AuroraOpenALSoft/Alc/mixer_sse.c

230 lines
7.6 KiB
C

#include "config.h"
#include <xmmintrin.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alu.h"
#include "alSource.h"
#include "alAuxEffectSlot.h"
#include "mixer_defs.h"
const ALfloat *Resample_bsinc_SSE(const InterpState *state, const ALfloat *restrict src,
ALsizei frac, ALint increment, ALfloat *restrict dst,
ALsizei dstlen)
{
const ALfloat *const filter = state->bsinc.filter;
const __m128 sf4 = _mm_set1_ps(state->bsinc.sf);
const ALsizei m = state->bsinc.m;
const __m128 *fil, *scd, *phd, *spd;
ALsizei pi, i, j, offset;
ALfloat pf;
__m128 r4;
src += state->bsinc.l;
for(i = 0;i < dstlen;i++)
{
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
pi = frac >> FRAC_PHASE_BITDIFF;
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
#undef FRAC_PHASE_BITDIFF
offset = m*pi*4;
fil = (const __m128*)ASSUME_ALIGNED(filter + offset, 16); offset += m;
scd = (const __m128*)ASSUME_ALIGNED(filter + offset, 16); offset += m;
phd = (const __m128*)ASSUME_ALIGNED(filter + offset, 16); offset += m;
spd = (const __m128*)ASSUME_ALIGNED(filter + offset, 16);
// Apply the scale and phase interpolated filter.
r4 = _mm_setzero_ps();
{
const __m128 pf4 = _mm_set1_ps(pf);
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
for(j = 0;j < m;j+=4,fil++,scd++,phd++,spd++)
{
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
const __m128 f4 = MLA4(
MLA4(*fil, sf4, *scd),
pf4, MLA4(*phd, sf4, *spd)
);
/* r += f*src */
r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
}
#undef MLA4
}
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
dst[i] = _mm_cvtss_f32(r4);
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
const ALsizei IrSize,
const ALfloat (*restrict Coeffs)[2],
ALfloat left, ALfloat right)
{
const __m128 lrlr = _mm_setr_ps(left, right, left, right);
__m128 vals = _mm_setzero_ps();
__m128 coeffs;
ALsizei i;
Values = ASSUME_ALIGNED(Values, 16);
Coeffs = ASSUME_ALIGNED(Coeffs, 16);
if((Offset&1))
{
const ALsizei o0 = Offset&HRIR_MASK;
const ALsizei o1 = (Offset+IrSize-1)&HRIR_MASK;
__m128 imp0, imp1;
coeffs = _mm_load_ps(&Coeffs[0][0]);
vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
imp0 = _mm_mul_ps(lrlr, coeffs);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi((__m64*)&Values[o0][0], vals);
for(i = 1;i < IrSize-1;i += 2)
{
const ALsizei o2 = (Offset+i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
vals = _mm_load_ps(&Values[o2][0]);
imp1 = _mm_mul_ps(lrlr, coeffs);
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Values[o2][0], vals);
imp0 = imp1;
}
vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
imp0 = _mm_movehl_ps(imp0, imp0);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi((__m64*)&Values[o1][0], vals);
}
else
{
for(i = 0;i < IrSize;i += 2)
{
const ALsizei o = (Offset + i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i][0]);
vals = _mm_load_ps(&Values[o][0]);
vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
_mm_store_ps(&Values[o][0], vals);
}
}
}
#define MixHrtf MixHrtf_SSE
#define MixHrtfBlend MixHrtfBlend_SSE
#define MixDirectHrtf MixDirectHrtf_SSE
#include "mixer_inc.c"
#undef MixHrtf
void Mix_SSE(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
ALsizei BufferSize)
{
ALfloat gain, delta, step;
__m128 gain4;
ALsizei c;
delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
for(c = 0;c < OutChans;c++)
{
ALsizei pos = 0;
gain = CurrentGains[c];
step = (TargetGains[c] - gain) * delta;
if(fabsf(step) > FLT_EPSILON)
{
ALsizei minsize = mini(BufferSize, Counter);
/* Mix with applying gain steps in aligned multiples of 4. */
if(minsize-pos > 3)
{
__m128 step4;
gain4 = _mm_setr_ps(
gain,
gain + step,
gain + step + step,
gain + step + step + step
);
step4 = _mm_set1_ps(step + step + step + step);
do {
const __m128 val4 = _mm_load_ps(&data[pos]);
__m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
gain4 = _mm_add_ps(gain4, step4);
_mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
pos += 4;
} while(minsize-pos > 3);
/* NOTE: gain4 now represents the next four gains after the
* last four mixed samples, so the lowest element represents
* the next gain to apply.
*/
gain = _mm_cvtss_f32(gain4);
}
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
for(;pos < minsize;pos++)
{
OutBuffer[c][OutPos+pos] += data[pos]*gain;
gain += step;
}
if(pos == Counter)
gain = TargetGains[c];
CurrentGains[c] = gain;
/* Mix until pos is aligned with 4 or the mix is done. */
minsize = mini(BufferSize, (pos+3)&~3);
for(;pos < minsize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*gain;
}
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
gain4 = _mm_set1_ps(gain);
for(;BufferSize-pos > 3;pos += 4)
{
const __m128 val4 = _mm_load_ps(&data[pos]);
__m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
_mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
}
for(;pos < BufferSize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*gain;
}
}
void MixRow_SSE(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
{
__m128 gain4;
ALsizei c;
for(c = 0;c < InChans;c++)
{
ALsizei pos = 0;
ALfloat gain = Gains[c];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
gain4 = _mm_set1_ps(gain);
for(;BufferSize-pos > 3;pos += 4)
{
const __m128 val4 = _mm_load_ps(&data[c][InPos+pos]);
__m128 dry4 = _mm_load_ps(&OutBuffer[pos]);
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
_mm_store_ps(&OutBuffer[pos], dry4);
}
for(;pos < BufferSize;pos++)
OutBuffer[pos] += data[c][InPos+pos]*gain;
}
}