AuroraOpenALSoft/examples/alffplay.cpp
2017-07-23 00:18:32 -07:00

1571 lines
45 KiB
C++

/*
* An example showing how to play a stream sync'd to video, using ffmpeg.
*
* Requires C++11.
*/
#include <condition_variable>
#include <functional>
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <limits>
#include <thread>
#include <chrono>
#include <atomic>
#include <mutex>
#include <deque>
#include <array>
extern "C" {
#include "libavcodec/avcodec.h"
#include "libavformat/avformat.h"
#include "libavformat/avio.h"
#include "libavutil/time.h"
#include "libavutil/pixfmt.h"
#include "libavutil/avstring.h"
#include "libavutil/channel_layout.h"
#include "libswscale/swscale.h"
#include "libswresample/swresample.h"
}
#include "SDL.h"
#include "AL/alc.h"
#include "AL/al.h"
#include "AL/alext.h"
namespace
{
static const std::string AppName("alffplay");
static bool do_direct_out = false;
static bool has_latency_check = false;
static LPALGETSOURCEDVSOFT alGetSourcedvSOFT;
#define AUDIO_BUFFER_TIME 100 /* In milliseconds, per-buffer */
#define AUDIO_BUFFER_QUEUE_SIZE 8 /* Number of buffers to queue */
#define MAX_QUEUE_SIZE (15 * 1024 * 1024) /* Bytes of compressed data to keep queued */
#define AV_SYNC_THRESHOLD 0.01
#define AV_NOSYNC_THRESHOLD 10.0
#define SAMPLE_CORRECTION_MAX_DIFF 0.05
#define AUDIO_DIFF_AVG_NB 20
#define VIDEO_PICTURE_QUEUE_SIZE 16
enum {
FF_UPDATE_EVENT = SDL_USEREVENT,
FF_REFRESH_EVENT,
FF_MOVIE_DONE_EVENT
};
enum {
AV_SYNC_AUDIO_MASTER,
AV_SYNC_VIDEO_MASTER,
AV_SYNC_EXTERNAL_MASTER,
DEFAULT_AV_SYNC_TYPE = AV_SYNC_EXTERNAL_MASTER
};
struct PacketQueue {
std::deque<AVPacket> mPackets;
std::atomic<int> mTotalSize;
std::atomic<bool> mFinished;
std::mutex mMutex;
std::condition_variable mCond;
PacketQueue() : mTotalSize(0), mFinished(false)
{ }
~PacketQueue()
{ clear(); }
int put(const AVPacket *pkt);
int peek(AVPacket *pkt, std::atomic<bool> &quit_var);
void pop();
void clear();
void finish();
};
struct MovieState;
struct AudioState {
MovieState *mMovie;
AVStream *mStream;
AVCodecContext *mCodecCtx;
PacketQueue mQueue;
/* Used for clock difference average computation */
struct {
std::atomic<int> Clocks; /* In microseconds */
double Accum;
double AvgCoeff;
double Threshold;
int AvgCount;
} mDiff;
/* Time (in seconds) of the next sample to be buffered */
double mCurrentPts;
/* Decompressed sample frame, and swresample context for conversion */
AVFrame *mDecodedFrame;
struct SwrContext *mSwresCtx;
/* Conversion format, for what gets fed to Alure */
int mDstChanLayout;
enum AVSampleFormat mDstSampleFmt;
/* Storage of converted samples */
uint8_t *mSamples;
int mSamplesLen; /* In samples */
int mSamplesPos;
int mSamplesMax;
/* OpenAL format */
ALenum mFormat;
ALsizei mFrameSize;
std::recursive_mutex mSrcMutex;
ALuint mSource;
ALuint mBuffers[AUDIO_BUFFER_QUEUE_SIZE];
ALsizei mBufferIdx;
AudioState(MovieState *movie)
: mMovie(movie), mStream(nullptr), mCodecCtx(nullptr)
, mDiff{{0}, 0.0, 0.0, 0.0, 0}, mCurrentPts(0.0), mDecodedFrame(nullptr)
, mSwresCtx(nullptr), mDstChanLayout(0), mDstSampleFmt(AV_SAMPLE_FMT_NONE)
, mSamples(nullptr), mSamplesLen(0), mSamplesPos(0), mSamplesMax(0)
, mFormat(AL_NONE), mFrameSize(0), mSource(0), mBufferIdx(0)
{
for(auto &buf : mBuffers)
buf = 0;
}
~AudioState()
{
if(mSource)
alDeleteSources(1, &mSource);
alDeleteBuffers(AUDIO_BUFFER_QUEUE_SIZE, mBuffers);
av_frame_free(&mDecodedFrame);
swr_free(&mSwresCtx);
av_freep(&mSamples);
avcodec_free_context(&mCodecCtx);
}
double getClock();
int getSync();
int decodeFrame();
int readAudio(uint8_t *samples, int length);
int handler();
};
struct VideoState {
MovieState *mMovie;
AVStream *mStream;
AVCodecContext *mCodecCtx;
PacketQueue mQueue;
double mClock;
double mFrameTimer;
double mFrameLastPts;
double mFrameLastDelay;
double mCurrentPts;
/* time (av_gettime) at which we updated mCurrentPts - used to have running video pts */
int64_t mCurrentPtsTime;
/* Decompressed video frame, and swscale context for conversion */
AVFrame *mDecodedFrame;
struct SwsContext *mSwscaleCtx;
struct Picture {
SDL_Texture *mImage;
int mWidth, mHeight; /* Logical image size (actual size may be larger) */
std::atomic<bool> mUpdated;
double mPts;
Picture()
: mImage(nullptr), mWidth(0), mHeight(0), mUpdated(false), mPts(0.0)
{ }
~Picture()
{
if(mImage)
SDL_DestroyTexture(mImage);
mImage = nullptr;
}
};
std::array<Picture,VIDEO_PICTURE_QUEUE_SIZE> mPictQ;
size_t mPictQSize, mPictQRead, mPictQWrite;
std::mutex mPictQMutex;
std::condition_variable mPictQCond;
bool mFirstUpdate;
std::atomic<bool> mEOS;
std::atomic<bool> mFinalUpdate;
VideoState(MovieState *movie)
: mMovie(movie), mStream(nullptr), mCodecCtx(nullptr), mClock(0.0)
, mFrameTimer(0.0), mFrameLastPts(0.0), mFrameLastDelay(0.0)
, mCurrentPts(0.0), mCurrentPtsTime(0), mDecodedFrame(nullptr)
, mSwscaleCtx(nullptr), mPictQSize(0), mPictQRead(0), mPictQWrite(0)
, mFirstUpdate(true), mEOS(false), mFinalUpdate(false)
{ }
~VideoState()
{
sws_freeContext(mSwscaleCtx);
mSwscaleCtx = nullptr;
av_frame_free(&mDecodedFrame);
avcodec_free_context(&mCodecCtx);
}
double getClock();
static Uint32 SDLCALL sdl_refresh_timer_cb(Uint32 interval, void *opaque);
void schedRefresh(int delay);
void display(SDL_Window *screen, SDL_Renderer *renderer);
void refreshTimer(SDL_Window *screen, SDL_Renderer *renderer);
void updatePicture(SDL_Window *screen, SDL_Renderer *renderer);
int queuePicture(double pts);
double synchronize(double pts);
int handler();
};
struct MovieState {
AVFormatContext *mFormatCtx;
int mVideoStream, mAudioStream;
int mAVSyncType;
int64_t mExternalClockBase;
std::atomic<bool> mQuit;
AudioState mAudio;
VideoState mVideo;
std::thread mParseThread;
std::thread mAudioThread;
std::thread mVideoThread;
std::string mFilename;
MovieState(std::string fname)
: mFormatCtx(nullptr), mVideoStream(0), mAudioStream(0)
, mAVSyncType(DEFAULT_AV_SYNC_TYPE), mExternalClockBase(0), mQuit(false)
, mAudio(this), mVideo(this), mFilename(std::move(fname))
{ }
~MovieState()
{
mQuit = true;
if(mParseThread.joinable())
mParseThread.join();
avformat_close_input(&mFormatCtx);
}
static int decode_interrupt_cb(void *ctx);
bool prepare();
void setTitle(SDL_Window *window);
double getClock();
double getMasterClock();
int streamComponentOpen(int stream_index);
int parse_handler();
};
int PacketQueue::put(const AVPacket *pkt)
{
std::unique_lock<std::mutex> lock(mMutex);
mPackets.push_back(AVPacket{});
if(av_packet_ref(&mPackets.back(), pkt) != 0)
{
mPackets.pop_back();
return -1;
}
mTotalSize += mPackets.back().size;
lock.unlock();
mCond.notify_one();
return 0;
}
int PacketQueue::peek(AVPacket *pkt, std::atomic<bool> &quit_var)
{
std::unique_lock<std::mutex> lock(mMutex);
while(!quit_var.load())
{
if(!mPackets.empty())
{
if(av_packet_ref(pkt, &mPackets.front()) != 0)
return -1;
return 1;
}
if(mFinished.load())
return 0;
mCond.wait(lock);
}
return -1;
}
void PacketQueue::pop()
{
std::unique_lock<std::mutex> lock(mMutex);
AVPacket *pkt = &mPackets.front();
mTotalSize -= pkt->size;
av_packet_unref(pkt);
mPackets.pop_front();
}
void PacketQueue::clear()
{
std::unique_lock<std::mutex> lock(mMutex);
std::for_each(mPackets.begin(), mPackets.end(),
[](AVPacket &pkt) { av_packet_unref(&pkt); }
);
mPackets.clear();
mTotalSize = 0;
}
void PacketQueue::finish()
{
std::unique_lock<std::mutex> lock(mMutex);
mFinished = true;
lock.unlock();
mCond.notify_all();
}
double AudioState::getClock()
{
double pts;
std::unique_lock<std::recursive_mutex> lock(mSrcMutex);
/* The audio clock is the timestamp of the sample currently being heard.
* It's based on 4 components:
* 1 - The timestamp of the next sample to buffer (state->current_pts)
* 2 - The length of the source's buffer queue
* 3 - The offset OpenAL is currently at in the source (the first value
* from AL_SEC_OFFSET_LATENCY_SOFT)
* 4 - The latency between OpenAL and the DAC (the second value from
* AL_SEC_OFFSET_LATENCY_SOFT)
*
* Subtracting the length of the source queue from the next sample's
* timestamp gives the timestamp of the sample at start of the source
* queue. Adding the source offset to that results in the timestamp for
* OpenAL's current position, and subtracting the source latency from that
* gives the timestamp of the sample currently at the DAC.
*/
pts = mCurrentPts;
if(mSource)
{
ALdouble offset[2];
ALint queue_size;
ALint status;
/* NOTE: The source state must be checked last, in case an underrun
* occurs and the source stops between retrieving the offset+latency
* and getting the state. */
if(has_latency_check)
{
alGetSourcedvSOFT(mSource, AL_SEC_OFFSET_LATENCY_SOFT, offset);
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queue_size);
}
else
{
ALint ioffset;
alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queue_size);
offset[0] = (double)ioffset / (double)mCodecCtx->sample_rate;
offset[1] = 0.0f;
}
alGetSourcei(mSource, AL_SOURCE_STATE, &status);
/* If the source is AL_STOPPED, then there was an underrun and all
* buffers are processed, so ignore the source queue. The audio thread
* will put the source into an AL_INITIAL state and clear the queue
* when it starts recovery. */
if(status != AL_STOPPED)
pts -= queue_size*((double)AUDIO_BUFFER_TIME/1000.0) - offset[0];
if(status == AL_PLAYING)
pts -= offset[1];
}
lock.unlock();
return std::max(pts, 0.0);
}
int AudioState::getSync()
{
double diff, avg_diff, ref_clock;
if(mMovie->mAVSyncType == AV_SYNC_AUDIO_MASTER)
return 0;
ref_clock = mMovie->getMasterClock();
diff = ref_clock - getClock();
if(!(fabs(diff) < AV_NOSYNC_THRESHOLD))
{
/* Difference is TOO big; reset diff stuff */
mDiff.Accum = 0.0;
return 0;
}
/* Accumulate the diffs */
mDiff.Accum = mDiff.Accum*mDiff.AvgCoeff + diff;
avg_diff = mDiff.Accum*(1.0 - mDiff.AvgCoeff);
if(fabs(avg_diff) < mDiff.Threshold)
return 0;
/* Constrain the per-update difference to avoid exceedingly large skips */
if(!(diff <= SAMPLE_CORRECTION_MAX_DIFF))
diff = SAMPLE_CORRECTION_MAX_DIFF;
else if(!(diff >= -SAMPLE_CORRECTION_MAX_DIFF))
diff = -SAMPLE_CORRECTION_MAX_DIFF;
return (int)(diff*mCodecCtx->sample_rate);
}
int AudioState::decodeFrame()
{
while(!mMovie->mQuit.load())
{
while(!mMovie->mQuit.load())
{
/* Get the next packet */
AVPacket pkt{};
if(mQueue.peek(&pkt, mMovie->mQuit) <= 0)
return -1;
int ret = avcodec_send_packet(mCodecCtx, &pkt);
if(ret != AVERROR(EAGAIN))
{
if(ret < 0)
std::cerr<< "Failed to send encoded packet: 0x"<<std::hex<<ret<<std::dec <<std::endl;
mQueue.pop();
}
av_packet_unref(&pkt);
if(ret == 0 || ret == AVERROR(EAGAIN))
break;
}
int ret = avcodec_receive_frame(mCodecCtx, mDecodedFrame);
if(ret == AVERROR(EAGAIN))
continue;
if(ret == AVERROR_EOF || ret < 0)
{
std::cerr<< "Failed to decode frame: "<<ret <<std::endl;
return 0;
}
if(mDecodedFrame->nb_samples <= 0)
{
av_frame_unref(mDecodedFrame);
continue;
}
/* If provided, update w/ pts */
int64_t pts = av_frame_get_best_effort_timestamp(mDecodedFrame);
if(pts != AV_NOPTS_VALUE)
mCurrentPts = av_q2d(mStream->time_base)*pts;
if(mDecodedFrame->nb_samples > mSamplesMax)
{
av_freep(&mSamples);
av_samples_alloc(
&mSamples, nullptr, mCodecCtx->channels,
mDecodedFrame->nb_samples, mDstSampleFmt, 0
);
mSamplesMax = mDecodedFrame->nb_samples;
}
/* Return the amount of sample frames converted */
int data_size = swr_convert(mSwresCtx, &mSamples, mDecodedFrame->nb_samples,
(const uint8_t**)mDecodedFrame->data, mDecodedFrame->nb_samples
);
av_frame_unref(mDecodedFrame);
return data_size;
}
return 0;
}
/* Duplicates the sample at in to out, count times. The frame size is a
* multiple of the template type size.
*/
template<typename T>
static void sample_dup(uint8_t *out, const uint8_t *in, int count, int frame_size)
{
const T *sample = reinterpret_cast<const T*>(in);
T *dst = reinterpret_cast<T*>(out);
if(frame_size == sizeof(T))
std::fill_n(dst, count, *sample);
else
{
/* NOTE: frame_size is a multiple of sizeof(T). */
int type_mult = frame_size / sizeof(T);
int i = 0;
std::generate_n(dst, count*type_mult,
[sample,type_mult,&i]() -> T
{
T ret = sample[i];
i = (i+1)%type_mult;
return ret;
}
);
}
}
int AudioState::readAudio(uint8_t *samples, int length)
{
int sample_skip = getSync();
int audio_size = 0;
/* Read the next chunk of data, refill the buffer, and queue it
* on the source */
length /= mFrameSize;
while(audio_size < length)
{
if(mSamplesLen <= 0 || mSamplesPos >= mSamplesLen)
{
int frame_len = decodeFrame();
if(frame_len <= 0) break;
mSamplesLen = frame_len;
mSamplesPos = std::min(mSamplesLen, sample_skip);
sample_skip -= mSamplesPos;
mCurrentPts += (double)mSamplesPos / (double)mCodecCtx->sample_rate;
continue;
}
int rem = length - audio_size;
if(mSamplesPos >= 0)
{
int len = mSamplesLen - mSamplesPos;
if(rem > len) rem = len;
memcpy(samples, mSamples + mSamplesPos*mFrameSize, rem*mFrameSize);
}
else
{
rem = std::min(rem, -mSamplesPos);
/* Add samples by copying the first sample */
if((mFrameSize&7) == 0)
sample_dup<uint64_t>(samples, mSamples, rem, mFrameSize);
else if((mFrameSize&3) == 0)
sample_dup<uint32_t>(samples, mSamples, rem, mFrameSize);
else if((mFrameSize&1) == 0)
sample_dup<uint16_t>(samples, mSamples, rem, mFrameSize);
else
sample_dup<uint8_t>(samples, mSamples, rem, mFrameSize);
}
mSamplesPos += rem;
mCurrentPts += (double)rem / mCodecCtx->sample_rate;
samples += rem*mFrameSize;
audio_size += rem;
}
if(audio_size < length && audio_size > 0)
{
int rem = length - audio_size;
std::fill_n(samples, rem*mFrameSize,
(mDstSampleFmt == AV_SAMPLE_FMT_U8) ? 0x80 : 0x00);
mCurrentPts += (double)rem / mCodecCtx->sample_rate;
audio_size += rem;
}
return audio_size * mFrameSize;
}
int AudioState::handler()
{
std::unique_lock<std::recursive_mutex> lock(mSrcMutex);
ALenum fmt;
/* Find a suitable format for Alure. */
mDstChanLayout = 0;
if(mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8 || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8P)
{
mDstSampleFmt = AV_SAMPLE_FMT_U8;
mFrameSize = 1;
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_71CHN8")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 8;
mFormat = fmt;
}
if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_51CHN8")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 6;
mFormat = fmt;
}
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 1;
mFormat = AL_FORMAT_MONO8;
}
if(!mDstChanLayout)
{
mDstChanLayout = AV_CH_LAYOUT_STEREO;
mFrameSize *= 2;
mFormat = AL_FORMAT_STEREO8;
}
}
if((mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLT || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLTP) &&
alIsExtensionPresent("AL_EXT_FLOAT32"))
{
mDstSampleFmt = AV_SAMPLE_FMT_FLT;
mFrameSize = 4;
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_71CHN32")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 8;
mFormat = fmt;
}
if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_51CHN32")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 6;
mFormat = fmt;
}
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 1;
mFormat = AL_FORMAT_MONO_FLOAT32;
}
if(!mDstChanLayout)
{
mDstChanLayout = AV_CH_LAYOUT_STEREO;
mFrameSize *= 2;
mFormat = AL_FORMAT_STEREO_FLOAT32;
}
}
if(!mDstChanLayout)
{
mDstSampleFmt = AV_SAMPLE_FMT_S16;
mFrameSize = 2;
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_71CHN16")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 8;
mFormat = fmt;
}
if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 ||
mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) &&
alIsExtensionPresent("AL_EXT_MCFORMATS") &&
(fmt=alGetEnumValue("AL_FORMAT_51CHN16")) != AL_NONE && fmt != -1)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 6;
mFormat = fmt;
}
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
{
mDstChanLayout = mCodecCtx->channel_layout;
mFrameSize *= 1;
mFormat = AL_FORMAT_MONO16;
}
if(!mDstChanLayout)
{
mDstChanLayout = AV_CH_LAYOUT_STEREO;
mFrameSize *= 2;
mFormat = AL_FORMAT_STEREO16;
}
}
ALsizei buffer_len = mCodecCtx->sample_rate * AUDIO_BUFFER_TIME / 1000 *
mFrameSize;
void *samples = av_malloc(buffer_len);
mSamples = NULL;
mSamplesMax = 0;
mSamplesPos = 0;
mSamplesLen = 0;
if(!(mDecodedFrame=av_frame_alloc()))
{
std::cerr<< "Failed to allocate audio frame" <<std::endl;
goto finish;
}
mSwresCtx = swr_alloc_set_opts(nullptr,
mDstChanLayout, mDstSampleFmt, mCodecCtx->sample_rate,
mCodecCtx->channel_layout ? mCodecCtx->channel_layout :
(uint64_t)av_get_default_channel_layout(mCodecCtx->channels),
mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
0, nullptr
);
if(!mSwresCtx || swr_init(mSwresCtx) != 0)
{
std::cerr<< "Failed to initialize audio converter" <<std::endl;
goto finish;
}
alGenBuffers(AUDIO_BUFFER_QUEUE_SIZE, mBuffers);
alGenSources(1, &mSource);
if(do_direct_out)
{
if(!alIsExtensionPresent("AL_SOFT_direct_channels"))
std::cerr<< "AL_SOFT_direct_channels not supported for direct output" <<std::endl;
else
{
alSourcei(mSource, AL_DIRECT_CHANNELS_SOFT, AL_TRUE);
std::cout<< "Direct out enabled" <<std::endl;
}
}
while(alGetError() == AL_NO_ERROR && !mMovie->mQuit.load())
{
/* First remove any processed buffers. */
ALint processed;
alGetSourcei(mSource, AL_BUFFERS_PROCESSED, &processed);
if(processed > 0)
{
std::array<ALuint,AUDIO_BUFFER_QUEUE_SIZE> tmp;
alSourceUnqueueBuffers(mSource, processed, tmp.data());
}
/* Refill the buffer queue. */
ALint queued;
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
while(queued < AUDIO_BUFFER_QUEUE_SIZE)
{
int audio_size;
/* Read the next chunk of data, fill the buffer, and queue it on
* the source */
audio_size = readAudio(reinterpret_cast<uint8_t*>(samples), buffer_len);
if(audio_size <= 0) break;
ALuint bufid = mBuffers[mBufferIdx++];
mBufferIdx %= AUDIO_BUFFER_QUEUE_SIZE;
alBufferData(bufid, mFormat, samples, audio_size, mCodecCtx->sample_rate);
alSourceQueueBuffers(mSource, 1, &bufid);
queued++;
}
if(queued == 0)
break;
/* Check that the source is playing. */
ALint state;
alGetSourcei(mSource, AL_SOURCE_STATE, &state);
if(state == AL_STOPPED)
{
/* AL_STOPPED means there was an underrun. Rewind the source to get
* it back into an AL_INITIAL state.
*/
alSourceRewind(mSource);
continue;
}
lock.unlock();
/* (re)start the source if needed, and wait for a buffer to finish */
if(state != AL_PLAYING && state != AL_PAUSED)
alSourcePlay(mSource);
SDL_Delay(AUDIO_BUFFER_TIME / 3);
lock.lock();
}
finish:
alSourceRewind(mSource);
alSourcei(mSource, AL_BUFFER, 0);
av_frame_free(&mDecodedFrame);
swr_free(&mSwresCtx);
av_freep(&mSamples);
return 0;
}
double VideoState::getClock()
{
double delta = (av_gettime() - mCurrentPtsTime) / 1000000.0;
return mCurrentPts + delta;
}
Uint32 SDLCALL VideoState::sdl_refresh_timer_cb(Uint32 /*interval*/, void *opaque)
{
SDL_Event evt{};
evt.user.type = FF_REFRESH_EVENT;
evt.user.data1 = opaque;
SDL_PushEvent(&evt);
return 0; /* 0 means stop timer */
}
/* Schedules an FF_REFRESH_EVENT event to occur in 'delay' ms. */
void VideoState::schedRefresh(int delay)
{
SDL_AddTimer(delay, sdl_refresh_timer_cb, this);
}
/* Called by VideoState::refreshTimer to display the next video frame. */
void VideoState::display(SDL_Window *screen, SDL_Renderer *renderer)
{
Picture *vp = &mPictQ[mPictQRead];
if(!vp->mImage)
return;
float aspect_ratio;
int win_w, win_h;
int w, h, x, y;
if(mCodecCtx->sample_aspect_ratio.num == 0)
aspect_ratio = 0.0f;
else
{
aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio) * mCodecCtx->width /
mCodecCtx->height;
}
if(aspect_ratio <= 0.0f)
aspect_ratio = (float)mCodecCtx->width / (float)mCodecCtx->height;
SDL_GetWindowSize(screen, &win_w, &win_h);
h = win_h;
w = ((int)rint(h * aspect_ratio) + 3) & ~3;
if(w > win_w)
{
w = win_w;
h = ((int)rint(w / aspect_ratio) + 3) & ~3;
}
x = (win_w - w) / 2;
y = (win_h - h) / 2;
SDL_Rect src_rect{ 0, 0, vp->mWidth, vp->mHeight };
SDL_Rect dst_rect{ x, y, w, h };
SDL_RenderCopy(renderer, vp->mImage, &src_rect, &dst_rect);
SDL_RenderPresent(renderer);
}
/* FF_REFRESH_EVENT handler called on the main thread where the SDL_Renderer
* was created. It handles the display of the next decoded video frame (if not
* falling behind), and sets up the timer for the following video frame.
*/
void VideoState::refreshTimer(SDL_Window *screen, SDL_Renderer *renderer)
{
if(!mStream)
{
if(mEOS)
{
mFinalUpdate = true;
std::unique_lock<std::mutex>(mPictQMutex).unlock();
mPictQCond.notify_all();
return;
}
schedRefresh(100);
return;
}
std::unique_lock<std::mutex> lock(mPictQMutex);
retry:
if(mPictQSize == 0)
{
if(mEOS)
mFinalUpdate = true;
else
schedRefresh(1);
lock.unlock();
mPictQCond.notify_all();
return;
}
Picture *vp = &mPictQ[mPictQRead];
mCurrentPts = vp->mPts;
mCurrentPtsTime = av_gettime();
/* Get delay using the frame pts and the pts from last frame. */
double delay = vp->mPts - mFrameLastPts;
if(delay <= 0 || delay >= 1.0)
{
/* If incorrect delay, use previous one. */
delay = mFrameLastDelay;
}
/* Save for next frame. */
mFrameLastDelay = delay;
mFrameLastPts = vp->mPts;
/* Update delay to sync to clock if not master source. */
if(mMovie->mAVSyncType != AV_SYNC_VIDEO_MASTER)
{
double ref_clock = mMovie->getMasterClock();
double diff = vp->mPts - ref_clock;
/* Skip or repeat the frame. Take delay into account. */
double sync_threshold = std::min(delay, AV_SYNC_THRESHOLD);
if(fabs(diff) < AV_NOSYNC_THRESHOLD)
{
if(diff <= -sync_threshold)
delay = 0;
else if(diff >= sync_threshold)
delay *= 2.0;
}
}
mFrameTimer += delay;
/* Compute the REAL delay. */
double actual_delay = mFrameTimer - (av_gettime() / 1000000.0);
if(!(actual_delay >= 0.010))
{
/* We don't have time to handle this picture, just skip to the next one. */
mPictQRead = (mPictQRead+1)%mPictQ.size();
mPictQSize--;
goto retry;
}
schedRefresh((int)(actual_delay*1000.0 + 0.5));
/* Show the picture! */
display(screen, renderer);
/* Update queue for next picture. */
mPictQRead = (mPictQRead+1)%mPictQ.size();
mPictQSize--;
lock.unlock();
mPictQCond.notify_all();
}
/* FF_UPDATE_EVENT handler, updates the picture's texture. It's called on the
* main thread where the renderer was created.
*/
void VideoState::updatePicture(SDL_Window *screen, SDL_Renderer *renderer)
{
Picture *vp = &mPictQ[mPictQWrite];
bool fmt_updated = false;
/* allocate or resize the buffer! */
if(!vp->mImage || vp->mWidth != mCodecCtx->width || vp->mHeight != mCodecCtx->height)
{
fmt_updated = true;
if(vp->mImage)
SDL_DestroyTexture(vp->mImage);
vp->mImage = SDL_CreateTexture(
renderer, SDL_PIXELFORMAT_IYUV, SDL_TEXTUREACCESS_STREAMING,
mCodecCtx->coded_width, mCodecCtx->coded_height
);
if(!vp->mImage)
std::cerr<< "Failed to create YV12 texture!" <<std::endl;
vp->mWidth = mCodecCtx->width;
vp->mHeight = mCodecCtx->height;
if(mFirstUpdate && vp->mWidth > 0 && vp->mHeight > 0)
{
/* For the first update, set the window size to the video size. */
mFirstUpdate = false;
int w = vp->mWidth;
int h = vp->mHeight;
if(mCodecCtx->sample_aspect_ratio.den != 0)
{
double aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio);
if(aspect_ratio >= 1.0)
w = (int)(w*aspect_ratio + 0.5);
else if(aspect_ratio > 0.0)
h = (int)(h/aspect_ratio + 0.5);
}
SDL_SetWindowSize(screen, w, h);
}
}
if(vp->mImage)
{
AVFrame *frame = mDecodedFrame;
void *pixels = nullptr;
int pitch = 0;
if(mCodecCtx->pix_fmt == AV_PIX_FMT_YUV420P)
SDL_UpdateYUVTexture(vp->mImage, nullptr,
frame->data[0], frame->linesize[0],
frame->data[1], frame->linesize[1],
frame->data[2], frame->linesize[2]
);
else if(SDL_LockTexture(vp->mImage, nullptr, &pixels, &pitch) != 0)
std::cerr<< "Failed to lock texture" <<std::endl;
else
{
// Convert the image into YUV format that SDL uses
int coded_w = mCodecCtx->coded_width;
int coded_h = mCodecCtx->coded_height;
int w = mCodecCtx->width;
int h = mCodecCtx->height;
if(!mSwscaleCtx || fmt_updated)
{
sws_freeContext(mSwscaleCtx);
mSwscaleCtx = sws_getContext(
w, h, mCodecCtx->pix_fmt,
w, h, AV_PIX_FMT_YUV420P, 0,
nullptr, nullptr, nullptr
);
}
/* point pict at the queue */
uint8_t *pict_data[3];
pict_data[0] = reinterpret_cast<uint8_t*>(pixels);
pict_data[1] = pict_data[0] + coded_w*coded_h;
pict_data[2] = pict_data[1] + coded_w*coded_h/4;
int pict_linesize[3];
pict_linesize[0] = pitch;
pict_linesize[1] = pitch / 2;
pict_linesize[2] = pitch / 2;
sws_scale(mSwscaleCtx, (const uint8_t**)frame->data,
frame->linesize, 0, h, pict_data, pict_linesize);
SDL_UnlockTexture(vp->mImage);
}
}
std::unique_lock<std::mutex> lock(mPictQMutex);
vp->mUpdated = true;
lock.unlock();
mPictQCond.notify_one();
}
int VideoState::queuePicture(double pts)
{
/* Wait until we have space for a new pic */
std::unique_lock<std::mutex> lock(mPictQMutex);
while(mPictQSize >= mPictQ.size() && !mMovie->mQuit.load())
mPictQCond.wait(lock);
lock.unlock();
if(mMovie->mQuit.load())
return -1;
Picture *vp = &mPictQ[mPictQWrite];
/* We have to create/update the picture in the main thread */
vp->mUpdated = false;
SDL_Event evt{};
evt.user.type = FF_UPDATE_EVENT;
evt.user.data1 = this;
SDL_PushEvent(&evt);
/* Wait until the picture is updated. */
lock.lock();
while(!vp->mUpdated && !mMovie->mQuit.load())
mPictQCond.wait(lock);
if(mMovie->mQuit.load())
return -1;
vp->mPts = pts;
mPictQWrite = (mPictQWrite+1)%mPictQ.size();
mPictQSize++;
lock.unlock();
return 0;
}
double VideoState::synchronize(double pts)
{
double frame_delay;
if(pts == 0.0) /* if we aren't given a pts, set it to the clock */
pts = mClock;
else /* if we have pts, set video clock to it */
mClock = pts;
/* update the video clock */
frame_delay = av_q2d(mCodecCtx->time_base);
/* if we are repeating a frame, adjust clock accordingly */
frame_delay += mDecodedFrame->repeat_pict * (frame_delay * 0.5);
mClock += frame_delay;
return pts;
}
int VideoState::handler()
{
mDecodedFrame = av_frame_alloc();
while(!mMovie->mQuit)
{
while(!mMovie->mQuit)
{
AVPacket packet{};
if(mQueue.peek(&packet, mMovie->mQuit) <= 0)
goto finish;
int ret = avcodec_send_packet(mCodecCtx, &packet);
if(ret != AVERROR(EAGAIN))
{
if(ret < 0)
std::cerr<< "Failed to send encoded packet: 0x"<<std::hex<<ret<<std::dec <<std::endl;
mQueue.pop();
}
av_packet_unref(&packet);
if(ret == 0 || ret == AVERROR(EAGAIN))
break;
}
/* Decode video frame */
int ret = avcodec_receive_frame(mCodecCtx, mDecodedFrame);
if(ret == AVERROR(EAGAIN))
continue;
if(ret < 0)
{
std::cerr<< "Failed to decode frame: "<<ret <<std::endl;
break;
}
double pts = synchronize(
av_q2d(mStream->time_base) * av_frame_get_best_effort_timestamp(mDecodedFrame)
);
if(queuePicture(pts) < 0)
break;
av_frame_unref(mDecodedFrame);
}
finish:
mEOS = true;
av_frame_free(&mDecodedFrame);
std::unique_lock<std::mutex> lock(mPictQMutex);
if(mMovie->mQuit)
{
mPictQRead = 0;
mPictQWrite = 0;
mPictQSize = 0;
}
while(!mFinalUpdate)
mPictQCond.wait(lock);
return 0;
}
int MovieState::decode_interrupt_cb(void *ctx)
{
return reinterpret_cast<MovieState*>(ctx)->mQuit;
}
bool MovieState::prepare()
{
mFormatCtx = avformat_alloc_context();
mFormatCtx->interrupt_callback.callback = decode_interrupt_cb;
mFormatCtx->interrupt_callback.opaque = this;
if(avio_open2(&mFormatCtx->pb, mFilename.c_str(), AVIO_FLAG_READ,
&mFormatCtx->interrupt_callback, nullptr))
{
std::cerr<< "Failed to open "<<mFilename <<std::endl;
return false;
}
/* Open movie file */
if(avformat_open_input(&mFormatCtx, mFilename.c_str(), nullptr, nullptr) != 0)
{
std::cerr<< "Failed to open "<<mFilename <<std::endl;
return false;
}
/* Retrieve stream information */
if(avformat_find_stream_info(mFormatCtx, nullptr) < 0)
{
std::cerr<< mFilename<<": failed to find stream info" <<std::endl;
return false;
}
mVideo.schedRefresh(40);
mParseThread = std::thread(std::mem_fn(&MovieState::parse_handler), this);
return true;
}
void MovieState::setTitle(SDL_Window *window)
{
auto pos1 = mFilename.rfind('/');
auto pos2 = mFilename.rfind('\\');
auto fpos = ((pos1 == std::string::npos) ? pos2 :
(pos2 == std::string::npos) ? pos1 :
std::max(pos1, pos2)) + 1;
SDL_SetWindowTitle(window, (mFilename.substr(fpos)+" - "+AppName).c_str());
}
double MovieState::getClock()
{
return (av_gettime()-mExternalClockBase) / 1000000.0;
}
double MovieState::getMasterClock()
{
if(mAVSyncType == AV_SYNC_VIDEO_MASTER)
return mVideo.getClock();
if(mAVSyncType == AV_SYNC_AUDIO_MASTER)
return mAudio.getClock();
return getClock();
}
int MovieState::streamComponentOpen(int stream_index)
{
if(stream_index < 0 || (unsigned int)stream_index >= mFormatCtx->nb_streams)
return -1;
/* Get a pointer to the codec context for the stream, and open the
* associated codec.
*/
AVCodecContext *avctx = avcodec_alloc_context3(nullptr);
if(!avctx) return -1;
if(avcodec_parameters_to_context(avctx, mFormatCtx->streams[stream_index]->codecpar))
{
avcodec_free_context(&avctx);
return -1;
}
AVCodec *codec = avcodec_find_decoder(avctx->codec_id);
if(!codec || avcodec_open2(avctx, codec, nullptr) < 0)
{
std::cerr<< "Unsupported codec: "<<avcodec_get_name(avctx->codec_id)
<< " (0x"<<std::hex<<avctx->codec_id<<std::dec<<")" <<std::endl;
avcodec_free_context(&avctx);
return -1;
}
/* Initialize and start the media type handler */
switch(avctx->codec_type)
{
case AVMEDIA_TYPE_AUDIO:
mAudioStream = stream_index;
mAudio.mStream = mFormatCtx->streams[stream_index];
mAudio.mCodecCtx = avctx;
/* Averaging filter for audio sync */
mAudio.mDiff.AvgCoeff = exp(log(0.01) / AUDIO_DIFF_AVG_NB);
/* Correct audio only if larger error than this */
mAudio.mDiff.Threshold = 0.050/* 50 ms */;
mAudioThread = std::thread(std::mem_fn(&AudioState::handler), &mAudio);
break;
case AVMEDIA_TYPE_VIDEO:
mVideoStream = stream_index;
mVideo.mStream = mFormatCtx->streams[stream_index];
mVideo.mCodecCtx = avctx;
mVideo.mCurrentPtsTime = av_gettime();
mVideo.mFrameTimer = (double)mVideo.mCurrentPtsTime / 1000000.0;
mVideo.mFrameLastDelay = 40e-3;
mVideoThread = std::thread(std::mem_fn(&VideoState::handler), &mVideo);
break;
default:
avcodec_free_context(&avctx);
break;
}
return 0;
}
int MovieState::parse_handler()
{
int video_index = -1;
int audio_index = -1;
mVideoStream = -1;
mAudioStream = -1;
/* Dump information about file onto standard error */
av_dump_format(mFormatCtx, 0, mFilename.c_str(), 0);
/* Find the first video and audio streams */
for(unsigned int i = 0;i < mFormatCtx->nb_streams;i++)
{
if(mFormatCtx->streams[i]->codecpar->codec_type == AVMEDIA_TYPE_VIDEO && video_index < 0)
video_index = i;
else if(mFormatCtx->streams[i]->codecpar->codec_type == AVMEDIA_TYPE_AUDIO && audio_index < 0)
audio_index = i;
}
/* Start the external clock in 50ms, to give the audio and video
* components time to start without needing to skip ahead.
*/
mExternalClockBase = av_gettime() + 50000;
if(audio_index >= 0)
streamComponentOpen(audio_index);
if(video_index >= 0)
streamComponentOpen(video_index);
if(mVideoStream < 0 && mAudioStream < 0)
{
std::cerr<< mFilename<<": could not open codecs" <<std::endl;
mQuit = true;
}
/* Main packet handling loop */
while(!mQuit.load())
{
if(mAudio.mQueue.mTotalSize + mVideo.mQueue.mTotalSize >= MAX_QUEUE_SIZE)
{
std::this_thread::sleep_for(std::chrono::milliseconds(10));
continue;
}
AVPacket packet;
if(av_read_frame(mFormatCtx, &packet) < 0)
break;
/* Copy the packet in the queue it's meant for. */
if(packet.stream_index == mVideoStream)
mVideo.mQueue.put(&packet);
else if(packet.stream_index == mAudioStream)
mAudio.mQueue.put(&packet);
av_packet_unref(&packet);
}
mVideo.mQueue.finish();
mAudio.mQueue.finish();
/* all done - wait for it */
if(mVideoThread.joinable())
mVideoThread.join();
if(mAudioThread.joinable())
mAudioThread.join();
mVideo.mEOS = true;
std::unique_lock<std::mutex> lock(mVideo.mPictQMutex);
while(!mVideo.mFinalUpdate)
mVideo.mPictQCond.wait(lock);
lock.unlock();
SDL_Event evt{};
evt.user.type = FF_MOVIE_DONE_EVENT;
SDL_PushEvent(&evt);
return 0;
}
} // namespace
int main(int argc, char *argv[])
{
std::unique_ptr<MovieState> movState;
if(argc < 2)
{
std::cerr<< "Usage: "<<argv[0]<<" [-device <device name>] [-direct] <files...>" <<std::endl;
return 1;
}
/* Register all formats and codecs */
av_register_all();
/* Initialize networking protocols */
avformat_network_init();
if(SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER))
{
std::cerr<< "Could not initialize SDL - <<"<<SDL_GetError() <<std::endl;
return 1;
}
/* Make a window to put our video */
SDL_Window *screen = SDL_CreateWindow(AppName.c_str(), 0, 0, 640, 480, SDL_WINDOW_RESIZABLE);
if(!screen)
{
std::cerr<< "SDL: could not set video mode - exiting" <<std::endl;
return 1;
}
/* Make a renderer to handle the texture image surface and rendering. */
SDL_Renderer *renderer = SDL_CreateRenderer(screen, -1, SDL_RENDERER_ACCELERATED);
if(renderer)
{
SDL_RendererInfo rinf{};
bool ok = false;
/* Make sure the renderer supports IYUV textures. If not, fallback to a
* software renderer. */
if(SDL_GetRendererInfo(renderer, &rinf) == 0)
{
for(Uint32 i = 0;!ok && i < rinf.num_texture_formats;i++)
ok = (rinf.texture_formats[i] == SDL_PIXELFORMAT_IYUV);
}
if(!ok)
{
std::cerr<< "IYUV pixelformat textures not supported on renderer "<<rinf.name <<std::endl;
SDL_DestroyRenderer(renderer);
renderer = nullptr;
}
}
if(!renderer)
renderer = SDL_CreateRenderer(screen, -1, SDL_RENDERER_SOFTWARE);
if(!renderer)
{
std::cerr<< "SDL: could not create renderer - exiting" <<std::endl;
return 1;
}
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderFillRect(renderer, nullptr);
SDL_RenderPresent(renderer);
/* Open an audio device */
int fileidx = 1;
ALCdevice *device = [argc,argv,&fileidx]() -> ALCdevice*
{
ALCdevice *dev = NULL;
if(argc > 3 && strcmp(argv[1], "-device") == 0)
{
fileidx = 3;
dev = alcOpenDevice(argv[2]);
if(dev) return dev;
std::cerr<< "Failed to open \""<<argv[2]<<"\" - trying default" <<std::endl;
}
return alcOpenDevice(nullptr);
}();
ALCcontext *context = alcCreateContext(device, nullptr);
if(!context || alcMakeContextCurrent(context) == ALC_FALSE)
{
std::cerr<< "Failed to set up audio device" <<std::endl;
if(context)
alcDestroyContext(context);
return 1;
}
const ALCchar *name = nullptr;
if(alcIsExtensionPresent(device, "ALC_ENUMERATE_ALL_EXT"))
name = alcGetString(device, ALC_ALL_DEVICES_SPECIFIER);
if(!name || alcGetError(device) != AL_NO_ERROR)
name = alcGetString(device, ALC_DEVICE_SPECIFIER);
std::cout<< "Opened \""<<name<<"\"" <<std::endl;
if(fileidx < argc && strcmp(argv[fileidx], "-direct") == 0)
{
++fileidx;
do_direct_out = true;
}
while(fileidx < argc && !movState)
{
movState = std::unique_ptr<MovieState>(new MovieState(argv[fileidx++]));
if(!movState->prepare()) movState = nullptr;
}
if(!movState)
{
std::cerr<< "Could not start a video" <<std::endl;
return 1;
}
movState->setTitle(screen);
/* Default to going to the next movie at the end of one. */
enum class EomAction {
Next, Quit
} eom_action = EomAction::Next;
SDL_Event event;
while(SDL_WaitEvent(&event) == 1)
{
switch(event.type)
{
case SDL_KEYDOWN:
switch(event.key.keysym.sym)
{
case SDLK_ESCAPE:
movState->mQuit = true;
eom_action = EomAction::Quit;
break;
case SDLK_n:
movState->mQuit = true;
eom_action = EomAction::Next;
break;
default:
break;
}
break;
case SDL_WINDOWEVENT:
switch(event.window.event)
{
case SDL_WINDOWEVENT_RESIZED:
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderFillRect(renderer, nullptr);
break;
default:
break;
}
break;
case SDL_QUIT:
movState->mQuit = true;
eom_action = EomAction::Quit;
break;
case FF_UPDATE_EVENT:
reinterpret_cast<VideoState*>(event.user.data1)->updatePicture(
screen, renderer
);
break;
case FF_REFRESH_EVENT:
reinterpret_cast<VideoState*>(event.user.data1)->refreshTimer(
screen, renderer
);
break;
case FF_MOVIE_DONE_EVENT:
if(eom_action != EomAction::Quit)
{
movState = nullptr;
while(fileidx < argc && !movState)
{
movState = std::unique_ptr<MovieState>(new MovieState(argv[fileidx++]));
if(!movState->prepare()) movState = nullptr;
}
if(movState)
{
movState->setTitle(screen);
break;
}
}
/* Nothing more to play. Shut everything down and quit. */
movState = nullptr;
alcMakeContextCurrent(nullptr);
alcDestroyContext(context);
alcCloseDevice(device);
SDL_DestroyRenderer(renderer);
renderer = nullptr;
SDL_DestroyWindow(screen);
screen = nullptr;
SDL_Quit();
exit(0);
default:
break;
}
}
std::cerr<< "SDL_WaitEvent error - "<<SDL_GetError() <<std::endl;
return 1;
}