListItem->next;
}
if (BufferListItem)
{
if (BufferListItem->next)
{
ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer);
if(NextBuf && NextBuf->data)
{
ulExtraSamples = min(NextBuf->size, (ALint)(ALBuffer->padding*Channels*2));
memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
}
}
else if (ALSource->bLooping)
{
ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer);
if (NextBuf && NextBuf->data)
{
ulExtraSamples = min(NextBuf->size, (ALint)(ALBuffer->padding*Channels*2));
memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
}
}
else
memset(&Data[DataSize*Channels], 0, (ALBuffer->padding*Channels*2));
}
BufferSize = min(BufferSize, (SamplesToDo-j));
//Actual sample mixing loop
k = 0;
Data += DataPosInt*Channels;
if(Channels == 1) /* Mono */
{
ALfloat outsamp;
while(BufferSize--)
{
for(i = 0;i < OUTPUTCHANNELS;i++)
DrySend[i] += dryGainStep[i];
for(i = 0;i < MAX_SENDS;i++)
WetSend[i] += wetGainStep[i];
//First order interpolator
value = lerp(Data[k], Data[k+1], DataPosFrac);
//Direct path final mix buffer and panning
outsamp = lpFilter(DryFilter, value);
DryBuffer[j][FRONT_LEFT] += outsamp*DrySend[FRONT_LEFT];
DryBuffer[j][FRONT_RIGHT] += outsamp*DrySend[FRONT_RIGHT];
DryBuffer[j][SIDE_LEFT] += outsamp*DrySend[SIDE_LEFT];
DryBuffer[j][SIDE_RIGHT] += outsamp*DrySend[SIDE_RIGHT];
DryBuffer[j][BACK_LEFT] += outsamp*DrySend[BACK_LEFT];
DryBuffer[j][BACK_RIGHT] += outsamp*DrySend[BACK_RIGHT];
DryBuffer[j][FRONT_CENTER] += outsamp*DrySend[FRONT_CENTER];
DryBuffer[j][BACK_CENTER] += outsamp*DrySend[BACK_CENTER];
//Room path final mix buffer and panning
for(i = 0;i < MAX_SENDS;i++)
{
outsamp = lpFilter(WetFilter[i], value);
WetBuffer[i][j] += outsamp*WetSend[i];
}
DataPosFrac += increment;
k += DataPosFrac>>FRACTIONBITS;
DataPosFrac &= FRACTIONMASK;
j++;
}
}
else if(Channels == 2) /* Stereo */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT
};
#define DO_MIX() do { \
for(i = 0;i < MAX_SENDS;i++) \
WetSend[i] += wetGainStep[i]*BufferSize; \
while(BufferSize--) \
{ \
for(i = 0;i < OUTPUTCHANNELS;i++) \
DrySend[i] += dryGainStep[i]; \
\
for(i = 0;i < Channels;i++) \
{ \
value = lerp(Data[k*Channels + i], Data[(k+1)*Channels + i], DataPosFrac); \
values[i] = lpFilterMC(DryFilter, chans[i], value)*DrySend[chans[i]]; \
} \
for(out = 0;out < OUTPUTCHANNELS;out++) \
{ \
ALfloat sum = 0.0f; \
for(i = 0;i < Channels;i++) \
sum += values[i]*Matrix[chans[i]][out]; \
DryBuffer[j][out] += sum; \
} \
\
DataPosFrac += increment; \
k += DataPosFrac>>FRACTIONBITS; \
DataPosFrac &= FRACTIONMASK; \
j++; \
} \
} while(0)
DO_MIX();
}
else if(Channels == 4) /* Quad */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT,
BACK_LEFT, BACK_RIGHT
};
DO_MIX();
}
else if(Channels == 6) /* 5.1 */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT,
FRONT_CENTER, LFE,
BACK_LEFT, BACK_RIGHT
};
DO_MIX();
}
else if(Channels == 7) /* 6.1 */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT,
FRONT_CENTER, LFE,
BACK_CENTER,
SIDE_LEFT, SIDE_RIGHT
};
DO_MIX();
}
else if(Channels == 8) /* 7.1 */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT,
FRONT_CENTER, LFE,
BACK_LEFT, BACK_RIGHT,
SIDE_LEFT, SIDE_RIGHT
};
DO_MIX();
#undef DO_MIX
}
else /* Unknown? */
{
for(i = 0;i < OUTPUTCHANNELS;i++)
DrySend[i] += dryGainStep[i]*BufferSize;
for(i = 0;i < MAX_SENDS;i++)
WetSend[i] += wetGainStep[i]*BufferSize;
while(BufferSize--)
{
DataPosFrac += increment;
k += DataPosFrac>>FRACTIONBITS;
DataPosFrac &= FRACTIONMASK;
j++;
}
}
DataPosInt += k;
//Update source info
ALSource->position = DataPosInt;
ALSource->position_fraction = DataPosFrac;
skipmix: ;
}
//Handle looping sources
if(!Buffer || DataPosInt >= DataSize)
{
//queueing
if(ALSource->queue)
{
Looping = ALSource->bLooping;
if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
{
BufferListItem = ALSource->queue;
for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
{
if(BufferListItem)
{
if(!Looping)
BufferListItem->bufferstate = PROCESSED;
BufferListItem = BufferListItem->next;
}
}
if(BufferListItem)
ALSource->ulBufferID = BufferListItem->buffer;
ALSource->position = DataPosInt-DataSize;
ALSource->position_fraction = DataPosFrac;
ALSource->BuffersPlayed++;
}
else
{
if(!Looping)
{
/* alSourceStop */
ALSource->state = AL_STOPPED;
ALSource->inuse = AL_FALSE;
ALSource->BuffersPlayed = ALSource->BuffersInQueue;
BufferListItem = ALSource->queue;
while(BufferListItem != NULL)
{
BufferListItem->bufferstate = PROCESSED;
BufferListItem = BufferListItem->next;
}
ALSource->position = DataSize;
ALSource->position_fraction = 0;
}
else
{
/* alSourceRewind */
/* alSourcePlay */
ALSource->state = AL_PLAYING;
ALSource->inuse = AL_TRUE;
ALSource->play = AL_TRUE;
ALSource->BuffersPlayed = 0;
BufferListItem = ALSource->queue;
while(BufferListItem != NULL)
{
BufferListItem->bufferstate = PENDING;
BufferListItem = BufferListItem->next;
}
ALSource->ulBufferID = ALSource->queue->buffer;
if(ALSource->BuffersInQueue == 1)
ALSource->position = DataPosInt%DataSize;
else
ALSource->position = DataPosInt-DataSize;
ALSource->position_fraction = DataPosFrac;
}
}
}
}
//Get source state
State = ALSource->state;
}
ALSource = ALSource->next;
}
// effect slot processing
while(ALEffectSlot)
{
if(ALEffectSlot->effect.type == AL_EFFECT_REVERB)
VerbProcess(ALEffectSlot->ReverbState, SamplesToDo, ALEffectSlot->WetBuffer, DryBuffer);
else if(ALEffectSlot->effect.type == AL_EFFECT_ECHO)
EchoProcess(ALEffectSlot->EchoState, SamplesToDo, ALEffectSlot->WetBuffer, DryBuffer);
for(i = 0;i < SamplesToDo;i++)
ALEffectSlot->WetBuffer[i] = 0.0f;
ALEffectSlot = ALEffectSlot->next;
}
//Post processing loop
switch(format)
{
case AL_FORMAT_MONO8:
for(i = 0;i < SamplesToDo;i++)
{
((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT])>>8)+128);
buffer = ((ALubyte*)buffer) + 1;
}
break;
case AL_FORMAT_STEREO8:
if(ALContext && ALContext->bs2b)
{
for(i = 0;i < SamplesToDo;i++)
{
float samples[2];
samples[0] = DryBuffer[i][FRONT_LEFT];
samples[1] = DryBuffer[i][FRONT_RIGHT];
bs2b_cross_feed(ALContext->bs2b, samples);
((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
buffer = ((ALubyte*)buffer) + 2;
}
}
else
{
for(i = 0;i < SamplesToDo;i++)
{
((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT])>>8)+128);
((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT])>>8)+128);
buffer = ((ALubyte*)buffer) + 2;
}
}
break;
case AL_FORMAT_QUAD8:
for(i = 0;i < SamplesToDo;i++)
{
((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT])>>8)+128);
((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT])>>8)+128);
((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
buffer = ((ALubyte*)buffer) + 4;
}
break;
case AL_FORMAT_51CHN8:
for(i = 0;i < SamplesToDo;i++)
{
((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT])>>8)+128);
((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT])>>8)+128);
#ifdef _WIN32 /* Of course, Windows can't use the same ordering... */
((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_CENTER])>>8)+128);
((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
#else
((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_CENTER])>>8)+128);
((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
#endif
buffer = ((ALubyte*)buffer) + 6;
}
break;
case AL_FORMAT_61CHN8:
for(i = 0;i < SamplesToDo;i++)
{
((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT])>>8)+128);
((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT])>>8)+128);
((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_CENTER])>>8)+128);
((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_CENTER])>>8)+128);
((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT])>>8)+128);
((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT])>>8)+128);
buffer = ((ALubyte*)buffer) + 7;
}
break;
case AL_FORMAT_71CHN8:
for(i = 0;i < SamplesToDo;i++)
{
((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT])>>8)+128);
((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT])>>8)+128);
#ifdef _WIN32
((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_CENTER])>>8)+128);
((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
#else
((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_CENTER])>>8)+128);
((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
#endif
((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT])>>8)+128);
((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT])>>8)+128);
buffer = ((ALubyte*)buffer) + 8;
}
break;
case AL_FORMAT_MONO16:
for(i = 0;i < SamplesToDo;i++)
{
((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]);
buffer = ((ALshort*)buffer) + 1;
}
break;
case AL_FORMAT_STEREO16:
if(ALContext && ALContext->bs2b)
{
for(i = 0;i < SamplesToDo;i++)
{
float samples[2];
samples[0] = DryBuffer[i][FRONT_LEFT];
samples[1] = DryBuffer[i][FRONT_RIGHT];
bs2b_cross_feed(ALContext->bs2b, samples);
((ALshort*)buffer)[0] = aluF2S(samples[0]);
((ALshort*)buffer)[1] = aluF2S(samples[1]);
buffer = ((ALshort*)buffer) + 2;
}
}
else
{
for(i = 0;i < SamplesToDo;i++)
{
((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]);
((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]);
buffer = ((ALshort*)buffer) + 2;
}
}
break;
case AL_FORMAT_QUAD16:
for(i = 0;i < SamplesToDo;i++)
{
((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]);
((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]);
((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT]);
((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT]);
buffer = ((ALshort*)buffer) + 4;
}
break;
case AL_FORMAT_51CHN16:
for(i = 0;i < SamplesToDo;i++)
{
((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]);
((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]);
#ifdef _WIN32
((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][FRONT_CENTER]);
((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE]);
((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT]);
((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT]);
#else
((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT]);
((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT]);
((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][FRONT_CENTER]);
((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE]);
#endif
buffer = ((ALshort*)buffer) + 6;
}
break;
case AL_FORMAT_61CHN16:
for(i = 0;i < SamplesToDo;i++)
{
((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]);
((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]);
((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][FRONT_CENTER]);
((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE]);
((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_CENTER]);
((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][SIDE_LEFT]);
((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_RIGHT]);
buffer = ((ALshort*)buffer) + 7;
}
break;
case AL_FORMAT_71CHN16:
for(i = 0;i < SamplesToDo;i++)
{
((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]);
((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]);
#ifdef _WIN32
((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][FRONT_CENTER]);
((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE]);
((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT]);
((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT]);
#else
((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT]);
((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT]);
((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][FRONT_CENTER]);
((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE]);
#endif
((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_LEFT]);
((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][SIDE_RIGHT]);
buffer = ((ALshort*)buffer) + 8;
}
break;
default:
break;
}
size -= SamplesToDo;
}
#if defined(HAVE_FESETROUND)
fesetround(fpuState);
#elif defined(HAVE__CONTROLFP)
_controlfp(fpuState, 0xfffff);
#endif
ProcessContext(ALContext);
}