1080 lines
38 KiB
C
1080 lines
38 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2010 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
|
|
#include "alMain.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "alu.h"
|
|
#include "bool.h"
|
|
#include "ambdec.h"
|
|
#include "bformatdec.h"
|
|
#include "uhjfilter.h"
|
|
#include "bs2b.h"
|
|
|
|
|
|
extern inline void CalcXYZCoeffs(ALfloat x, ALfloat y, ALfloat z, ALfloat spread, ALfloat coeffs[MAX_AMBI_COEFFS]);
|
|
|
|
|
|
#define ZERO_ORDER_SCALE 0.0f
|
|
#define FIRST_ORDER_SCALE 1.0f
|
|
#define SECOND_ORDER_SCALE (1.0f / 1.22474f)
|
|
#define THIRD_ORDER_SCALE (1.0f / 1.30657f)
|
|
|
|
|
|
static const ALsizei FuMa2ACN[MAX_AMBI_COEFFS] = {
|
|
0, /* W */
|
|
3, /* X */
|
|
1, /* Y */
|
|
2, /* Z */
|
|
6, /* R */
|
|
7, /* S */
|
|
5, /* T */
|
|
8, /* U */
|
|
4, /* V */
|
|
12, /* K */
|
|
13, /* L */
|
|
11, /* M */
|
|
14, /* N */
|
|
10, /* O */
|
|
15, /* P */
|
|
9, /* Q */
|
|
};
|
|
static const ALsizei ACN2ACN[MAX_AMBI_COEFFS] = {
|
|
0, 1, 2, 3, 4, 5, 6, 7,
|
|
8, 9, 10, 11, 12, 13, 14, 15
|
|
};
|
|
|
|
/* NOTE: These are scale factors as applied to Ambisonics content. Decoder
|
|
* coefficients should be divided by these values to get proper N3D scalings.
|
|
*/
|
|
static const ALfloat UnitScale[MAX_AMBI_COEFFS] = {
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
|
|
};
|
|
static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
|
|
1.000000000f, /* ACN 0 (W), sqrt(1) */
|
|
1.732050808f, /* ACN 1 (Y), sqrt(3) */
|
|
1.732050808f, /* ACN 2 (Z), sqrt(3) */
|
|
1.732050808f, /* ACN 3 (X), sqrt(3) */
|
|
2.236067978f, /* ACN 4 (V), sqrt(5) */
|
|
2.236067978f, /* ACN 5 (T), sqrt(5) */
|
|
2.236067978f, /* ACN 6 (R), sqrt(5) */
|
|
2.236067978f, /* ACN 7 (S), sqrt(5) */
|
|
2.236067978f, /* ACN 8 (U), sqrt(5) */
|
|
2.645751311f, /* ACN 9 (Q), sqrt(7) */
|
|
2.645751311f, /* ACN 10 (O), sqrt(7) */
|
|
2.645751311f, /* ACN 11 (M), sqrt(7) */
|
|
2.645751311f, /* ACN 12 (K), sqrt(7) */
|
|
2.645751311f, /* ACN 13 (L), sqrt(7) */
|
|
2.645751311f, /* ACN 14 (N), sqrt(7) */
|
|
2.645751311f, /* ACN 15 (P), sqrt(7) */
|
|
};
|
|
static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
|
|
1.414213562f, /* ACN 0 (W), sqrt(2) */
|
|
1.732050808f, /* ACN 1 (Y), sqrt(3) */
|
|
1.732050808f, /* ACN 2 (Z), sqrt(3) */
|
|
1.732050808f, /* ACN 3 (X), sqrt(3) */
|
|
1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
|
|
1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
|
|
2.236067978f, /* ACN 6 (R), sqrt(5) */
|
|
1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
|
|
1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
|
|
2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
|
|
1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
|
|
2.231093404f, /* ACN 11 (M), sqrt(224/45) */
|
|
2.645751311f, /* ACN 12 (K), sqrt(7) */
|
|
2.231093404f, /* ACN 13 (L), sqrt(224/45) */
|
|
1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
|
|
2.091650066f, /* ACN 15 (P), sqrt(35/8) */
|
|
};
|
|
|
|
|
|
void CalcDirectionCoeffs(const ALfloat dir[3], ALfloat spread, ALfloat coeffs[MAX_AMBI_COEFFS])
|
|
{
|
|
/* Convert from OpenAL coords to Ambisonics. */
|
|
ALfloat x = -dir[2];
|
|
ALfloat y = -dir[0];
|
|
ALfloat z = dir[1];
|
|
|
|
/* Zeroth-order */
|
|
coeffs[0] = 1.0f; /* ACN 0 = 1 */
|
|
/* First-order */
|
|
coeffs[1] = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */
|
|
coeffs[2] = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */
|
|
coeffs[3] = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */
|
|
/* Second-order */
|
|
coeffs[4] = 3.872983346f * x * y; /* ACN 4 = sqrt(15) * X * Y */
|
|
coeffs[5] = 3.872983346f * y * z; /* ACN 5 = sqrt(15) * Y * Z */
|
|
coeffs[6] = 1.118033989f * (3.0f*z*z - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
|
|
coeffs[7] = 3.872983346f * x * z; /* ACN 7 = sqrt(15) * X * Z */
|
|
coeffs[8] = 1.936491673f * (x*x - y*y); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
|
|
/* Third-order */
|
|
coeffs[9] = 2.091650066f * y * (3.0f*x*x - y*y); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
|
|
coeffs[10] = 10.246950766f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */
|
|
coeffs[11] = 1.620185175f * y * (5.0f*z*z - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
|
|
coeffs[12] = 1.322875656f * z * (5.0f*z*z - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
|
|
coeffs[13] = 1.620185175f * x * (5.0f*z*z - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
|
|
coeffs[14] = 5.123475383f * z * (x*x - y*y); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
|
|
coeffs[15] = 2.091650066f * x * (x*x - 3.0f*y*y); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
|
|
|
|
if(spread > 0.0f)
|
|
{
|
|
/* Implement the spread by using a spherical source that subtends the
|
|
* angle spread. See:
|
|
* http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3
|
|
*
|
|
* When adjusted for N3D normalization instead of SN3D, these
|
|
* calculations are:
|
|
*
|
|
* ZH0 = -sqrt(pi) * (-1+ca);
|
|
* ZH1 = 0.5*sqrt(pi) * sa*sa;
|
|
* ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1);
|
|
* ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1);
|
|
* ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3);
|
|
* ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1);
|
|
*
|
|
* The gain of the source is compensated for size, so that the
|
|
* loundness doesn't depend on the spread. That is, the factors are
|
|
* scaled so that ZH0 remains 1 regardless of the spread. Thus:
|
|
*
|
|
* ZH0 = 1.0f;
|
|
* ZH1 = 0.5f * (ca+1.0f);
|
|
* ZH2 = 0.5f * (ca+1.0f)*ca;
|
|
* ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f);
|
|
* ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca;
|
|
* ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f);
|
|
*/
|
|
ALfloat ca = cosf(spread * 0.5f);
|
|
|
|
ALfloat ZH0_norm = 1.0f;
|
|
ALfloat ZH1_norm = 0.5f * (ca+1.f);
|
|
ALfloat ZH2_norm = 0.5f * (ca+1.f)*ca;
|
|
ALfloat ZH3_norm = 0.125f * (ca+1.f)*(5.f*ca*ca-1.f);
|
|
|
|
/* Zeroth-order */
|
|
coeffs[0] *= ZH0_norm;
|
|
/* First-order */
|
|
coeffs[1] *= ZH1_norm;
|
|
coeffs[2] *= ZH1_norm;
|
|
coeffs[3] *= ZH1_norm;
|
|
/* Second-order */
|
|
coeffs[4] *= ZH2_norm;
|
|
coeffs[5] *= ZH2_norm;
|
|
coeffs[6] *= ZH2_norm;
|
|
coeffs[7] *= ZH2_norm;
|
|
coeffs[8] *= ZH2_norm;
|
|
/* Third-order */
|
|
coeffs[9] *= ZH3_norm;
|
|
coeffs[10] *= ZH3_norm;
|
|
coeffs[11] *= ZH3_norm;
|
|
coeffs[12] *= ZH3_norm;
|
|
coeffs[13] *= ZH3_norm;
|
|
coeffs[14] *= ZH3_norm;
|
|
coeffs[15] *= ZH3_norm;
|
|
}
|
|
}
|
|
|
|
void CalcAngleCoeffs(ALfloat azimuth, ALfloat elevation, ALfloat spread, ALfloat coeffs[MAX_AMBI_COEFFS])
|
|
{
|
|
ALfloat dir[3] = {
|
|
sinf(azimuth) * cosf(elevation),
|
|
sinf(elevation),
|
|
-cosf(azimuth) * cosf(elevation)
|
|
};
|
|
CalcDirectionCoeffs(dir, spread, coeffs);
|
|
}
|
|
|
|
|
|
void ComputeAmbientGainsMC(const ChannelConfig *chancoeffs, ALsizei numchans, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALsizei i;
|
|
|
|
for(i = 0;i < numchans;i++)
|
|
{
|
|
// The W coefficients are based on a mathematical average of the
|
|
// output. The square root of the base average provides for a more
|
|
// perceptual average volume, better suited to non-directional gains.
|
|
gains[i] = sqrtf(chancoeffs[i][0]) * ingain;
|
|
}
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
gains[i] = 0.0f;
|
|
}
|
|
|
|
void ComputeAmbientGainsBF(const BFChannelConfig *chanmap, ALsizei numchans, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALfloat gain = 0.0f;
|
|
ALsizei i;
|
|
|
|
for(i = 0;i < numchans;i++)
|
|
{
|
|
if(chanmap[i].Index == 0)
|
|
gain += chanmap[i].Scale;
|
|
}
|
|
gains[0] = gain * 1.414213562f * ingain;
|
|
for(i = 1;i < MAX_OUTPUT_CHANNELS;i++)
|
|
gains[i] = 0.0f;
|
|
}
|
|
|
|
void ComputePanningGainsMC(const ChannelConfig *chancoeffs, ALsizei numchans, ALsizei numcoeffs, const ALfloat coeffs[MAX_AMBI_COEFFS], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALsizei i, j;
|
|
|
|
for(i = 0;i < numchans;i++)
|
|
{
|
|
float gain = 0.0f;
|
|
for(j = 0;j < numcoeffs;j++)
|
|
gain += chancoeffs[i][j]*coeffs[j];
|
|
gains[i] = gain * ingain;
|
|
}
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
gains[i] = 0.0f;
|
|
}
|
|
|
|
void ComputePanningGainsBF(const BFChannelConfig *chanmap, ALsizei numchans, const ALfloat coeffs[MAX_AMBI_COEFFS], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALsizei i;
|
|
|
|
for(i = 0;i < numchans;i++)
|
|
gains[i] = chanmap[i].Scale * coeffs[chanmap[i].Index] * ingain;
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
gains[i] = 0.0f;
|
|
}
|
|
|
|
void ComputeFirstOrderGainsMC(const ChannelConfig *chancoeffs, ALsizei numchans, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALsizei i, j;
|
|
|
|
for(i = 0;i < numchans;i++)
|
|
{
|
|
float gain = 0.0f;
|
|
for(j = 0;j < 4;j++)
|
|
gain += chancoeffs[i][j] * mtx[j];
|
|
gains[i] = gain * ingain;
|
|
}
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
gains[i] = 0.0f;
|
|
}
|
|
|
|
void ComputeFirstOrderGainsBF(const BFChannelConfig *chanmap, ALsizei numchans, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALsizei i;
|
|
|
|
for(i = 0;i < numchans;i++)
|
|
gains[i] = chanmap[i].Scale * mtx[chanmap[i].Index] * ingain;
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
gains[i] = 0.0f;
|
|
}
|
|
|
|
|
|
static inline const char *GetLabelFromChannel(enum Channel channel)
|
|
{
|
|
switch(channel)
|
|
{
|
|
case FrontLeft: return "front-left";
|
|
case FrontRight: return "front-right";
|
|
case FrontCenter: return "front-center";
|
|
case LFE: return "lfe";
|
|
case BackLeft: return "back-left";
|
|
case BackRight: return "back-right";
|
|
case BackCenter: return "back-center";
|
|
case SideLeft: return "side-left";
|
|
case SideRight: return "side-right";
|
|
|
|
case UpperFrontLeft: return "upper-front-left";
|
|
case UpperFrontRight: return "upper-front-right";
|
|
case UpperBackLeft: return "upper-back-left";
|
|
case UpperBackRight: return "upper-back-right";
|
|
case LowerFrontLeft: return "lower-front-left";
|
|
case LowerFrontRight: return "lower-front-right";
|
|
case LowerBackLeft: return "lower-back-left";
|
|
case LowerBackRight: return "lower-back-right";
|
|
|
|
case Aux0: return "aux-0";
|
|
case Aux1: return "aux-1";
|
|
case Aux2: return "aux-2";
|
|
case Aux3: return "aux-3";
|
|
case Aux4: return "aux-4";
|
|
case Aux5: return "aux-5";
|
|
case Aux6: return "aux-6";
|
|
case Aux7: return "aux-7";
|
|
case Aux8: return "aux-8";
|
|
case Aux9: return "aux-9";
|
|
case Aux10: return "aux-10";
|
|
case Aux11: return "aux-11";
|
|
case Aux12: return "aux-12";
|
|
case Aux13: return "aux-13";
|
|
case Aux14: return "aux-14";
|
|
case Aux15: return "aux-15";
|
|
|
|
case InvalidChannel: break;
|
|
}
|
|
return "(unknown)";
|
|
}
|
|
|
|
|
|
typedef struct ChannelMap {
|
|
enum Channel ChanName;
|
|
ChannelConfig Config;
|
|
} ChannelMap;
|
|
|
|
static void SetChannelMap(const enum Channel *devchans, ChannelConfig *ambicoeffs,
|
|
const ChannelMap *chanmap, size_t count, ALsizei *outcount,
|
|
ALboolean isfuma)
|
|
{
|
|
const ALsizei *acnmap = isfuma ? FuMa2ACN : ACN2ACN;
|
|
const ALfloat *n3dscale = isfuma ? FuMa2N3DScale : UnitScale;
|
|
size_t j, k;
|
|
ALsizei i;
|
|
|
|
for(i = 0;i < MAX_OUTPUT_CHANNELS && devchans[i] != InvalidChannel;i++)
|
|
{
|
|
if(devchans[i] == LFE)
|
|
{
|
|
for(j = 0;j < MAX_AMBI_COEFFS;j++)
|
|
ambicoeffs[i][j] = 0.0f;
|
|
continue;
|
|
}
|
|
|
|
for(j = 0;j < count;j++)
|
|
{
|
|
if(devchans[i] != chanmap[j].ChanName)
|
|
continue;
|
|
|
|
for(k = 0;k < MAX_AMBI_COEFFS;++k)
|
|
{
|
|
ALsizei acn = acnmap[k];
|
|
ambicoeffs[i][acn] = chanmap[j].Config[k] / n3dscale[acn];
|
|
}
|
|
break;
|
|
}
|
|
if(j == count)
|
|
ERR("Failed to match %s channel (%u) in channel map\n", GetLabelFromChannel(devchans[i]), i);
|
|
}
|
|
*outcount = i;
|
|
}
|
|
|
|
static bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, ALuint speakermap[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALsizei i;
|
|
|
|
for(i = 0;i < conf->NumSpeakers;i++)
|
|
{
|
|
int c = -1;
|
|
|
|
/* NOTE: AmbDec does not define any standard speaker names, however
|
|
* for this to work we have to by able to find the output channel
|
|
* the speaker definition corresponds to. Therefore, OpenAL Soft
|
|
* requires these channel labels to be recognized:
|
|
*
|
|
* LF = Front left
|
|
* RF = Front right
|
|
* LS = Side left
|
|
* RS = Side right
|
|
* LB = Back left
|
|
* RB = Back right
|
|
* CE = Front center
|
|
* CB = Back center
|
|
*
|
|
* Additionally, surround51 will acknowledge back speakers for side
|
|
* channels, and surround51rear will acknowledge side speakers for
|
|
* back channels, to avoid issues with an ambdec expecting 5.1 to
|
|
* use the side channels when the device is configured for back,
|
|
* and vice-versa.
|
|
*/
|
|
if(al_string_cmp_cstr(conf->Speakers[i].Name, "LF") == 0)
|
|
c = GetChannelIdxByName(device->RealOut, FrontLeft);
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RF") == 0)
|
|
c = GetChannelIdxByName(device->RealOut, FrontRight);
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "CE") == 0)
|
|
c = GetChannelIdxByName(device->RealOut, FrontCenter);
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "LS") == 0)
|
|
{
|
|
if(device->FmtChans == DevFmtX51Rear)
|
|
c = GetChannelIdxByName(device->RealOut, BackLeft);
|
|
else
|
|
c = GetChannelIdxByName(device->RealOut, SideLeft);
|
|
}
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RS") == 0)
|
|
{
|
|
if(device->FmtChans == DevFmtX51Rear)
|
|
c = GetChannelIdxByName(device->RealOut, BackRight);
|
|
else
|
|
c = GetChannelIdxByName(device->RealOut, SideRight);
|
|
}
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "LB") == 0)
|
|
{
|
|
if(device->FmtChans == DevFmtX51)
|
|
c = GetChannelIdxByName(device->RealOut, SideLeft);
|
|
else
|
|
c = GetChannelIdxByName(device->RealOut, BackLeft);
|
|
}
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RB") == 0)
|
|
{
|
|
if(device->FmtChans == DevFmtX51)
|
|
c = GetChannelIdxByName(device->RealOut, SideRight);
|
|
else
|
|
c = GetChannelIdxByName(device->RealOut, BackRight);
|
|
}
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "CB") == 0)
|
|
c = GetChannelIdxByName(device->RealOut, BackCenter);
|
|
else
|
|
{
|
|
const char *name = al_string_get_cstr(conf->Speakers[i].Name);
|
|
unsigned int n;
|
|
char ch;
|
|
|
|
if(sscanf(name, "AUX%u%c", &n, &ch) == 1 && n < 16)
|
|
c = GetChannelIdxByName(device->RealOut, Aux0+n);
|
|
else
|
|
{
|
|
ERR("AmbDec speaker label \"%s\" not recognized\n", name);
|
|
return false;
|
|
}
|
|
}
|
|
if(c == -1)
|
|
{
|
|
ERR("Failed to lookup AmbDec speaker label %s\n",
|
|
al_string_get_cstr(conf->Speakers[i].Name));
|
|
return false;
|
|
}
|
|
speakermap[i] = c;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* NOTE: These decoder coefficients are using FuMa channel ordering and
|
|
* normalization, since that's what was produced by the Ambisonic Decoder
|
|
* Toolbox. SetChannelMap will convert them to N3D.
|
|
*/
|
|
static const ChannelMap MonoCfg[1] = {
|
|
{ FrontCenter, { 1.414213562f } },
|
|
}, StereoCfg[2] = {
|
|
{ FrontLeft, { 0.707106781f, 0.0f, 0.5f, 0.0f } },
|
|
{ FrontRight, { 0.707106781f, 0.0f, -0.5f, 0.0f } },
|
|
}, QuadCfg[4] = {
|
|
{ FrontLeft, { 0.353553f, 0.306186f, 0.306186f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.125000f } },
|
|
{ FrontRight, { 0.353553f, 0.306186f, -0.306186f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.125000f } },
|
|
{ BackLeft, { 0.353553f, -0.306186f, 0.306186f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.125000f } },
|
|
{ BackRight, { 0.353553f, -0.306186f, -0.306186f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.125000f } },
|
|
}, X51SideCfg[5] = {
|
|
{ FrontLeft, { 0.208954f, 0.199518f, 0.223424f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012543f, 0.144260f } },
|
|
{ FrontRight, { 0.208950f, 0.199514f, -0.223425f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012544f, -0.144258f } },
|
|
{ FrontCenter, { 0.109403f, 0.168250f, -0.000002f, 0.0f, 0.0f, 0.0f, 0.0f, 0.100431f, -0.000001f } },
|
|
{ SideLeft, { 0.470934f, -0.346484f, 0.327504f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022188f, -0.041113f } },
|
|
{ SideRight, { 0.470936f, -0.346480f, -0.327507f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022186f, 0.041114f } },
|
|
}, X51RearCfg[5] = {
|
|
{ FrontLeft, { 0.208954f, 0.199518f, 0.223424f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012543f, 0.144260f } },
|
|
{ FrontRight, { 0.208950f, 0.199514f, -0.223425f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012544f, -0.144258f } },
|
|
{ FrontCenter, { 0.109403f, 0.168250f, -0.000002f, 0.0f, 0.0f, 0.0f, 0.0f, 0.100431f, -0.000001f } },
|
|
{ BackLeft, { 0.470934f, -0.346484f, 0.327504f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022188f, -0.041113f } },
|
|
{ BackRight, { 0.470936f, -0.346480f, -0.327507f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022186f, 0.041114f } },
|
|
}, X61Cfg[6] = {
|
|
{ FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } },
|
|
{ FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } },
|
|
{ FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
|
|
{ BackCenter, { 0.353556f, -0.461940f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.165723f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.000000f } },
|
|
{ SideLeft, { 0.289151f, -0.081301f, 0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, -0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, -0.032897f } },
|
|
{ SideRight, { 0.289151f, -0.081301f, -0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, 0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, 0.032897f } },
|
|
}, X71Cfg[7] = {
|
|
{ FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } },
|
|
{ FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } },
|
|
{ FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
|
|
{ BackLeft, { 0.224752f, -0.295009f, 0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, -0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065799f } },
|
|
{ BackRight, { 0.224752f, -0.295009f, -0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, 0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065799f } },
|
|
{ SideLeft, { 0.224739f, 0.000000f, 0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065795f } },
|
|
{ SideRight, { 0.224739f, 0.000000f, -0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065795f } },
|
|
};
|
|
|
|
static void InitPanning(ALCdevice *device)
|
|
{
|
|
const ChannelMap *chanmap = NULL;
|
|
ALsizei coeffcount = 0;
|
|
ALfloat ambiscale;
|
|
ALsizei count = 0;
|
|
ALsizei i, j;
|
|
|
|
ambiscale = 1.0f;
|
|
switch(device->FmtChans)
|
|
{
|
|
case DevFmtMono:
|
|
count = COUNTOF(MonoCfg);
|
|
chanmap = MonoCfg;
|
|
ambiscale = ZERO_ORDER_SCALE;
|
|
coeffcount = 1;
|
|
break;
|
|
|
|
case DevFmtStereo:
|
|
count = COUNTOF(StereoCfg);
|
|
chanmap = StereoCfg;
|
|
ambiscale = FIRST_ORDER_SCALE;
|
|
coeffcount = 4;
|
|
break;
|
|
|
|
case DevFmtQuad:
|
|
count = COUNTOF(QuadCfg);
|
|
chanmap = QuadCfg;
|
|
ambiscale = SECOND_ORDER_SCALE;
|
|
coeffcount = 9;
|
|
break;
|
|
|
|
case DevFmtX51:
|
|
count = COUNTOF(X51SideCfg);
|
|
chanmap = X51SideCfg;
|
|
ambiscale = SECOND_ORDER_SCALE;
|
|
coeffcount = 9;
|
|
break;
|
|
|
|
case DevFmtX51Rear:
|
|
count = COUNTOF(X51RearCfg);
|
|
chanmap = X51RearCfg;
|
|
ambiscale = SECOND_ORDER_SCALE;
|
|
coeffcount = 9;
|
|
break;
|
|
|
|
case DevFmtX61:
|
|
count = COUNTOF(X61Cfg);
|
|
chanmap = X61Cfg;
|
|
ambiscale = THIRD_ORDER_SCALE;
|
|
coeffcount = 16;
|
|
break;
|
|
|
|
case DevFmtX71:
|
|
count = COUNTOF(X71Cfg);
|
|
chanmap = X71Cfg;
|
|
ambiscale = THIRD_ORDER_SCALE;
|
|
coeffcount = 16;
|
|
break;
|
|
|
|
case DevFmtAmbi1:
|
|
case DevFmtAmbi2:
|
|
case DevFmtAmbi3:
|
|
break;
|
|
}
|
|
|
|
if(device->FmtChans >= DevFmtAmbi1 && device->FmtChans <= DevFmtAmbi3)
|
|
{
|
|
const ALsizei *acnmap = (device->AmbiFmt == AmbiFormat_FuMa) ? FuMa2ACN : ACN2ACN;
|
|
const ALfloat *n3dscale = (device->AmbiFmt == AmbiFormat_FuMa) ? FuMa2N3DScale :
|
|
(device->AmbiFmt == AmbiFormat_ACN_SN3D) ? SN3D2N3DScale :
|
|
/*(device->AmbiFmt == AmbiFormat_ACN_N3D) ?*/ UnitScale;
|
|
|
|
count = (device->FmtChans == DevFmtAmbi3) ? 16 :
|
|
(device->FmtChans == DevFmtAmbi2) ? 9 :
|
|
(device->FmtChans == DevFmtAmbi1) ? 4 : 1;
|
|
for(i = 0;i < count;i++)
|
|
{
|
|
ALsizei acn = acnmap[i];
|
|
device->Dry.Ambi.Map[i].Scale = 1.0f/n3dscale[acn];
|
|
device->Dry.Ambi.Map[i].Index = acn;
|
|
}
|
|
device->Dry.CoeffCount = 0;
|
|
device->Dry.NumChannels = count;
|
|
|
|
if(device->FmtChans == DevFmtAmbi1)
|
|
{
|
|
device->FOAOut.Ambi = device->Dry.Ambi;
|
|
device->FOAOut.CoeffCount = device->Dry.CoeffCount;
|
|
}
|
|
else
|
|
{
|
|
/* FOA output is always ACN+N3D for higher-order ambisonic output.
|
|
* The upsampler expects this and will convert it for output.
|
|
*/
|
|
memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi));
|
|
for(i = 0;i < 4;i++)
|
|
{
|
|
device->FOAOut.Ambi.Map[i].Scale = 1.0f;
|
|
device->FOAOut.Ambi.Map[i].Index = i;
|
|
}
|
|
device->FOAOut.CoeffCount = 0;
|
|
|
|
ambiup_reset(device->AmbiUp, device);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
SetChannelMap(device->RealOut.ChannelName, device->Dry.Ambi.Coeffs,
|
|
chanmap, count, &device->Dry.NumChannels, AL_TRUE);
|
|
device->Dry.CoeffCount = coeffcount;
|
|
|
|
memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi));
|
|
for(i = 0;i < (ALsizei)device->Dry.NumChannels;i++)
|
|
{
|
|
device->FOAOut.Ambi.Coeffs[i][0] = device->Dry.Ambi.Coeffs[i][0];
|
|
for(j = 1;j < 4;j++)
|
|
device->FOAOut.Ambi.Coeffs[i][j] = device->Dry.Ambi.Coeffs[i][j] * ambiscale;
|
|
}
|
|
device->FOAOut.CoeffCount = 4;
|
|
}
|
|
}
|
|
|
|
static void InitCustomPanning(ALCdevice *device, const AmbDecConf *conf, const ALuint speakermap[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ChannelMap chanmap[MAX_OUTPUT_CHANNELS];
|
|
const ALfloat *coeff_scale = UnitScale;
|
|
ALfloat ambiscale = 1.0f;
|
|
ALsizei i, j;
|
|
|
|
if(conf->FreqBands != 1)
|
|
ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n",
|
|
conf->XOverFreq);
|
|
|
|
if(conf->ChanMask > 0x1ff)
|
|
ambiscale = THIRD_ORDER_SCALE;
|
|
else if(conf->ChanMask > 0xf)
|
|
ambiscale = SECOND_ORDER_SCALE;
|
|
else if(conf->ChanMask > 0x1)
|
|
ambiscale = FIRST_ORDER_SCALE;
|
|
else
|
|
ambiscale = 0.0f;
|
|
|
|
if(conf->CoeffScale == ADS_SN3D)
|
|
coeff_scale = SN3D2N3DScale;
|
|
else if(conf->CoeffScale == ADS_FuMa)
|
|
coeff_scale = FuMa2N3DScale;
|
|
|
|
for(i = 0;i < conf->NumSpeakers;i++)
|
|
{
|
|
ALsizei chan = speakermap[i];
|
|
ALfloat gain;
|
|
ALsizei k = 0;
|
|
|
|
for(j = 0;j < MAX_AMBI_COEFFS;j++)
|
|
chanmap[i].Config[j] = 0.0f;
|
|
|
|
chanmap[i].ChanName = device->RealOut.ChannelName[chan];
|
|
for(j = 0;j < MAX_AMBI_COEFFS;j++)
|
|
{
|
|
if(j == 0) gain = conf->HFOrderGain[0];
|
|
else if(j == 1) gain = conf->HFOrderGain[1];
|
|
else if(j == 4) gain = conf->HFOrderGain[2];
|
|
else if(j == 9) gain = conf->HFOrderGain[3];
|
|
if((conf->ChanMask&(1<<j)))
|
|
chanmap[i].Config[j] = conf->HFMatrix[i][k++] / coeff_scale[j] * gain;
|
|
}
|
|
}
|
|
|
|
SetChannelMap(device->RealOut.ChannelName, device->Dry.Ambi.Coeffs, chanmap,
|
|
conf->NumSpeakers, &device->Dry.NumChannels, AL_FALSE);
|
|
device->Dry.CoeffCount = (conf->ChanMask > 0x1ff) ? 16 :
|
|
(conf->ChanMask > 0xf) ? 9 : 4;
|
|
|
|
memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi));
|
|
for(i = 0;i < (ALsizei)device->Dry.NumChannels;i++)
|
|
{
|
|
device->FOAOut.Ambi.Coeffs[i][0] = device->Dry.Ambi.Coeffs[i][0];
|
|
for(j = 1;j < 4;j++)
|
|
device->FOAOut.Ambi.Coeffs[i][j] = device->Dry.Ambi.Coeffs[i][j] * ambiscale;
|
|
}
|
|
device->FOAOut.CoeffCount = 4;
|
|
}
|
|
|
|
static void InitHQPanning(ALCdevice *device, const AmbDecConf *conf, const ALuint speakermap[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
const char *devname;
|
|
int decflags = 0;
|
|
size_t count;
|
|
size_t i;
|
|
|
|
devname = al_string_get_cstr(device->DeviceName);
|
|
if(GetConfigValueBool(devname, "decoder", "distance-comp", 1))
|
|
decflags |= BFDF_DistanceComp;
|
|
|
|
if((conf->ChanMask&AMBI_PERIPHONIC_MASK))
|
|
{
|
|
count = (conf->ChanMask > 0x1ff) ? 16 :
|
|
(conf->ChanMask > 0xf) ? 9 : 4;
|
|
for(i = 0;i < count;i++)
|
|
{
|
|
device->Dry.Ambi.Map[i].Scale = 1.0f;
|
|
device->Dry.Ambi.Map[i].Index = i;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
static const int map[MAX_AMBI2D_COEFFS] = { 0, 1, 3, 4, 8, 9, 15 };
|
|
|
|
count = (conf->ChanMask > 0x1ff) ? 7 :
|
|
(conf->ChanMask > 0xf) ? 5 : 3;
|
|
for(i = 0;i < count;i++)
|
|
{
|
|
device->Dry.Ambi.Map[i].Scale = 1.0f;
|
|
device->Dry.Ambi.Map[i].Index = map[i];
|
|
}
|
|
}
|
|
device->Dry.CoeffCount = 0;
|
|
device->Dry.NumChannels = count;
|
|
|
|
TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
|
|
(conf->FreqBands == 1) ? "single" : "dual",
|
|
(conf->ChanMask > 0xf) ? (conf->ChanMask > 0x1ff) ? "third" : "second" : "first",
|
|
(conf->ChanMask&AMBI_PERIPHONIC_MASK) ? " periphonic" : ""
|
|
);
|
|
bformatdec_reset(device->AmbiDecoder, conf, count, device->Frequency,
|
|
speakermap, decflags);
|
|
|
|
if(bformatdec_getOrder(device->AmbiDecoder) < 2)
|
|
{
|
|
device->FOAOut.Ambi = device->Dry.Ambi;
|
|
device->FOAOut.CoeffCount = device->Dry.CoeffCount;
|
|
}
|
|
else
|
|
{
|
|
memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi));
|
|
for(i = 0;i < 4;i++)
|
|
{
|
|
device->FOAOut.Ambi.Map[i].Scale = 1.0f;
|
|
device->FOAOut.Ambi.Map[i].Index = i;
|
|
}
|
|
device->FOAOut.CoeffCount = 0;
|
|
}
|
|
}
|
|
|
|
static void InitHrtfPanning(ALCdevice *device, bool hoa_mode)
|
|
{
|
|
static const ALsizei map_foa[] = { 0, 1, 2, 3 };
|
|
static const ALsizei map_hoa[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
|
|
const ALsizei *ambi_map = hoa_mode ? map_hoa : map_foa;
|
|
size_t count = hoa_mode ? COUNTOF(map_hoa) : COUNTOF(map_foa);
|
|
size_t i;
|
|
|
|
static_assert(COUNTOF(map_hoa) <= COUNTOF(device->Hrtf.Coeffs), "ALCdevice::Hrtf.Values/Coeffs size is too small");
|
|
|
|
for(i = 0;i < count;i++)
|
|
{
|
|
device->Dry.Ambi.Map[i].Scale = 1.0f;
|
|
device->Dry.Ambi.Map[i].Index = ambi_map[i];
|
|
}
|
|
device->Dry.CoeffCount = 0;
|
|
device->Dry.NumChannels = count;
|
|
|
|
if(!hoa_mode)
|
|
{
|
|
device->FOAOut.Ambi = device->Dry.Ambi;
|
|
device->FOAOut.CoeffCount = device->Dry.CoeffCount;
|
|
}
|
|
else
|
|
{
|
|
memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi));
|
|
for(i = 0;i < 4;i++)
|
|
{
|
|
device->FOAOut.Ambi.Map[i].Scale = 1.0f;
|
|
device->FOAOut.Ambi.Map[i].Index = i;
|
|
}
|
|
device->FOAOut.CoeffCount = 0;
|
|
|
|
ambiup_reset(device->AmbiUp, device);
|
|
}
|
|
|
|
memset(device->Hrtf.Coeffs, 0, sizeof(device->Hrtf.Coeffs));
|
|
device->Hrtf.IrSize = BuildBFormatHrtf(device->Hrtf.Handle,
|
|
device->Hrtf.Coeffs, device->Dry.NumChannels, hoa_mode ? ambi_map : NULL
|
|
);
|
|
|
|
/* Round up to the nearest multiple of 8 */
|
|
device->Hrtf.IrSize = (device->Hrtf.IrSize+7)&~7;
|
|
}
|
|
|
|
static void InitUhjPanning(ALCdevice *device)
|
|
{
|
|
ALsizei count = 3;
|
|
ALsizei i;
|
|
|
|
for(i = 0;i < count;i++)
|
|
{
|
|
ALsizei acn = FuMa2ACN[i];
|
|
device->Dry.Ambi.Map[i].Scale = 1.0f/FuMa2N3DScale[acn];
|
|
device->Dry.Ambi.Map[i].Index = acn;
|
|
}
|
|
device->Dry.CoeffCount = 0;
|
|
device->Dry.NumChannels = count;
|
|
|
|
device->FOAOut.Ambi = device->Dry.Ambi;
|
|
device->FOAOut.CoeffCount = device->Dry.CoeffCount;
|
|
}
|
|
|
|
void aluInitRenderer(ALCdevice *device, ALint hrtf_id, enum HrtfRequestMode hrtf_appreq, enum HrtfRequestMode hrtf_userreq)
|
|
{
|
|
const char *mode;
|
|
bool headphones;
|
|
int bs2blevel;
|
|
size_t i;
|
|
|
|
device->Hrtf.Handle = NULL;
|
|
al_string_clear(&device->Hrtf.Name);
|
|
device->Render_Mode = NormalRender;
|
|
|
|
memset(&device->Dry.Ambi, 0, sizeof(device->Dry.Ambi));
|
|
device->Dry.CoeffCount = 0;
|
|
device->Dry.NumChannels = 0;
|
|
|
|
if(device->FmtChans != DevFmtStereo)
|
|
{
|
|
ALuint speakermap[MAX_OUTPUT_CHANNELS];
|
|
const char *devname, *layout = NULL;
|
|
AmbDecConf conf, *pconf = NULL;
|
|
|
|
if(hrtf_appreq == Hrtf_Enable)
|
|
device->Hrtf.Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
|
|
|
|
ambdec_init(&conf);
|
|
|
|
devname = al_string_get_cstr(device->DeviceName);
|
|
switch(device->FmtChans)
|
|
{
|
|
case DevFmtQuad: layout = "quad"; break;
|
|
case DevFmtX51: layout = "surround51"; break;
|
|
case DevFmtX51Rear: layout = "surround51rear"; break;
|
|
case DevFmtX61: layout = "surround61"; break;
|
|
case DevFmtX71: layout = "surround71"; break;
|
|
/* Mono, Stereo, and Ambisonics output don't use custom decoders. */
|
|
case DevFmtMono:
|
|
case DevFmtStereo:
|
|
case DevFmtAmbi1:
|
|
case DevFmtAmbi2:
|
|
case DevFmtAmbi3:
|
|
break;
|
|
}
|
|
if(layout)
|
|
{
|
|
const char *fname;
|
|
if(ConfigValueStr(devname, "decoder", layout, &fname))
|
|
{
|
|
if(!ambdec_load(&conf, fname))
|
|
ERR("Failed to load layout file %s\n", fname);
|
|
else
|
|
{
|
|
if(conf.ChanMask > 0xffff)
|
|
ERR("Unsupported channel mask 0x%04x (max 0xffff)\n", conf.ChanMask);
|
|
else
|
|
{
|
|
if(MakeSpeakerMap(device, &conf, speakermap))
|
|
pconf = &conf;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(pconf && GetConfigValueBool(devname, "decoder", "hq-mode", 0))
|
|
{
|
|
ambiup_free(device->AmbiUp);
|
|
device->AmbiUp = NULL;
|
|
if(!device->AmbiDecoder)
|
|
device->AmbiDecoder = bformatdec_alloc();
|
|
}
|
|
else
|
|
{
|
|
bformatdec_free(device->AmbiDecoder);
|
|
device->AmbiDecoder = NULL;
|
|
if(device->FmtChans > DevFmtAmbi1 && device->FmtChans <= DevFmtAmbi3)
|
|
{
|
|
if(!device->AmbiUp)
|
|
device->AmbiUp = ambiup_alloc();
|
|
}
|
|
else
|
|
{
|
|
ambiup_free(device->AmbiUp);
|
|
device->AmbiUp = NULL;
|
|
}
|
|
}
|
|
|
|
if(!pconf)
|
|
InitPanning(device);
|
|
else if(device->AmbiDecoder)
|
|
InitHQPanning(device, pconf, speakermap);
|
|
else
|
|
InitCustomPanning(device, pconf, speakermap);
|
|
|
|
ambdec_deinit(&conf);
|
|
return;
|
|
}
|
|
|
|
bformatdec_free(device->AmbiDecoder);
|
|
device->AmbiDecoder = NULL;
|
|
|
|
headphones = device->IsHeadphones;
|
|
if(device->Type != Loopback)
|
|
{
|
|
const char *mode;
|
|
if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "stereo-mode", &mode))
|
|
{
|
|
if(strcasecmp(mode, "headphones") == 0)
|
|
headphones = true;
|
|
else if(strcasecmp(mode, "speakers") == 0)
|
|
headphones = false;
|
|
else if(strcasecmp(mode, "auto") != 0)
|
|
ERR("Unexpected stereo-mode: %s\n", mode);
|
|
}
|
|
}
|
|
|
|
if(hrtf_userreq == Hrtf_Default)
|
|
{
|
|
bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) ||
|
|
(hrtf_appreq == Hrtf_Enable);
|
|
if(!usehrtf) goto no_hrtf;
|
|
|
|
device->Hrtf.Status = ALC_HRTF_ENABLED_SOFT;
|
|
if(headphones && hrtf_appreq != Hrtf_Disable)
|
|
device->Hrtf.Status = ALC_HRTF_HEADPHONES_DETECTED_SOFT;
|
|
}
|
|
else
|
|
{
|
|
if(hrtf_userreq != Hrtf_Enable)
|
|
{
|
|
if(hrtf_appreq == Hrtf_Enable)
|
|
device->Hrtf.Status = ALC_HRTF_DENIED_SOFT;
|
|
goto no_hrtf;
|
|
}
|
|
device->Hrtf.Status = ALC_HRTF_REQUIRED_SOFT;
|
|
}
|
|
|
|
if(VECTOR_SIZE(device->Hrtf.List) == 0)
|
|
{
|
|
VECTOR_DEINIT(device->Hrtf.List);
|
|
device->Hrtf.List = EnumerateHrtf(device->DeviceName);
|
|
}
|
|
|
|
if(hrtf_id >= 0 && (size_t)hrtf_id < VECTOR_SIZE(device->Hrtf.List))
|
|
{
|
|
const HrtfEntry *entry = &VECTOR_ELEM(device->Hrtf.List, hrtf_id);
|
|
if(entry->hrtf->sampleRate == device->Frequency)
|
|
{
|
|
device->Hrtf.Handle = entry->hrtf;
|
|
al_string_copy(&device->Hrtf.Name, entry->name);
|
|
}
|
|
}
|
|
|
|
for(i = 0;!device->Hrtf.Handle && i < VECTOR_SIZE(device->Hrtf.List);i++)
|
|
{
|
|
const HrtfEntry *entry = &VECTOR_ELEM(device->Hrtf.List, i);
|
|
if(entry->hrtf->sampleRate == device->Frequency)
|
|
{
|
|
device->Hrtf.Handle = entry->hrtf;
|
|
al_string_copy(&device->Hrtf.Name, entry->name);
|
|
}
|
|
}
|
|
|
|
if(device->Hrtf.Handle)
|
|
{
|
|
bool hoa_mode;
|
|
|
|
device->Render_Mode = HrtfRender;
|
|
if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "hrtf-mode", &mode))
|
|
{
|
|
if(strcasecmp(mode, "full") == 0)
|
|
device->Render_Mode = HrtfRender;
|
|
else if(strcasecmp(mode, "basic") == 0)
|
|
device->Render_Mode = NormalRender;
|
|
else
|
|
ERR("Unexpected hrtf-mode: %s\n", mode);
|
|
}
|
|
|
|
if(device->Render_Mode == HrtfRender)
|
|
{
|
|
/* Don't bother with HOA when using full HRTF rendering. Nothing
|
|
* needs it, and it eases the CPU/memory load.
|
|
*/
|
|
ambiup_free(device->AmbiUp);
|
|
device->AmbiUp = NULL;
|
|
hoa_mode = false;
|
|
}
|
|
else
|
|
{
|
|
if(!device->AmbiUp)
|
|
device->AmbiUp = ambiup_alloc();
|
|
hoa_mode = true;
|
|
}
|
|
|
|
TRACE("%s HRTF rendering enabled, using \"%s\"\n",
|
|
((device->Render_Mode == HrtfRender) ? "Full" : "Basic"),
|
|
al_string_get_cstr(device->Hrtf.Name)
|
|
);
|
|
InitHrtfPanning(device, hoa_mode);
|
|
return;
|
|
}
|
|
device->Hrtf.Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
|
|
|
|
no_hrtf:
|
|
TRACE("HRTF disabled\n");
|
|
|
|
ambiup_free(device->AmbiUp);
|
|
device->AmbiUp = NULL;
|
|
|
|
bs2blevel = ((headphones && hrtf_appreq != Hrtf_Disable) ||
|
|
(hrtf_appreq == Hrtf_Enable)) ? 5 : 0;
|
|
if(device->Type != Loopback)
|
|
ConfigValueInt(al_string_get_cstr(device->DeviceName), NULL, "cf_level", &bs2blevel);
|
|
if(bs2blevel > 0 && bs2blevel <= 6)
|
|
{
|
|
device->Bs2b = al_calloc(16, sizeof(*device->Bs2b));
|
|
bs2b_set_params(device->Bs2b, bs2blevel, device->Frequency);
|
|
device->Render_Mode = StereoPair;
|
|
TRACE("BS2B enabled\n");
|
|
InitPanning(device);
|
|
return;
|
|
}
|
|
|
|
TRACE("BS2B disabled\n");
|
|
|
|
device->Render_Mode = NormalRender;
|
|
if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "stereo-panning", &mode))
|
|
{
|
|
if(strcasecmp(mode, "paired") == 0)
|
|
device->Render_Mode = StereoPair;
|
|
else if(strcasecmp(mode, "uhj") != 0)
|
|
ERR("Unexpected stereo-panning: %s\n", mode);
|
|
}
|
|
if(device->Render_Mode == NormalRender)
|
|
{
|
|
device->Uhj_Encoder = al_calloc(16, sizeof(Uhj2Encoder));
|
|
TRACE("UHJ enabled\n");
|
|
InitUhjPanning(device);
|
|
return;
|
|
}
|
|
|
|
TRACE("UHJ disabled\n");
|
|
InitPanning(device);
|
|
}
|
|
|
|
|
|
void aluInitEffectPanning(ALeffectslot *slot)
|
|
{
|
|
ALsizei i;
|
|
|
|
memset(slot->ChanMap, 0, sizeof(slot->ChanMap));
|
|
slot->NumChannels = 0;
|
|
|
|
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
|
|
{
|
|
slot->ChanMap[i].Scale = 1.0f;
|
|
slot->ChanMap[i].Index = i;
|
|
}
|
|
slot->NumChannels = i;
|
|
}
|