AuroraOpenALSoft/Alc/ringbuffer.c
2018-01-11 10:03:26 -08:00

311 lines
9.4 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <string.h>
#include <stdlib.h>
#include "ringbuffer.h"
#include "align.h"
#include "atomic.h"
#include "threads.h"
#include "almalloc.h"
#include "compat.h"
/* NOTE: This lockless ringbuffer implementation is copied from JACK, extended
* to include an element size. Consequently, parameters and return values for a
* size or count is in 'elements', not bytes. Additionally, it only supports
* single-consumer/single-provider operation. */
struct ll_ringbuffer {
ATOMIC(size_t) write_ptr;
ATOMIC(size_t) read_ptr;
size_t size;
size_t size_mask;
size_t elem_size;
alignas(16) char buf[];
};
/* Create a new ringbuffer to hold at least `sz' elements of `elem_sz' bytes.
* The number of elements is rounded up to the next power of two. */
ll_ringbuffer_t *ll_ringbuffer_create(size_t sz, size_t elem_sz)
{
ll_ringbuffer_t *rb;
size_t power_of_two = 0;
if(sz > 0)
{
power_of_two = sz - 1;
power_of_two |= power_of_two>>1;
power_of_two |= power_of_two>>2;
power_of_two |= power_of_two>>4;
power_of_two |= power_of_two>>8;
power_of_two |= power_of_two>>16;
#if SIZE_MAX > UINT_MAX
power_of_two |= power_of_two>>32;
#endif
}
power_of_two++;
if(power_of_two < sz) return NULL;
rb = al_malloc(16, sizeof(*rb) + power_of_two*elem_sz);
if(!rb) return NULL;
ATOMIC_INIT(&rb->write_ptr, 0);
ATOMIC_INIT(&rb->read_ptr, 0);
rb->size = power_of_two;
rb->size_mask = rb->size - 1;
rb->elem_size = elem_sz;
return rb;
}
/* Free all data associated with the ringbuffer `rb'. */
void ll_ringbuffer_free(ll_ringbuffer_t *rb)
{
al_free(rb);
}
/* Reset the read and write pointers to zero. This is not thread safe. */
void ll_ringbuffer_reset(ll_ringbuffer_t *rb)
{
ATOMIC_STORE(&rb->write_ptr, 0, almemory_order_release);
ATOMIC_STORE(&rb->read_ptr, 0, almemory_order_release);
memset(rb->buf, 0, rb->size*rb->elem_size);
}
/* Return the number of elements available for reading. This is the number of
* elements in front of the read pointer and behind the write pointer. */
size_t ll_ringbuffer_read_space(const ll_ringbuffer_t *rb)
{
size_t w = ATOMIC_LOAD(&CONST_CAST(ll_ringbuffer_t*,rb)->write_ptr, almemory_order_acquire);
size_t r = ATOMIC_LOAD(&CONST_CAST(ll_ringbuffer_t*,rb)->read_ptr, almemory_order_acquire);
return (w-r) & rb->size_mask;
}
/* Return the number of elements available for writing. This is the number of
* elements in front of the write pointer and behind the read pointer. */
size_t ll_ringbuffer_write_space(const ll_ringbuffer_t *rb)
{
size_t w = ATOMIC_LOAD(&CONST_CAST(ll_ringbuffer_t*,rb)->write_ptr, almemory_order_acquire);
size_t r = ATOMIC_LOAD(&CONST_CAST(ll_ringbuffer_t*,rb)->read_ptr, almemory_order_acquire);
return (r-w-1) & rb->size_mask;
}
/* The copying data reader. Copy at most `cnt' elements from `rb' to `dest'.
* Returns the actual number of elements copied. */
size_t ll_ringbuffer_read(ll_ringbuffer_t *rb, char *dest, size_t cnt)
{
size_t read_ptr;
size_t free_cnt;
size_t cnt2;
size_t to_read;
size_t n1, n2;
free_cnt = ll_ringbuffer_read_space(rb);
if(free_cnt == 0) return 0;
to_read = (cnt > free_cnt) ? free_cnt : cnt;
read_ptr = ATOMIC_LOAD(&rb->read_ptr, almemory_order_relaxed) & rb->size_mask;
cnt2 = read_ptr + to_read;
if(cnt2 > rb->size)
{
n1 = rb->size - read_ptr;
n2 = cnt2 & rb->size_mask;
}
else
{
n1 = to_read;
n2 = 0;
}
memcpy(dest, &rb->buf[read_ptr*rb->elem_size], n1*rb->elem_size);
read_ptr += n1;
if(n2)
{
memcpy(dest + n1*rb->elem_size, &rb->buf[(read_ptr&rb->size_mask)*rb->elem_size],
n2*rb->elem_size);
read_ptr += n2;
}
ATOMIC_STORE(&rb->read_ptr, read_ptr, almemory_order_release);
return to_read;
}
/* The copying data reader w/o read pointer advance. Copy at most `cnt'
* elements from `rb' to `dest'. Returns the actual number of elements copied.
*/
size_t ll_ringbuffer_peek(ll_ringbuffer_t *rb, char *dest, size_t cnt)
{
size_t free_cnt;
size_t cnt2;
size_t to_read;
size_t n1, n2;
size_t read_ptr;
free_cnt = ll_ringbuffer_read_space(rb);
if(free_cnt == 0) return 0;
to_read = (cnt > free_cnt) ? free_cnt : cnt;
read_ptr = ATOMIC_LOAD(&rb->read_ptr, almemory_order_relaxed) & rb->size_mask;
cnt2 = read_ptr + to_read;
if(cnt2 > rb->size)
{
n1 = rb->size - read_ptr;
n2 = cnt2 & rb->size_mask;
}
else
{
n1 = to_read;
n2 = 0;
}
memcpy(dest, &rb->buf[read_ptr*rb->elem_size], n1*rb->elem_size);
if(n2)
{
read_ptr += n1;
memcpy(dest + n1*rb->elem_size, &rb->buf[(read_ptr&rb->size_mask)*rb->elem_size],
n2*rb->elem_size);
}
return to_read;
}
/* The copying data writer. Copy at most `cnt' elements to `rb' from `src'.
* Returns the actual number of elements copied. */
size_t ll_ringbuffer_write(ll_ringbuffer_t *rb, const char *src, size_t cnt)
{
size_t write_ptr;
size_t free_cnt;
size_t cnt2;
size_t to_write;
size_t n1, n2;
free_cnt = ll_ringbuffer_write_space(rb);
if(free_cnt == 0) return 0;
to_write = (cnt > free_cnt) ? free_cnt : cnt;
write_ptr = ATOMIC_LOAD(&rb->write_ptr, almemory_order_relaxed) & rb->size_mask;
cnt2 = write_ptr + to_write;
if(cnt2 > rb->size)
{
n1 = rb->size - write_ptr;
n2 = cnt2 & rb->size_mask;
}
else
{
n1 = to_write;
n2 = 0;
}
memcpy(&rb->buf[write_ptr*rb->elem_size], src, n1*rb->elem_size);
write_ptr += n1;
if(n2)
{
memcpy(&rb->buf[(write_ptr&rb->size_mask)*rb->elem_size], src + n1*rb->elem_size,
n2*rb->elem_size);
write_ptr += n2;
}
ATOMIC_STORE(&rb->write_ptr, write_ptr, almemory_order_release);
return to_write;
}
/* Advance the read pointer `cnt' places. */
void ll_ringbuffer_read_advance(ll_ringbuffer_t *rb, size_t cnt)
{
ATOMIC_ADD(&rb->read_ptr, cnt, almemory_order_acq_rel);
}
/* Advance the write pointer `cnt' places. */
void ll_ringbuffer_write_advance(ll_ringbuffer_t *rb, size_t cnt)
{
ATOMIC_ADD(&rb->write_ptr, cnt, almemory_order_acq_rel);
}
/* The non-copying data reader. `vec' is an array of two places. Set the values
* at `vec' to hold the current readable data at `rb'. If the readable data is
* in one segment the second segment has zero length. */
void ll_ringbuffer_get_read_vector(const ll_ringbuffer_t *rb, ll_ringbuffer_data_t * vec)
{
size_t free_cnt;
size_t cnt2;
size_t w, r;
w = ATOMIC_LOAD(&CONST_CAST(ll_ringbuffer_t*,rb)->write_ptr, almemory_order_acquire);
r = ATOMIC_LOAD(&CONST_CAST(ll_ringbuffer_t*,rb)->read_ptr, almemory_order_acquire);
w &= rb->size_mask;
r &= rb->size_mask;
free_cnt = (w-r) & rb->size_mask;
cnt2 = r + free_cnt;
if(cnt2 > rb->size)
{
/* Two part vector: the rest of the buffer after the current write ptr,
* plus some from the start of the buffer. */
vec[0].buf = (char*)&rb->buf[r*rb->elem_size];
vec[0].len = rb->size - r;
vec[1].buf = (char*)rb->buf;
vec[1].len = cnt2 & rb->size_mask;
}
else
{
/* Single part vector: just the rest of the buffer */
vec[0].buf = (char*)&rb->buf[r*rb->elem_size];
vec[0].len = free_cnt;
vec[1].buf = NULL;
vec[1].len = 0;
}
}
/* The non-copying data writer. `vec' is an array of two places. Set the values
* at `vec' to hold the current writeable data at `rb'. If the writeable data
* is in one segment the second segment has zero length. */
void ll_ringbuffer_get_write_vector(const ll_ringbuffer_t *rb, ll_ringbuffer_data_t *vec)
{
size_t free_cnt;
size_t cnt2;
size_t w, r;
w = ATOMIC_LOAD(&CONST_CAST(ll_ringbuffer_t*,rb)->write_ptr, almemory_order_acquire);
r = ATOMIC_LOAD(&CONST_CAST(ll_ringbuffer_t*,rb)->read_ptr, almemory_order_acquire);
w &= rb->size_mask;
r &= rb->size_mask;
free_cnt = (r-w-1) & rb->size_mask;
cnt2 = w + free_cnt;
if(cnt2 > rb->size)
{
/* Two part vector: the rest of the buffer after the current write ptr,
* plus some from the start of the buffer. */
vec[0].buf = (char*)&rb->buf[w*rb->elem_size];
vec[0].len = rb->size - w;
vec[1].buf = (char*)rb->buf;
vec[1].len = cnt2 & rb->size_mask;
}
else
{
vec[0].buf = (char*)&rb->buf[w*rb->elem_size];
vec[0].len = free_cnt;
vec[1].buf = NULL;
vec[1].len = 0;
}
}