AuroraOpenALSoft/Alc/effects/reverb.c
2016-03-09 23:43:57 -08:00

1975 lines
73 KiB
C

/**
* Reverb for the OpenAL cross platform audio library
* Copyright (C) 2008-2009 by Christopher Fitzgerald.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "alMain.h"
#include "alu.h"
#include "alAuxEffectSlot.h"
#include "alEffect.h"
#include "alFilter.h"
#include "alError.h"
/* This is the maximum number of samples processed for each inner loop
* iteration. */
#define MAX_UPDATE_SAMPLES 256
typedef struct DelayLine
{
// The delay lines use sample lengths that are powers of 2 to allow the
// use of bit-masking instead of a modulus for wrapping.
ALuint Mask;
ALfloat *Line;
} DelayLine;
typedef struct ALreverbState {
DERIVE_FROM_TYPE(ALeffectState);
ALboolean IsEax;
ALuint ExtraChannels; // For HRTF
// All delay lines are allocated as a single buffer to reduce memory
// fragmentation and management code.
ALfloat *SampleBuffer;
ALuint TotalSamples;
// Master effect filters
ALfilterState LpFilter;
ALfilterState HpFilter; // EAX only
struct {
// Modulator delay line.
DelayLine Delay;
// The vibrato time is tracked with an index over a modulus-wrapped
// range (in samples).
ALuint Index;
ALuint Range;
// The depth of frequency change (also in samples) and its filter.
ALfloat Depth;
ALfloat Coeff;
ALfloat Filter;
} Mod; // EAX only
// Initial effect delay.
DelayLine Delay;
// The tap points for the initial delay. First tap goes to early
// reflections, the last to late reverb.
ALuint DelayTap[2];
struct {
// Early reflections are done with 4 delay lines.
ALfloat Coeff[4];
DelayLine Delay[4];
ALuint Offset[4];
// The gain for each output channel based on 3D panning.
ALfloat PanGain[4][MAX_OUTPUT_CHANNELS];
} Early;
// Decorrelator delay line.
DelayLine Decorrelator;
// There are actually 4 decorrelator taps, but the first occurs at the
// initial sample.
ALuint DecoTap[3];
struct {
// Output gain for late reverb.
ALfloat Gain;
// Attenuation to compensate for the modal density and decay rate of
// the late lines.
ALfloat DensityGain;
// The feed-back and feed-forward all-pass coefficient.
ALfloat ApFeedCoeff;
// Mixing matrix coefficient.
ALfloat MixCoeff;
// Late reverb has 4 parallel all-pass filters.
ALfloat ApCoeff[4];
DelayLine ApDelay[4];
ALuint ApOffset[4];
// In addition to 4 cyclical delay lines.
ALfloat Coeff[4];
DelayLine Delay[4];
ALuint Offset[4];
// The cyclical delay lines are 1-pole low-pass filtered.
ALfloat LpCoeff[4];
ALfloat LpSample[4];
// The gain for each output channel based on 3D panning.
ALfloat PanGain[4][MAX_OUTPUT_CHANNELS];
} Late;
struct {
// Attenuation to compensate for the modal density and decay rate of
// the echo line.
ALfloat DensityGain;
// Echo delay and all-pass lines.
DelayLine Delay;
DelayLine ApDelay;
ALfloat Coeff;
ALfloat ApFeedCoeff;
ALfloat ApCoeff;
ALuint Offset;
ALuint ApOffset;
// The echo line is 1-pole low-pass filtered.
ALfloat LpCoeff;
ALfloat LpSample;
// Echo mixing coefficient.
ALfloat MixCoeff;
} Echo; // EAX only
// The current read offset for all delay lines.
ALuint Offset;
/* Temporary storage used when processing. */
ALfloat ReverbSamples[MAX_UPDATE_SAMPLES][4];
ALfloat EarlySamples[MAX_UPDATE_SAMPLES][4];
} ALreverbState;
static ALvoid ALreverbState_Destruct(ALreverbState *State)
{
free(State->SampleBuffer);
State->SampleBuffer = NULL;
}
static ALboolean ALreverbState_deviceUpdate(ALreverbState *State, ALCdevice *Device);
static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device, const ALeffectslot *Slot);
static ALvoid ALreverbState_processStandard(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels);
static ALvoid ALreverbState_processEax(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels);
static ALvoid ALreverbState_process(ALreverbState *State, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels);
DECLARE_DEFAULT_ALLOCATORS(ALreverbState)
DEFINE_ALEFFECTSTATE_VTABLE(ALreverbState);
/* This is a user config option for modifying the overall output of the reverb
* effect.
*/
ALfloat ReverbBoost = 1.0f;
/* Specifies whether to use a standard reverb effect in place of EAX reverb (no
* high-pass, modulation, or echo).
*/
ALboolean EmulateEAXReverb = AL_FALSE;
/* This coefficient is used to define the maximum frequency range controlled
* by the modulation depth. The current value of 0.1 will allow it to swing
* from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
* sampler to stall on the downswing, and above 1 it will cause it to sample
* backwards.
*/
static const ALfloat MODULATION_DEPTH_COEFF = 0.1f;
/* A filter is used to avoid the terrible distortion caused by changing
* modulation time and/or depth. To be consistent across different sample
* rates, the coefficient must be raised to a constant divided by the sample
* rate: coeff^(constant / rate).
*/
static const ALfloat MODULATION_FILTER_COEFF = 0.048f;
static const ALfloat MODULATION_FILTER_CONST = 100000.0f;
// When diffusion is above 0, an all-pass filter is used to take the edge off
// the echo effect. It uses the following line length (in seconds).
static const ALfloat ECHO_ALLPASS_LENGTH = 0.0133f;
// Input into the late reverb is decorrelated between four channels. Their
// timings are dependent on a fraction and multiplier. See the
// UpdateDecorrelator() routine for the calculations involved.
static const ALfloat DECO_FRACTION = 0.15f;
static const ALfloat DECO_MULTIPLIER = 2.0f;
// All delay line lengths are specified in seconds.
// The lengths of the early delay lines.
static const ALfloat EARLY_LINE_LENGTH[4] =
{
0.0015f, 0.0045f, 0.0135f, 0.0405f
};
// The lengths of the late all-pass delay lines.
static const ALfloat ALLPASS_LINE_LENGTH[4] =
{
0.0151f, 0.0167f, 0.0183f, 0.0200f,
};
// The lengths of the late cyclical delay lines.
static const ALfloat LATE_LINE_LENGTH[4] =
{
0.0211f, 0.0311f, 0.0461f, 0.0680f
};
// The late cyclical delay lines have a variable length dependent on the
// effect's density parameter (inverted for some reason) and this multiplier.
static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
/**************************************
* Device Update *
**************************************/
// Given the allocated sample buffer, this function updates each delay line
// offset.
static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLine *Delay)
{
Delay->Line = &sampleBuffer[(ptrdiff_t)Delay->Line];
}
// Calculate the length of a delay line and store its mask and offset.
static ALuint CalcLineLength(ALfloat length, ptrdiff_t offset, ALuint frequency, ALuint extra, DelayLine *Delay)
{
ALuint samples;
// All line lengths are powers of 2, calculated from their lengths, with
// an additional sample in case of rounding errors.
samples = fastf2u(length*frequency) + extra;
samples = NextPowerOf2(samples + 1);
// All lines share a single sample buffer.
Delay->Mask = samples - 1;
Delay->Line = (ALfloat*)offset;
// Return the sample count for accumulation.
return samples;
}
/* Calculates the delay line metrics and allocates the shared sample buffer
* for all lines given the sample rate (frequency). If an allocation failure
* occurs, it returns AL_FALSE.
*/
static ALboolean AllocLines(ALuint frequency, ALreverbState *State)
{
ALuint totalSamples, index;
ALfloat length;
ALfloat *newBuffer = NULL;
// All delay line lengths are calculated to accomodate the full range of
// lengths given their respective paramters.
totalSamples = 0;
/* The modulator's line length is calculated from the maximum modulation
* time and depth coefficient, and halfed for the low-to-high frequency
* swing. An additional sample is added to keep it stable when there is no
* modulation.
*/
length = (AL_EAXREVERB_MAX_MODULATION_TIME*MODULATION_DEPTH_COEFF/2.0f);
totalSamples += CalcLineLength(length, totalSamples, frequency, 1,
&State->Mod.Delay);
// The initial delay is the sum of the reflections and late reverb
// delays. This must include space for storing a loop update to feed the
// early reflections, decorrelator, and echo.
length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
AL_EAXREVERB_MAX_LATE_REVERB_DELAY;
totalSamples += CalcLineLength(length, totalSamples, frequency,
MAX_UPDATE_SAMPLES, &State->Delay);
// The early reflection lines.
for(index = 0;index < 4;index++)
totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples,
frequency, 0, &State->Early.Delay[index]);
// The decorrelator line is calculated from the lowest reverb density (a
// parameter value of 1). This must include space for storing a loop update
// to feed the late reverb.
length = (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) *
LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER);
totalSamples += CalcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES,
&State->Decorrelator);
// The late all-pass lines.
for(index = 0;index < 4;index++)
totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples,
frequency, 0, &State->Late.ApDelay[index]);
// The late delay lines are calculated from the lowest reverb density.
for(index = 0;index < 4;index++)
{
length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER);
totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
&State->Late.Delay[index]);
}
// The echo all-pass and delay lines.
totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples,
frequency, 0, &State->Echo.ApDelay);
totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples,
frequency, 0, &State->Echo.Delay);
if(totalSamples != State->TotalSamples)
{
TRACE("New reverb buffer length: %u samples (%f sec)\n", totalSamples, totalSamples/(float)frequency);
newBuffer = realloc(State->SampleBuffer, sizeof(ALfloat) * totalSamples);
if(newBuffer == NULL)
return AL_FALSE;
State->SampleBuffer = newBuffer;
State->TotalSamples = totalSamples;
}
// Update all delays to reflect the new sample buffer.
RealizeLineOffset(State->SampleBuffer, &State->Delay);
RealizeLineOffset(State->SampleBuffer, &State->Decorrelator);
for(index = 0;index < 4;index++)
{
RealizeLineOffset(State->SampleBuffer, &State->Early.Delay[index]);
RealizeLineOffset(State->SampleBuffer, &State->Late.ApDelay[index]);
RealizeLineOffset(State->SampleBuffer, &State->Late.Delay[index]);
}
RealizeLineOffset(State->SampleBuffer, &State->Mod.Delay);
RealizeLineOffset(State->SampleBuffer, &State->Echo.ApDelay);
RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay);
// Clear the sample buffer.
for(index = 0;index < State->TotalSamples;index++)
State->SampleBuffer[index] = 0.0f;
return AL_TRUE;
}
static ALboolean ALreverbState_deviceUpdate(ALreverbState *State, ALCdevice *Device)
{
ALuint frequency = Device->Frequency, index;
// Allocate the delay lines.
if(!AllocLines(frequency, State))
return AL_FALSE;
/* WARNING: This assumes the real output follows the virtual output in the
* device's DryBuffer.
*/
State->ExtraChannels = (Device->Hrtf || Device->Uhj_Encoder) ? 2 : 0;
// Calculate the modulation filter coefficient. Notice that the exponent
// is calculated given the current sample rate. This ensures that the
// resulting filter response over time is consistent across all sample
// rates.
State->Mod.Coeff = powf(MODULATION_FILTER_COEFF,
MODULATION_FILTER_CONST / frequency);
// The early reflection and late all-pass filter line lengths are static,
// so their offsets only need to be calculated once.
for(index = 0;index < 4;index++)
{
State->Early.Offset[index] = fastf2u(EARLY_LINE_LENGTH[index] * frequency);
State->Late.ApOffset[index] = fastf2u(ALLPASS_LINE_LENGTH[index] * frequency);
}
// The echo all-pass filter line length is static, so its offset only
// needs to be calculated once.
State->Echo.ApOffset = fastf2u(ECHO_ALLPASS_LENGTH * frequency);
return AL_TRUE;
}
/**************************************
* Effect Update *
**************************************/
// Calculate a decay coefficient given the length of each cycle and the time
// until the decay reaches -60 dB.
static inline ALfloat CalcDecayCoeff(ALfloat length, ALfloat decayTime)
{
return powf(0.001f/*-60 dB*/, length/decayTime);
}
// Calculate a decay length from a coefficient and the time until the decay
// reaches -60 dB.
static inline ALfloat CalcDecayLength(ALfloat coeff, ALfloat decayTime)
{
return log10f(coeff) * decayTime / log10f(0.001f)/*-60 dB*/;
}
// Calculate an attenuation to be applied to the input of any echo models to
// compensate for modal density and decay time.
static inline ALfloat CalcDensityGain(ALfloat a)
{
/* The energy of a signal can be obtained by finding the area under the
* squared signal. This takes the form of Sum(x_n^2), where x is the
* amplitude for the sample n.
*
* Decaying feedback matches exponential decay of the form Sum(a^n),
* where a is the attenuation coefficient, and n is the sample. The area
* under this decay curve can be calculated as: 1 / (1 - a).
*
* Modifying the above equation to find the squared area under the curve
* (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
* calculated by inverting the square root of this approximation,
* yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
*/
return sqrtf(1.0f - (a * a));
}
// Calculate the mixing matrix coefficients given a diffusion factor.
static inline ALvoid CalcMatrixCoeffs(ALfloat diffusion, ALfloat *x, ALfloat *y)
{
ALfloat n, t;
// The matrix is of order 4, so n is sqrt (4 - 1).
n = sqrtf(3.0f);
t = diffusion * atanf(n);
// Calculate the first mixing matrix coefficient.
*x = cosf(t);
// Calculate the second mixing matrix coefficient.
*y = sinf(t) / n;
}
// Calculate the limited HF ratio for use with the late reverb low-pass
// filters.
static ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF, ALfloat decayTime)
{
ALfloat limitRatio;
/* Find the attenuation due to air absorption in dB (converting delay
* time to meters using the speed of sound). Then reversing the decay
* equation, solve for HF ratio. The delay length is cancelled out of
* the equation, so it can be calculated once for all lines.
*/
limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) *
SPEEDOFSOUNDMETRESPERSEC);
/* Using the limit calculated above, apply the upper bound to the HF
* ratio. Also need to limit the result to a minimum of 0.1, just like the
* HF ratio parameter. */
return clampf(limitRatio, 0.1f, hfRatio);
}
// Calculate the coefficient for a HF (and eventually LF) decay damping
// filter.
static inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloat decayTime, ALfloat decayCoeff, ALfloat cw)
{
ALfloat coeff, g;
// Eventually this should boost the high frequencies when the ratio
// exceeds 1.
coeff = 0.0f;
if (hfRatio < 1.0f)
{
// Calculate the low-pass coefficient by dividing the HF decay
// coefficient by the full decay coefficient.
g = CalcDecayCoeff(length, decayTime * hfRatio) / decayCoeff;
// Damping is done with a 1-pole filter, so g needs to be squared.
g *= g;
if(g < 0.9999f) /* 1-epsilon */
{
/* Be careful with gains < 0.001, as that causes the coefficient
* head towards 1, which will flatten the signal. */
g = maxf(g, 0.001f);
coeff = (1 - g*cw - sqrtf(2*g*(1-cw) - g*g*(1 - cw*cw))) /
(1 - g);
}
// Very low decay times will produce minimal output, so apply an
// upper bound to the coefficient.
coeff = minf(coeff, 0.98f);
}
return coeff;
}
// Update the EAX modulation index, range, and depth. Keep in mind that this
// kind of vibrato is additive and not multiplicative as one may expect. The
// downswing will sound stronger than the upswing.
static ALvoid UpdateModulator(ALfloat modTime, ALfloat modDepth, ALuint frequency, ALreverbState *State)
{
ALuint range;
/* Modulation is calculated in two parts.
*
* The modulation time effects the sinus applied to the change in
* frequency. An index out of the current time range (both in samples)
* is incremented each sample. The range is bound to a reasonable
* minimum (1 sample) and when the timing changes, the index is rescaled
* to the new range (to keep the sinus consistent).
*/
range = maxu(fastf2u(modTime*frequency), 1);
State->Mod.Index = (ALuint)(State->Mod.Index * (ALuint64)range /
State->Mod.Range);
State->Mod.Range = range;
/* The modulation depth effects the amount of frequency change over the
* range of the sinus. It needs to be scaled by the modulation time so
* that a given depth produces a consistent change in frequency over all
* ranges of time. Since the depth is applied to a sinus value, it needs
* to be halfed once for the sinus range and again for the sinus swing
* in time (half of it is spent decreasing the frequency, half is spent
* increasing it).
*/
State->Mod.Depth = modDepth * MODULATION_DEPTH_COEFF * modTime / 2.0f /
2.0f * frequency;
}
// Update the offsets for the initial effect delay line.
static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALuint frequency, ALreverbState *State)
{
// Calculate the initial delay taps.
State->DelayTap[0] = fastf2u(earlyDelay * frequency);
State->DelayTap[1] = fastf2u((earlyDelay + lateDelay) * frequency);
}
// Update the early reflections mix and line coefficients.
static ALvoid UpdateEarlyLines(ALfloat lateDelay, ALreverbState *State)
{
ALuint index;
// Calculate the gain (coefficient) for each early delay line using the
// late delay time. This expands the early reflections to the start of
// the late reverb.
for(index = 0;index < 4;index++)
State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index],
lateDelay);
}
// Update the offsets for the decorrelator line.
static ALvoid UpdateDecorrelator(ALfloat density, ALuint frequency, ALreverbState *State)
{
ALuint index;
ALfloat length;
/* The late reverb inputs are decorrelated to smooth the reverb tail and
* reduce harsh echos. The first tap occurs immediately, while the
* remaining taps are delayed by multiples of a fraction of the smallest
* cyclical delay time.
*
* offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
*/
for(index = 0;index < 3;index++)
{
length = (DECO_FRACTION * powf(DECO_MULTIPLIER, (ALfloat)index)) *
LATE_LINE_LENGTH[0] * (1.0f + (density * LATE_LINE_MULTIPLIER));
State->DecoTap[index] = fastf2u(length * frequency);
}
}
// Update the late reverb mix, line lengths, and line coefficients.
static ALvoid UpdateLateLines(ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State)
{
ALfloat length;
ALuint index;
/* Calculate the late reverb gain. Since the output is tapped prior to the
* application of the next delay line coefficients, this gain needs to be
* attenuated by the 'x' mixing matrix coefficient as well. Also attenuate
* the late reverb when echo depth is high and diffusion is low, so the
* echo is slightly stronger than the decorrelated echos in the reverb
* tail.
*/
State->Late.Gain = xMix * (1.0f - (echoDepth*0.5f*(1.0f - diffusion)));
/* To compensate for changes in modal density and decay time of the late
* reverb signal, the input is attenuated based on the maximal energy of
* the outgoing signal. This approximation is used to keep the apparent
* energy of the signal equal for all ranges of density and decay time.
*
* The average length of the cyclcical delay lines is used to calculate
* the attenuation coefficient.
*/
length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f;
length *= 1.0f + (density * LATE_LINE_MULTIPLIER);
State->Late.DensityGain = CalcDensityGain(
CalcDecayCoeff(length, decayTime)
);
// Calculate the all-pass feed-back and feed-forward coefficient.
State->Late.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f);
for(index = 0;index < 4;index++)
{
// Calculate the gain (coefficient) for each all-pass line.
State->Late.ApCoeff[index] = CalcDecayCoeff(
ALLPASS_LINE_LENGTH[index], decayTime
);
// Calculate the length (in seconds) of each cyclical delay line.
length = LATE_LINE_LENGTH[index] *
(1.0f + (density * LATE_LINE_MULTIPLIER));
// Calculate the delay offset for each cyclical delay line.
State->Late.Offset[index] = fastf2u(length * frequency);
// Calculate the gain (coefficient) for each cyclical line.
State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime);
// Calculate the damping coefficient for each low-pass filter.
State->Late.LpCoeff[index] = CalcDampingCoeff(
hfRatio, length, decayTime, State->Late.Coeff[index], cw
);
// Attenuate the cyclical line coefficients by the mixing coefficient
// (x).
State->Late.Coeff[index] *= xMix;
}
}
// Update the echo gain, line offset, line coefficients, and mixing
// coefficients.
static ALvoid UpdateEchoLine(ALfloat echoTime, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State)
{
// Update the offset and coefficient for the echo delay line.
State->Echo.Offset = fastf2u(echoTime * frequency);
// Calculate the decay coefficient for the echo line.
State->Echo.Coeff = CalcDecayCoeff(echoTime, decayTime);
// Calculate the energy-based attenuation coefficient for the echo delay
// line.
State->Echo.DensityGain = CalcDensityGain(State->Echo.Coeff);
// Calculate the echo all-pass feed coefficient.
State->Echo.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f);
// Calculate the echo all-pass attenuation coefficient.
State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime);
// Calculate the damping coefficient for each low-pass filter.
State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime,
State->Echo.Coeff, cw);
/* Calculate the echo mixing coefficient. This is applied to the output mix
* only, not the feedback.
*/
State->Echo.MixCoeff = echoDepth;
}
// Update the early and late 3D panning gains.
static ALvoid UpdateMixedPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALfloat EarlyGain, ALfloat LateGain, ALreverbState *State)
{
ALfloat DirGains[MAX_OUTPUT_CHANNELS];
ALfloat coeffs[MAX_AMBI_COEFFS];
ALfloat length;
ALuint i;
/* With HRTF or UHJ, the normal output provides a panned reverb channel
* when a non-0-length vector is specified, while the real stereo output
* provides two other "direct" non-panned reverb channels.
*
* WARNING: This assumes the real output follows the virtual output in the
* device's DryBuffer.
*/
memset(State->Early.PanGain, 0, sizeof(State->Early.PanGain));
length = sqrtf(ReflectionsPan[0]*ReflectionsPan[0] + ReflectionsPan[1]*ReflectionsPan[1] + ReflectionsPan[2]*ReflectionsPan[2]);
if(!(length > FLT_EPSILON))
{
for(i = 0;i < Device->RealOut.NumChannels;i++)
State->Early.PanGain[i&3][Device->Dry.NumChannels+i] = Gain * EarlyGain;
}
else
{
/* Note that EAX Reverb's panning vectors are using right-handed
* coordinates, rather that the OpenAL's left-handed coordinates.
* Negate Z to fix this.
*/
ALfloat pan[3] = {
ReflectionsPan[0] / length,
ReflectionsPan[1] / length,
-ReflectionsPan[2] / length,
};
length = minf(length, 1.0f);
CalcDirectionCoeffs(pan, coeffs);
ComputePanningGains(Device->Dry.AmbiCoeffs, Device->Dry.NumChannels, coeffs, Gain, DirGains);
for(i = 0;i < Device->Dry.NumChannels;i++)
State->Early.PanGain[3][i] = DirGains[i] * EarlyGain * length;
for(i = 0;i < Device->RealOut.NumChannels;i++)
State->Early.PanGain[i&3][Device->Dry.NumChannels+i] = Gain * EarlyGain * (1.0f-length);
}
memset(State->Late.PanGain, 0, sizeof(State->Late.PanGain));
length = sqrtf(LateReverbPan[0]*LateReverbPan[0] + LateReverbPan[1]*LateReverbPan[1] + LateReverbPan[2]*LateReverbPan[2]);
if(!(length > FLT_EPSILON))
{
for(i = 0;i < Device->RealOut.NumChannels;i++)
State->Late.PanGain[i&3][Device->Dry.NumChannels+i] = Gain * LateGain;
}
else
{
ALfloat pan[3] = {
LateReverbPan[0] / length,
LateReverbPan[1] / length,
-LateReverbPan[2] / length,
};
length = minf(length, 1.0f);
CalcDirectionCoeffs(pan, coeffs);
ComputePanningGains(Device->Dry.AmbiCoeffs, Device->Dry.NumChannels, coeffs, Gain, DirGains);
for(i = 0;i < Device->Dry.NumChannels;i++)
State->Late.PanGain[3][i] = DirGains[i] * LateGain * length;
for(i = 0;i < Device->RealOut.NumChannels;i++)
State->Late.PanGain[i&3][Device->Dry.NumChannels+i] = Gain * LateGain * (1.0f-length);
}
}
static ALvoid UpdateDirectPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALfloat EarlyGain, ALfloat LateGain, ALreverbState *State)
{
ALfloat AmbientGains[MAX_OUTPUT_CHANNELS];
ALfloat DirGains[MAX_OUTPUT_CHANNELS];
ALfloat coeffs[MAX_AMBI_COEFFS];
ALfloat length;
ALuint i;
/* Apply a boost of about 3dB to better match the expected stereo output volume. */
ComputeAmbientGains(Device->Dry.AmbiCoeffs, Device->Dry.NumChannels,
Gain*1.414213562f, AmbientGains);
memset(State->Early.PanGain, 0, sizeof(State->Early.PanGain));
length = sqrtf(ReflectionsPan[0]*ReflectionsPan[0] + ReflectionsPan[1]*ReflectionsPan[1] + ReflectionsPan[2]*ReflectionsPan[2]);
if(!(length > FLT_EPSILON))
{
for(i = 0;i < Device->Dry.NumChannels;i++)
State->Early.PanGain[i&3][i] = AmbientGains[i] * EarlyGain;
}
else
{
/* Note that EAX Reverb's panning vectors are using right-handed
* coordinates, rather that the OpenAL's left-handed coordinates.
* Negate Z to fix this.
*/
ALfloat pan[3] = {
ReflectionsPan[0] / length,
ReflectionsPan[1] / length,
-ReflectionsPan[2] / length,
};
length = minf(length, 1.0f);
CalcDirectionCoeffs(pan, coeffs);
ComputePanningGains(Device->Dry.AmbiCoeffs, Device->Dry.NumChannels, coeffs,
Gain, DirGains);
for(i = 0;i < Device->Dry.NumChannels;i++)
State->Early.PanGain[i&3][i] = lerp(AmbientGains[i], DirGains[i], length) * EarlyGain;
}
memset(State->Late.PanGain, 0, sizeof(State->Late.PanGain));
length = sqrtf(LateReverbPan[0]*LateReverbPan[0] + LateReverbPan[1]*LateReverbPan[1] + LateReverbPan[2]*LateReverbPan[2]);
if(!(length > FLT_EPSILON))
{
for(i = 0;i < Device->Dry.NumChannels;i++)
State->Late.PanGain[i&3][i] = AmbientGains[i] * LateGain;
}
else
{
ALfloat pan[3] = {
LateReverbPan[0] / length,
LateReverbPan[1] / length,
-LateReverbPan[2] / length,
};
length = minf(length, 1.0f);
CalcDirectionCoeffs(pan, coeffs);
ComputePanningGains(Device->Dry.AmbiCoeffs, Device->Dry.NumChannels, coeffs,
Gain, DirGains);
for(i = 0;i < Device->Dry.NumChannels;i++)
State->Late.PanGain[i&3][i] = lerp(AmbientGains[i], DirGains[i], length) * LateGain;
}
}
static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALfloat EarlyGain, ALfloat LateGain, ALreverbState *State)
{
static const ALfloat PanDirs[4][3] = {
{ -0.707106781f, 0.0f, -0.707106781f }, /* Front left */
{ 0.707106781f, 0.0f, -0.707106781f }, /* Front right */
{ 0.707106781f, 0.0f, 0.707106781f }, /* Back right */
{ -0.707106781f, 0.0f, 0.707106781f } /* Back left */
};
ALfloat coeffs[MAX_AMBI_COEFFS];
ALfloat gain[4];
ALfloat length;
ALuint i;
/* 0.5 would be the gain scaling when the panning vector is 0. This also
* equals sqrt(1/4), a nice gain scaling for the four virtual points
* producing an "ambient" response.
*/
gain[0] = gain[1] = gain[2] = gain[3] = 0.5f;
length = sqrtf(ReflectionsPan[0]*ReflectionsPan[0] + ReflectionsPan[1]*ReflectionsPan[1] + ReflectionsPan[2]*ReflectionsPan[2]);
if(length > 1.0f)
{
ALfloat pan[3] = {
ReflectionsPan[0] / length,
ReflectionsPan[1] / length,
-ReflectionsPan[2] / length,
};
for(i = 0;i < 4;i++)
{
ALfloat dotp = pan[0]*PanDirs[i][0] + pan[1]*PanDirs[i][1] + pan[2]*PanDirs[i][2];
gain[i] = dotp*0.5f + 0.5f;
}
}
else if(length > FLT_EPSILON)
{
for(i = 0;i < 4;i++)
{
ALfloat dotp = ReflectionsPan[0]*PanDirs[i][0] + ReflectionsPan[1]*PanDirs[i][1] +
-ReflectionsPan[2]*PanDirs[i][2];
gain[i] = dotp*0.5f + 0.5f;
}
}
for(i = 0;i < 4;i++)
{
CalcDirectionCoeffs(PanDirs[i], coeffs);
ComputePanningGains(Device->Dry.AmbiCoeffs, Device->Dry.NumChannels, coeffs,
Gain*EarlyGain*gain[i], State->Early.PanGain[i]);
}
gain[0] = gain[1] = gain[2] = gain[3] = 0.5f;
length = sqrtf(LateReverbPan[0]*LateReverbPan[0] + LateReverbPan[1]*LateReverbPan[1] + LateReverbPan[2]*LateReverbPan[2]);
if(length > 1.0f)
{
ALfloat pan[3] = {
LateReverbPan[0] / length,
LateReverbPan[1] / length,
-LateReverbPan[2] / length,
};
for(i = 0;i < 4;i++)
{
ALfloat dotp = pan[0]*PanDirs[i][0] + pan[1]*PanDirs[i][1] + pan[2]*PanDirs[i][2];
gain[i] = dotp*0.5f + 0.5f;
}
}
else if(length > FLT_EPSILON)
{
for(i = 0;i < 4;i++)
{
ALfloat dotp = LateReverbPan[0]*PanDirs[i][0] + LateReverbPan[1]*PanDirs[i][1] +
-LateReverbPan[2]*PanDirs[i][2];
gain[i] = dotp*0.5f + 0.5f;
}
}
for(i = 0;i < 4;i++)
{
CalcDirectionCoeffs(PanDirs[i], coeffs);
ComputePanningGains(Device->Dry.AmbiCoeffs, Device->Dry.NumChannels, coeffs,
Gain*LateGain*gain[i], State->Late.PanGain[i]);
}
}
static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device, const ALeffectslot *Slot)
{
const ALeffectProps *props = &Slot->EffectProps;
ALuint frequency = Device->Frequency;
ALfloat lfscale, hfscale, hfRatio;
ALfloat gain, gainlf, gainhf;
ALfloat cw, x, y;
if(Slot->EffectType == AL_EFFECT_EAXREVERB && !EmulateEAXReverb)
State->IsEax = AL_TRUE;
else if(Slot->EffectType == AL_EFFECT_REVERB || EmulateEAXReverb)
State->IsEax = AL_FALSE;
// Calculate the master filters
hfscale = props->Reverb.HFReference / frequency;
gainhf = maxf(props->Reverb.GainHF, 0.0001f);
ALfilterState_setParams(&State->LpFilter, ALfilterType_HighShelf,
gainhf, hfscale, calc_rcpQ_from_slope(gainhf, 0.75f));
lfscale = props->Reverb.LFReference / frequency;
gainlf = maxf(props->Reverb.GainLF, 0.0001f);
ALfilterState_setParams(&State->HpFilter, ALfilterType_LowShelf,
gainlf, lfscale, calc_rcpQ_from_slope(gainlf, 0.75f));
// Update the modulator line.
UpdateModulator(props->Reverb.ModulationTime, props->Reverb.ModulationDepth,
frequency, State);
// Update the initial effect delay.
UpdateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
frequency, State);
// Update the early lines.
UpdateEarlyLines(props->Reverb.LateReverbDelay, State);
// Update the decorrelator.
UpdateDecorrelator(props->Reverb.Density, frequency, State);
// Get the mixing matrix coefficients (x and y).
CalcMatrixCoeffs(props->Reverb.Diffusion, &x, &y);
// Then divide x into y to simplify the matrix calculation.
State->Late.MixCoeff = y / x;
// If the HF limit parameter is flagged, calculate an appropriate limit
// based on the air absorption parameter.
hfRatio = props->Reverb.DecayHFRatio;
if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
props->Reverb.DecayTime);
cw = cosf(F_TAU * hfscale);
// Update the late lines.
UpdateLateLines(x, props->Reverb.Density, props->Reverb.DecayTime,
props->Reverb.Diffusion, props->Reverb.EchoDepth,
hfRatio, cw, frequency, State);
// Update the echo line.
UpdateEchoLine(props->Reverb.EchoTime, props->Reverb.DecayTime,
props->Reverb.Diffusion, props->Reverb.EchoDepth,
hfRatio, cw, frequency, State);
gain = props->Reverb.Gain * Slot->Gain * ReverbBoost;
// Update early and late 3D panning.
if(Device->Hrtf || Device->Uhj_Encoder)
UpdateMixedPanning(Device, props->Reverb.ReflectionsPan,
props->Reverb.LateReverbPan, gain,
props->Reverb.ReflectionsGain,
props->Reverb.LateReverbGain, State);
else if(Device->FmtChans == DevFmtBFormat3D)
Update3DPanning(Device, props->Reverb.ReflectionsPan,
props->Reverb.LateReverbPan, gain,
props->Reverb.ReflectionsGain,
props->Reverb.LateReverbGain, State);
else
UpdateDirectPanning(Device, props->Reverb.ReflectionsPan,
props->Reverb.LateReverbPan, gain,
props->Reverb.ReflectionsGain,
props->Reverb.LateReverbGain, State);
}
/**************************************
* Effect Processing *
**************************************/
// Basic delay line input/output routines.
static inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
{
return Delay->Line[offset&Delay->Mask];
}
static inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
{
Delay->Line[offset&Delay->Mask] = in;
}
// Given an input sample, this function produces modulation for the late
// reverb.
static inline ALfloat EAXModulation(ALreverbState *State, ALuint offset, ALfloat in)
{
ALfloat sinus, frac, fdelay;
ALfloat out0, out1;
ALuint delay;
// Calculate the sinus rythm (dependent on modulation time and the
// sampling rate). The center of the sinus is moved to reduce the delay
// of the effect when the time or depth are low.
sinus = 1.0f - cosf(F_TAU * State->Mod.Index / State->Mod.Range);
// Step the modulation index forward, keeping it bound to its range.
State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range;
// The depth determines the range over which to read the input samples
// from, so it must be filtered to reduce the distortion caused by even
// small parameter changes.
State->Mod.Filter = lerp(State->Mod.Filter, State->Mod.Depth,
State->Mod.Coeff);
// Calculate the read offset and fraction between it and the next sample.
frac = modff(State->Mod.Filter*sinus, &fdelay);
delay = fastf2u(fdelay);
/* Add the incoming sample to the delay line first, so a 0 delay gets the
* incoming sample.
*/
DelayLineIn(&State->Mod.Delay, offset, in);
/* Get the two samples crossed by the offset delay */
out0 = DelayLineOut(&State->Mod.Delay, offset - delay);
out1 = DelayLineOut(&State->Mod.Delay, offset - delay - 1);
// The output is obtained by linearly interpolating the two samples that
// were acquired above.
return lerp(out0, out1, frac);
}
// Given some input sample, this function produces four-channel outputs for the
// early reflections.
static inline ALvoid EarlyReflection(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[4])
{
ALfloat d[4], v, f[4];
ALuint i;
for(i = 0;i < todo;i++)
{
ALuint offset = State->Offset+i;
// Obtain the decayed results of each early delay line.
d[0] = DelayLineOut(&State->Early.Delay[0], offset-State->Early.Offset[0]) * State->Early.Coeff[0];
d[1] = DelayLineOut(&State->Early.Delay[1], offset-State->Early.Offset[1]) * State->Early.Coeff[1];
d[2] = DelayLineOut(&State->Early.Delay[2], offset-State->Early.Offset[2]) * State->Early.Coeff[2];
d[3] = DelayLineOut(&State->Early.Delay[3], offset-State->Early.Offset[3]) * State->Early.Coeff[3];
/* The following uses a lossless scattering junction from waveguide
* theory. It actually amounts to a householder mixing matrix, which
* will produce a maximally diffuse response, and means this can
* probably be considered a simple feed-back delay network (FDN).
* N
* ---
* \
* v = 2/N / d_i
* ---
* i=1
*/
v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
// The junction is loaded with the input here.
v += DelayLineOut(&State->Delay, offset-State->DelayTap[0]);
// Calculate the feed values for the delay lines.
f[0] = v - d[0];
f[1] = v - d[1];
f[2] = v - d[2];
f[3] = v - d[3];
// Re-feed the delay lines.
DelayLineIn(&State->Early.Delay[0], offset, f[0]);
DelayLineIn(&State->Early.Delay[1], offset, f[1]);
DelayLineIn(&State->Early.Delay[2], offset, f[2]);
DelayLineIn(&State->Early.Delay[3], offset, f[3]);
/* Output the results of the junction for all four channels with a
* constant attenuation of 0.5.
*/
out[i][0] = f[0] * 0.5f;
out[i][1] = f[1] * 0.5f;
out[i][2] = f[2] * 0.5f;
out[i][3] = f[3] * 0.5f;
}
}
// Basic attenuated all-pass input/output routine.
static inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff)
{
ALfloat out, feed;
out = DelayLineOut(Delay, outOffset);
feed = feedCoeff * in;
DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in);
// The time-based attenuation is only applied to the delay output to
// keep it from affecting the feed-back path (which is already controlled
// by the all-pass feed coefficient).
return (coeff * out) - feed;
}
// All-pass input/output routine for late reverb.
static inline ALfloat LateAllPassInOut(ALreverbState *State, ALuint offset, ALuint index, ALfloat in)
{
return AllpassInOut(&State->Late.ApDelay[index],
offset - State->Late.ApOffset[index],
offset, in, State->Late.ApFeedCoeff,
State->Late.ApCoeff[index]);
}
// Low-pass filter input/output routine for late reverb.
static inline ALfloat LateLowPassInOut(ALreverbState *State, ALuint index, ALfloat in)
{
in = lerp(in, State->Late.LpSample[index], State->Late.LpCoeff[index]);
State->Late.LpSample[index] = in;
return in;
}
// Given four decorrelated input samples, this function produces four-channel
// output for the late reverb.
static inline ALvoid LateReverb(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[4])
{
ALfloat d[4], f[4];
ALuint i;
// Feed the decorrelator from the energy-attenuated output of the second
// delay tap.
for(i = 0;i < todo;i++)
{
ALuint offset = State->Offset+i;
ALfloat sample = DelayLineOut(&State->Delay, offset - State->DelayTap[1]) *
State->Late.DensityGain;
DelayLineIn(&State->Decorrelator, offset, sample);
}
for(i = 0;i < todo;i++)
{
ALuint offset = State->Offset+i;
/* Obtain four decorrelated input samples. */
f[0] = DelayLineOut(&State->Decorrelator, offset);
f[1] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[0]);
f[2] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[1]);
f[3] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[2]);
/* Add the decayed results of the cyclical delay lines, then pass the
* results through the low-pass filters.
*/
f[0] += DelayLineOut(&State->Late.Delay[0], offset-State->Late.Offset[0]) * State->Late.Coeff[0];
f[1] += DelayLineOut(&State->Late.Delay[1], offset-State->Late.Offset[1]) * State->Late.Coeff[1];
f[2] += DelayLineOut(&State->Late.Delay[2], offset-State->Late.Offset[2]) * State->Late.Coeff[2];
f[3] += DelayLineOut(&State->Late.Delay[3], offset-State->Late.Offset[3]) * State->Late.Coeff[3];
// This is where the feed-back cycles from line 0 to 1 to 3 to 2 and
// back to 0.
d[0] = LateLowPassInOut(State, 2, f[2]);
d[1] = LateLowPassInOut(State, 0, f[0]);
d[2] = LateLowPassInOut(State, 3, f[3]);
d[3] = LateLowPassInOut(State, 1, f[1]);
// To help increase diffusion, run each line through an all-pass filter.
// When there is no diffusion, the shortest all-pass filter will feed
// the shortest delay line.
d[0] = LateAllPassInOut(State, offset, 0, d[0]);
d[1] = LateAllPassInOut(State, offset, 1, d[1]);
d[2] = LateAllPassInOut(State, offset, 2, d[2]);
d[3] = LateAllPassInOut(State, offset, 3, d[3]);
/* Late reverb is done with a modified feed-back delay network (FDN)
* topology. Four input lines are each fed through their own all-pass
* filter and then into the mixing matrix. The four outputs of the
* mixing matrix are then cycled back to the inputs. Each output feeds
* a different input to form a circlular feed cycle.
*
* The mixing matrix used is a 4D skew-symmetric rotation matrix
* derived using a single unitary rotational parameter:
*
* [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
* [ -a, d, c, -b ]
* [ -b, -c, d, a ]
* [ -c, b, -a, d ]
*
* The rotation is constructed from the effect's diffusion parameter,
* yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
* with differing signs, and d is the coefficient x. The matrix is
* thus:
*
* [ x, y, -y, y ] n = sqrt(matrix_order - 1)
* [ -y, x, y, y ] t = diffusion_parameter * atan(n)
* [ y, -y, x, y ] x = cos(t)
* [ -y, -y, -y, x ] y = sin(t) / n
*
* To reduce the number of multiplies, the x coefficient is applied
* with the cyclical delay line coefficients. Thus only the y
* coefficient is applied when mixing, and is modified to be: y / x.
*/
f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3]));
f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3]));
f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] ));
// Output the results of the matrix for all four channels, attenuated by
// the late reverb gain (which is attenuated by the 'x' mix coefficient).
out[i][0] = State->Late.Gain * f[0];
out[i][1] = State->Late.Gain * f[1];
out[i][2] = State->Late.Gain * f[2];
out[i][3] = State->Late.Gain * f[3];
// Re-feed the cyclical delay lines.
DelayLineIn(&State->Late.Delay[0], offset, f[0]);
DelayLineIn(&State->Late.Delay[1], offset, f[1]);
DelayLineIn(&State->Late.Delay[2], offset, f[2]);
DelayLineIn(&State->Late.Delay[3], offset, f[3]);
}
}
// Given an input sample, this function mixes echo into the four-channel late
// reverb.
static inline ALvoid EAXEcho(ALreverbState *State, ALuint todo, ALfloat (*restrict late)[4])
{
ALfloat out, feed;
ALuint i;
for(i = 0;i < todo;i++)
{
ALuint offset = State->Offset+i;
// Get the latest attenuated echo sample for output.
feed = DelayLineOut(&State->Echo.Delay, offset-State->Echo.Offset) *
State->Echo.Coeff;
// Mix the output into the late reverb channels.
out = State->Echo.MixCoeff * feed;
late[i][0] += out;
late[i][1] += out;
late[i][2] += out;
late[i][3] += out;
// Mix the energy-attenuated input with the output and pass it through
// the echo low-pass filter.
feed += DelayLineOut(&State->Delay, offset-State->DelayTap[1]) *
State->Echo.DensityGain;
feed = lerp(feed, State->Echo.LpSample, State->Echo.LpCoeff);
State->Echo.LpSample = feed;
// Then the echo all-pass filter.
feed = AllpassInOut(&State->Echo.ApDelay, offset-State->Echo.ApOffset,
offset, feed, State->Echo.ApFeedCoeff,
State->Echo.ApCoeff);
// Feed the delay with the mixed and filtered sample.
DelayLineIn(&State->Echo.Delay, offset, feed);
}
}
// Perform the non-EAX reverb pass on a given input sample, resulting in
// four-channel output.
static inline ALvoid VerbPass(ALreverbState *State, ALuint todo, const ALfloat *in, ALfloat (*restrict early)[4], ALfloat (*restrict late)[4])
{
ALuint i;
// Low-pass filter the incoming samples.
for(i = 0;i < todo;i++)
DelayLineIn(&State->Delay, State->Offset+i,
ALfilterState_processSingle(&State->LpFilter, in[i])
);
// Calculate the early reflection from the first delay tap.
EarlyReflection(State, todo, early);
// Calculate the late reverb from the decorrelator taps.
LateReverb(State, todo, late);
// Step all delays forward one sample.
State->Offset += todo;
}
// Perform the EAX reverb pass on a given input sample, resulting in four-
// channel output.
static inline ALvoid EAXVerbPass(ALreverbState *State, ALuint todo, const ALfloat *input, ALfloat (*restrict early)[4], ALfloat (*restrict late)[4])
{
ALuint i;
// Band-pass and modulate the incoming samples.
for(i = 0;i < todo;i++)
{
ALfloat sample = input[i];
sample = ALfilterState_processSingle(&State->LpFilter, sample);
sample = ALfilterState_processSingle(&State->HpFilter, sample);
// Perform any modulation on the input.
sample = EAXModulation(State, State->Offset+i, sample);
// Feed the initial delay line.
DelayLineIn(&State->Delay, State->Offset+i, sample);
}
// Calculate the early reflection from the first delay tap.
EarlyReflection(State, todo, early);
// Calculate the late reverb from the decorrelator taps.
LateReverb(State, todo, late);
// Calculate and mix in any echo.
EAXEcho(State, todo, late);
// Step all delays forward.
State->Offset += todo;
}
static ALvoid ALreverbState_processStandard(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
{
ALfloat (*restrict early)[4] = State->EarlySamples;
ALfloat (*restrict late)[4] = State->ReverbSamples;
ALuint index, c, i, l;
ALfloat gain;
/* Process reverb for these samples. */
for(index = 0;index < SamplesToDo;)
{
ALuint todo = minu(SamplesToDo-index, MAX_UPDATE_SAMPLES);
VerbPass(State, todo, &SamplesIn[index], early, late);
for(l = 0;l < 4;l++)
{
for(c = 0;c < NumChannels;c++)
{
gain = State->Early.PanGain[l][c];
if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
{
for(i = 0;i < todo;i++)
SamplesOut[c][index+i] += gain*early[i][l];
}
gain = State->Late.PanGain[l][c];
if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
{
for(i = 0;i < todo;i++)
SamplesOut[c][index+i] += gain*late[i][l];
}
}
}
index += todo;
}
}
static ALvoid ALreverbState_processEax(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
{
ALfloat (*restrict early)[4] = State->EarlySamples;
ALfloat (*restrict late)[4] = State->ReverbSamples;
ALuint index, c, i, l;
ALfloat gain;
/* Process reverb for these samples. */
for(index = 0;index < SamplesToDo;)
{
ALuint todo = minu(SamplesToDo-index, MAX_UPDATE_SAMPLES);
EAXVerbPass(State, todo, &SamplesIn[index], early, late);
for(l = 0;l < 4;l++)
{
for(c = 0;c < NumChannels;c++)
{
gain = State->Early.PanGain[l][c];
if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
{
for(i = 0;i < todo;i++)
SamplesOut[c][index+i] += gain*early[i][l];
}
gain = State->Late.PanGain[l][c];
if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
{
for(i = 0;i < todo;i++)
SamplesOut[c][index+i] += gain*late[i][l];
}
}
}
index += todo;
}
}
static ALvoid ALreverbState_process(ALreverbState *State, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
{
NumChannels += State->ExtraChannels;
if(State->IsEax)
ALreverbState_processEax(State, SamplesToDo, SamplesIn[0], SamplesOut, NumChannels);
else
ALreverbState_processStandard(State, SamplesToDo, SamplesIn[0], SamplesOut, NumChannels);
}
typedef struct ALreverbStateFactory {
DERIVE_FROM_TYPE(ALeffectStateFactory);
} ALreverbStateFactory;
static ALeffectState *ALreverbStateFactory_create(ALreverbStateFactory* UNUSED(factory))
{
ALreverbState *state;
ALuint index, l;
state = ALreverbState_New(sizeof(*state));
if(!state) return NULL;
SET_VTABLE2(ALreverbState, ALeffectState, state);
state->IsEax = AL_FALSE;
state->ExtraChannels = 0;
state->TotalSamples = 0;
state->SampleBuffer = NULL;
ALfilterState_clear(&state->LpFilter);
ALfilterState_clear(&state->HpFilter);
state->Mod.Delay.Mask = 0;
state->Mod.Delay.Line = NULL;
state->Mod.Index = 0;
state->Mod.Range = 1;
state->Mod.Depth = 0.0f;
state->Mod.Coeff = 0.0f;
state->Mod.Filter = 0.0f;
state->Delay.Mask = 0;
state->Delay.Line = NULL;
state->DelayTap[0] = 0;
state->DelayTap[1] = 0;
for(index = 0;index < 4;index++)
{
state->Early.Coeff[index] = 0.0f;
state->Early.Delay[index].Mask = 0;
state->Early.Delay[index].Line = NULL;
state->Early.Offset[index] = 0;
}
state->Decorrelator.Mask = 0;
state->Decorrelator.Line = NULL;
state->DecoTap[0] = 0;
state->DecoTap[1] = 0;
state->DecoTap[2] = 0;
state->Late.Gain = 0.0f;
state->Late.DensityGain = 0.0f;
state->Late.ApFeedCoeff = 0.0f;
state->Late.MixCoeff = 0.0f;
for(index = 0;index < 4;index++)
{
state->Late.ApCoeff[index] = 0.0f;
state->Late.ApDelay[index].Mask = 0;
state->Late.ApDelay[index].Line = NULL;
state->Late.ApOffset[index] = 0;
state->Late.Coeff[index] = 0.0f;
state->Late.Delay[index].Mask = 0;
state->Late.Delay[index].Line = NULL;
state->Late.Offset[index] = 0;
state->Late.LpCoeff[index] = 0.0f;
state->Late.LpSample[index] = 0.0f;
}
for(l = 0;l < 4;l++)
{
for(index = 0;index < MAX_OUTPUT_CHANNELS;index++)
{
state->Early.PanGain[l][index] = 0.0f;
state->Late.PanGain[l][index] = 0.0f;
}
}
state->Echo.DensityGain = 0.0f;
state->Echo.Delay.Mask = 0;
state->Echo.Delay.Line = NULL;
state->Echo.ApDelay.Mask = 0;
state->Echo.ApDelay.Line = NULL;
state->Echo.Coeff = 0.0f;
state->Echo.ApFeedCoeff = 0.0f;
state->Echo.ApCoeff = 0.0f;
state->Echo.Offset = 0;
state->Echo.ApOffset = 0;
state->Echo.LpCoeff = 0.0f;
state->Echo.LpSample = 0.0f;
state->Echo.MixCoeff = 0.0f;
state->Offset = 0;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALreverbStateFactory);
ALeffectStateFactory *ALreverbStateFactory_getFactory(void)
{
static ALreverbStateFactory ReverbFactory = { { GET_VTABLE2(ALreverbStateFactory, ALeffectStateFactory) } };
return STATIC_CAST(ALeffectStateFactory, &ReverbFactory);
}
void ALeaxreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_EAXREVERB_DECAY_HFLIMIT:
if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.DecayHFLimit = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALeaxreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALeaxreverb_setParami(effect, context, param, vals[0]);
}
void ALeaxreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_EAXREVERB_DENSITY:
if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.Density = val;
break;
case AL_EAXREVERB_DIFFUSION:
if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.Diffusion = val;
break;
case AL_EAXREVERB_GAIN:
if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.Gain = val;
break;
case AL_EAXREVERB_GAINHF:
if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.GainHF = val;
break;
case AL_EAXREVERB_GAINLF:
if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.GainLF = val;
break;
case AL_EAXREVERB_DECAY_TIME:
if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.DecayTime = val;
break;
case AL_EAXREVERB_DECAY_HFRATIO:
if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.DecayHFRatio = val;
break;
case AL_EAXREVERB_DECAY_LFRATIO:
if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.DecayLFRatio = val;
break;
case AL_EAXREVERB_REFLECTIONS_GAIN:
if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.ReflectionsGain = val;
break;
case AL_EAXREVERB_REFLECTIONS_DELAY:
if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.ReflectionsDelay = val;
break;
case AL_EAXREVERB_LATE_REVERB_GAIN:
if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.LateReverbGain = val;
break;
case AL_EAXREVERB_LATE_REVERB_DELAY:
if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.LateReverbDelay = val;
break;
case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.AirAbsorptionGainHF = val;
break;
case AL_EAXREVERB_ECHO_TIME:
if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.EchoTime = val;
break;
case AL_EAXREVERB_ECHO_DEPTH:
if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.EchoDepth = val;
break;
case AL_EAXREVERB_MODULATION_TIME:
if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.ModulationTime = val;
break;
case AL_EAXREVERB_MODULATION_DEPTH:
if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.ModulationDepth = val;
break;
case AL_EAXREVERB_HFREFERENCE:
if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.HFReference = val;
break;
case AL_EAXREVERB_LFREFERENCE:
if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.LFReference = val;
break;
case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.RoomRolloffFactor = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALeaxreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_EAXREVERB_REFLECTIONS_PAN:
if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
LockContext(context);
props->Reverb.ReflectionsPan[0] = vals[0];
props->Reverb.ReflectionsPan[1] = vals[1];
props->Reverb.ReflectionsPan[2] = vals[2];
UnlockContext(context);
break;
case AL_EAXREVERB_LATE_REVERB_PAN:
if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
LockContext(context);
props->Reverb.LateReverbPan[0] = vals[0];
props->Reverb.LateReverbPan[1] = vals[1];
props->Reverb.LateReverbPan[2] = vals[2];
UnlockContext(context);
break;
default:
ALeaxreverb_setParamf(effect, context, param, vals[0]);
break;
}
}
void ALeaxreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_EAXREVERB_DECAY_HFLIMIT:
*val = props->Reverb.DecayHFLimit;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALeaxreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALeaxreverb_getParami(effect, context, param, vals);
}
void ALeaxreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_EAXREVERB_DENSITY:
*val = props->Reverb.Density;
break;
case AL_EAXREVERB_DIFFUSION:
*val = props->Reverb.Diffusion;
break;
case AL_EAXREVERB_GAIN:
*val = props->Reverb.Gain;
break;
case AL_EAXREVERB_GAINHF:
*val = props->Reverb.GainHF;
break;
case AL_EAXREVERB_GAINLF:
*val = props->Reverb.GainLF;
break;
case AL_EAXREVERB_DECAY_TIME:
*val = props->Reverb.DecayTime;
break;
case AL_EAXREVERB_DECAY_HFRATIO:
*val = props->Reverb.DecayHFRatio;
break;
case AL_EAXREVERB_DECAY_LFRATIO:
*val = props->Reverb.DecayLFRatio;
break;
case AL_EAXREVERB_REFLECTIONS_GAIN:
*val = props->Reverb.ReflectionsGain;
break;
case AL_EAXREVERB_REFLECTIONS_DELAY:
*val = props->Reverb.ReflectionsDelay;
break;
case AL_EAXREVERB_LATE_REVERB_GAIN:
*val = props->Reverb.LateReverbGain;
break;
case AL_EAXREVERB_LATE_REVERB_DELAY:
*val = props->Reverb.LateReverbDelay;
break;
case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
*val = props->Reverb.AirAbsorptionGainHF;
break;
case AL_EAXREVERB_ECHO_TIME:
*val = props->Reverb.EchoTime;
break;
case AL_EAXREVERB_ECHO_DEPTH:
*val = props->Reverb.EchoDepth;
break;
case AL_EAXREVERB_MODULATION_TIME:
*val = props->Reverb.ModulationTime;
break;
case AL_EAXREVERB_MODULATION_DEPTH:
*val = props->Reverb.ModulationDepth;
break;
case AL_EAXREVERB_HFREFERENCE:
*val = props->Reverb.HFReference;
break;
case AL_EAXREVERB_LFREFERENCE:
*val = props->Reverb.LFReference;
break;
case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
*val = props->Reverb.RoomRolloffFactor;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALeaxreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_EAXREVERB_REFLECTIONS_PAN:
LockContext(context);
vals[0] = props->Reverb.ReflectionsPan[0];
vals[1] = props->Reverb.ReflectionsPan[1];
vals[2] = props->Reverb.ReflectionsPan[2];
UnlockContext(context);
break;
case AL_EAXREVERB_LATE_REVERB_PAN:
LockContext(context);
vals[0] = props->Reverb.LateReverbPan[0];
vals[1] = props->Reverb.LateReverbPan[1];
vals[2] = props->Reverb.LateReverbPan[2];
UnlockContext(context);
break;
default:
ALeaxreverb_getParamf(effect, context, param, vals);
break;
}
}
DEFINE_ALEFFECT_VTABLE(ALeaxreverb);
void ALreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_REVERB_DECAY_HFLIMIT:
if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.DecayHFLimit = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALreverb_setParami(effect, context, param, vals[0]);
}
void ALreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_REVERB_DENSITY:
if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.Density = val;
break;
case AL_REVERB_DIFFUSION:
if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.Diffusion = val;
break;
case AL_REVERB_GAIN:
if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.Gain = val;
break;
case AL_REVERB_GAINHF:
if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.GainHF = val;
break;
case AL_REVERB_DECAY_TIME:
if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.DecayTime = val;
break;
case AL_REVERB_DECAY_HFRATIO:
if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.DecayHFRatio = val;
break;
case AL_REVERB_REFLECTIONS_GAIN:
if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.ReflectionsGain = val;
break;
case AL_REVERB_REFLECTIONS_DELAY:
if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.ReflectionsDelay = val;
break;
case AL_REVERB_LATE_REVERB_GAIN:
if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.LateReverbGain = val;
break;
case AL_REVERB_LATE_REVERB_DELAY:
if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.LateReverbDelay = val;
break;
case AL_REVERB_AIR_ABSORPTION_GAINHF:
if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.AirAbsorptionGainHF = val;
break;
case AL_REVERB_ROOM_ROLLOFF_FACTOR:
if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Reverb.RoomRolloffFactor = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALreverb_setParamf(effect, context, param, vals[0]);
}
void ALreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_REVERB_DECAY_HFLIMIT:
*val = props->Reverb.DecayHFLimit;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALreverb_getParami(effect, context, param, vals);
}
void ALreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_REVERB_DENSITY:
*val = props->Reverb.Density;
break;
case AL_REVERB_DIFFUSION:
*val = props->Reverb.Diffusion;
break;
case AL_REVERB_GAIN:
*val = props->Reverb.Gain;
break;
case AL_REVERB_GAINHF:
*val = props->Reverb.GainHF;
break;
case AL_REVERB_DECAY_TIME:
*val = props->Reverb.DecayTime;
break;
case AL_REVERB_DECAY_HFRATIO:
*val = props->Reverb.DecayHFRatio;
break;
case AL_REVERB_REFLECTIONS_GAIN:
*val = props->Reverb.ReflectionsGain;
break;
case AL_REVERB_REFLECTIONS_DELAY:
*val = props->Reverb.ReflectionsDelay;
break;
case AL_REVERB_LATE_REVERB_GAIN:
*val = props->Reverb.LateReverbGain;
break;
case AL_REVERB_LATE_REVERB_DELAY:
*val = props->Reverb.LateReverbDelay;
break;
case AL_REVERB_AIR_ABSORPTION_GAINHF:
*val = props->Reverb.AirAbsorptionGainHF;
break;
case AL_REVERB_ROOM_ROLLOFF_FACTOR:
*val = props->Reverb.RoomRolloffFactor;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
ALreverb_getParamf(effect, context, param, vals);
}
DEFINE_ALEFFECT_VTABLE(ALreverb);