da2429a1d0
Updates when the slot changes effect type is still sychronous, however, to ensure a proper state for the Process method call. Fixing this would essentially require all effects to work from the same state.
1124 lines
41 KiB
C
1124 lines
41 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2007 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
|
|
#include "alMain.h"
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "alSource.h"
|
|
#include "alBuffer.h"
|
|
#include "alListener.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "alu.h"
|
|
#include "bs2b.h"
|
|
|
|
|
|
static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
|
|
{
|
|
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
|
|
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
|
|
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
|
|
}
|
|
|
|
static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
|
|
{
|
|
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
|
|
inVector1[2]*inVector2[2];
|
|
}
|
|
|
|
static __inline ALvoid aluNormalize(ALfloat *inVector)
|
|
{
|
|
ALfloat length, inverse_length;
|
|
|
|
length = aluSqrt(aluDotproduct(inVector, inVector));
|
|
if(length != 0.0f)
|
|
{
|
|
inverse_length = 1.0f/length;
|
|
inVector[0] *= inverse_length;
|
|
inVector[1] *= inverse_length;
|
|
inVector[2] *= inverse_length;
|
|
}
|
|
}
|
|
|
|
static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
|
|
{
|
|
ALfloat temp[4] = {
|
|
vector[0], vector[1], vector[2], w
|
|
};
|
|
|
|
vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
|
|
vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
|
|
vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
|
|
}
|
|
|
|
|
|
ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
|
|
{
|
|
static const ALfloat angles_Mono[1] = { 0.0f };
|
|
static const ALfloat angles_Stereo[2] = { -30.0f, 30.0f };
|
|
static const ALfloat angles_Rear[2] = { -150.0f, 150.0f };
|
|
static const ALfloat angles_Quad[4] = { -45.0f, 45.0f, -135.0f, 135.0f };
|
|
static const ALfloat angles_X51[6] = { -30.0f, 30.0f, 0.0f, 0.0f,
|
|
-110.0f, 110.0f };
|
|
static const ALfloat angles_X61[7] = { -30.0f, 30.0f, 0.0f, 0.0f,
|
|
180.0f, -90.0f, 90.0f };
|
|
static const ALfloat angles_X71[8] = { -30.0f, 30.0f, 0.0f, 0.0f,
|
|
-110.0f, 110.0f, -90.0f, 90.0f };
|
|
|
|
static const enum Channel chans_Mono[1] = { FRONT_CENTER };
|
|
static const enum Channel chans_Stereo[2] = { FRONT_LEFT, FRONT_RIGHT };
|
|
static const enum Channel chans_Rear[2] = { BACK_LEFT, BACK_RIGHT };
|
|
static const enum Channel chans_Quad[4] = { FRONT_LEFT, FRONT_RIGHT,
|
|
BACK_LEFT, BACK_RIGHT };
|
|
static const enum Channel chans_X51[6] = { FRONT_LEFT, FRONT_RIGHT,
|
|
FRONT_CENTER, LFE,
|
|
BACK_LEFT, BACK_RIGHT };
|
|
static const enum Channel chans_X61[7] = { FRONT_LEFT, FRONT_RIGHT,
|
|
FRONT_CENTER, LFE, BACK_CENTER,
|
|
SIDE_LEFT, SIDE_RIGHT };
|
|
static const enum Channel chans_X71[8] = { FRONT_LEFT, FRONT_RIGHT,
|
|
FRONT_CENTER, LFE,
|
|
BACK_LEFT, BACK_RIGHT,
|
|
SIDE_LEFT, SIDE_RIGHT };
|
|
|
|
ALCdevice *Device = ALContext->Device;
|
|
ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
|
|
ALbufferlistitem *BufferListItem;
|
|
enum DevFmtChannels DevChans;
|
|
enum FmtChannels Channels;
|
|
ALfloat (*SrcMatrix)[MAXCHANNELS];
|
|
ALfloat DryGain, DryGainHF;
|
|
ALfloat WetGain[MAX_SENDS];
|
|
ALfloat WetGainHF[MAX_SENDS];
|
|
ALint NumSends, Frequency;
|
|
const ALfloat *SpeakerGain;
|
|
const ALfloat *angles = NULL;
|
|
const enum Channel *chans = NULL;
|
|
ALint num_channels = 0;
|
|
ALboolean VirtualChannels;
|
|
ALfloat Pitch;
|
|
ALfloat cw;
|
|
ALuint pos;
|
|
ALint i, c;
|
|
|
|
/* Get device properties */
|
|
DevChans = ALContext->Device->FmtChans;
|
|
NumSends = ALContext->Device->NumAuxSends;
|
|
Frequency = ALContext->Device->Frequency;
|
|
|
|
/* Get listener properties */
|
|
ListenerGain = ALContext->Listener.Gain;
|
|
|
|
/* Get source properties */
|
|
SourceVolume = ALSource->flGain;
|
|
MinVolume = ALSource->flMinGain;
|
|
MaxVolume = ALSource->flMaxGain;
|
|
Pitch = ALSource->flPitch;
|
|
VirtualChannels = ALSource->VirtualChannels;
|
|
|
|
/* Calculate the stepping value */
|
|
Channels = FmtMono;
|
|
BufferListItem = ALSource->queue;
|
|
while(BufferListItem != NULL)
|
|
{
|
|
ALbuffer *ALBuffer;
|
|
if((ALBuffer=BufferListItem->buffer) != NULL)
|
|
{
|
|
ALint maxstep = STACK_DATA_SIZE / ALSource->NumChannels /
|
|
ALSource->SampleSize;
|
|
maxstep -= ResamplerPadding[ALSource->Resampler] +
|
|
ResamplerPrePadding[ALSource->Resampler] + 1;
|
|
maxstep = min(maxstep, INT_MAX>>FRACTIONBITS);
|
|
|
|
Pitch = Pitch * ALBuffer->Frequency / Frequency;
|
|
if(Pitch > (ALfloat)maxstep)
|
|
ALSource->Params.Step = maxstep<<FRACTIONBITS;
|
|
else
|
|
{
|
|
ALSource->Params.Step = Pitch*FRACTIONONE;
|
|
if(ALSource->Params.Step == 0)
|
|
ALSource->Params.Step = 1;
|
|
}
|
|
|
|
Channels = ALBuffer->FmtChannels;
|
|
|
|
if(ALSource->VirtualChannels && (Device->Flags&DEVICE_USE_HRTF))
|
|
ALSource->Params.DoMix = SelectHrtfMixer(ALBuffer,
|
|
(ALSource->Params.Step==FRACTIONONE) ? POINT_RESAMPLER :
|
|
ALSource->Resampler);
|
|
else
|
|
ALSource->Params.DoMix = SelectMixer(ALBuffer,
|
|
(ALSource->Params.Step==FRACTIONONE) ? POINT_RESAMPLER :
|
|
ALSource->Resampler);
|
|
break;
|
|
}
|
|
BufferListItem = BufferListItem->next;
|
|
}
|
|
|
|
/* Calculate gains */
|
|
DryGain = SourceVolume;
|
|
DryGain = __min(DryGain,MaxVolume);
|
|
DryGain = __max(DryGain,MinVolume);
|
|
DryGainHF = 1.0f;
|
|
switch(ALSource->DirectFilter.type)
|
|
{
|
|
case AL_FILTER_LOWPASS:
|
|
DryGain *= ALSource->DirectFilter.Gain;
|
|
DryGainHF *= ALSource->DirectFilter.GainHF;
|
|
break;
|
|
}
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
WetGain[i] = SourceVolume;
|
|
WetGain[i] = __min(WetGain[i],MaxVolume);
|
|
WetGain[i] = __max(WetGain[i],MinVolume);
|
|
WetGainHF[i] = 1.0f;
|
|
switch(ALSource->Send[i].WetFilter.type)
|
|
{
|
|
case AL_FILTER_LOWPASS:
|
|
WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
|
|
WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
|
|
break;
|
|
}
|
|
}
|
|
|
|
SrcMatrix = ALSource->Params.DryGains;
|
|
for(i = 0;i < MAXCHANNELS;i++)
|
|
{
|
|
for(c = 0;c < MAXCHANNELS;c++)
|
|
SrcMatrix[i][c] = 0.0f;
|
|
}
|
|
switch(Channels)
|
|
{
|
|
case FmtMono:
|
|
angles = angles_Mono;
|
|
chans = chans_Mono;
|
|
num_channels = 1;
|
|
break;
|
|
case FmtStereo:
|
|
if(VirtualChannels && (ALContext->Device->Flags&DEVICE_DUPLICATE_STEREO))
|
|
{
|
|
DryGain *= aluSqrt(2.0f/4.0f);
|
|
for(c = 0;c < 2;c++)
|
|
{
|
|
pos = aluCart2LUTpos(cos(angles_Rear[c] * (M_PI/180.0)),
|
|
sin(angles_Rear[c] * (M_PI/180.0)));
|
|
SpeakerGain = Device->PanningLUT[pos];
|
|
|
|
for(i = 0;i < (ALint)Device->NumChan;i++)
|
|
{
|
|
enum Channel chan = Device->Speaker2Chan[i];
|
|
SrcMatrix[c][chan] += DryGain * ListenerGain *
|
|
SpeakerGain[chan];
|
|
}
|
|
}
|
|
}
|
|
angles = angles_Stereo;
|
|
chans = chans_Stereo;
|
|
num_channels = 2;
|
|
break;
|
|
|
|
case FmtRear:
|
|
angles = angles_Rear;
|
|
chans = chans_Rear;
|
|
num_channels = 2;
|
|
break;
|
|
|
|
case FmtQuad:
|
|
angles = angles_Quad;
|
|
chans = chans_Quad;
|
|
num_channels = 4;
|
|
break;
|
|
|
|
case FmtX51:
|
|
angles = angles_X51;
|
|
chans = chans_X51;
|
|
num_channels = 6;
|
|
break;
|
|
|
|
case FmtX61:
|
|
angles = angles_X61;
|
|
chans = chans_X61;
|
|
num_channels = 7;
|
|
break;
|
|
|
|
case FmtX71:
|
|
angles = angles_X71;
|
|
chans = chans_X71;
|
|
num_channels = 8;
|
|
break;
|
|
}
|
|
|
|
if(VirtualChannels == AL_FALSE)
|
|
{
|
|
for(c = 0;c < num_channels;c++)
|
|
SrcMatrix[c][chans[c]] += DryGain * ListenerGain;
|
|
}
|
|
else if((Device->Flags&DEVICE_USE_HRTF))
|
|
{
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
if(chans[c] == LFE)
|
|
{
|
|
/* Skip LFE */
|
|
ALSource->Params.HrtfDelay[c][0] = 0;
|
|
ALSource->Params.HrtfDelay[c][1] = 0;
|
|
for(i = 0;i < HRIR_LENGTH;i++)
|
|
{
|
|
ALSource->Params.HrtfCoeffs[c][i][0] = 0.0f;
|
|
ALSource->Params.HrtfCoeffs[c][i][1] = 0.0f;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
GetLerpedHrtfCoeffs(0.0, angles[c] * (M_PI/180.0),
|
|
DryGain*ListenerGain,
|
|
ALSource->Params.HrtfCoeffs[c],
|
|
ALSource->Params.HrtfDelay[c]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
if(chans[c] == LFE) /* Special-case LFE */
|
|
{
|
|
SrcMatrix[c][LFE] += DryGain * ListenerGain;
|
|
continue;
|
|
}
|
|
pos = aluCart2LUTpos(cos(angles[c] * (M_PI/180.0)),
|
|
sin(angles[c] * (M_PI/180.0)));
|
|
SpeakerGain = Device->PanningLUT[pos];
|
|
|
|
for(i = 0;i < (ALint)Device->NumChan;i++)
|
|
{
|
|
enum Channel chan = Device->Speaker2Chan[i];
|
|
SrcMatrix[c][chan] += DryGain * ListenerGain *
|
|
SpeakerGain[chan];
|
|
}
|
|
}
|
|
}
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
ALSource->Params.Send[i].Slot = ALSource->Send[i].Slot;
|
|
ALSource->Params.Send[i].WetGain = WetGain[i] * ListenerGain /
|
|
ALSource->NumChannels;
|
|
}
|
|
|
|
/* Update filter coefficients. Calculations based on the I3DL2
|
|
* spec. */
|
|
cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);
|
|
|
|
/* We use two chained one-pole filters, so we need to take the
|
|
* square root of the squared gain, which is the same as the base
|
|
* gain. */
|
|
ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
/* We use a one-pole filter, so we need to take the squared gain */
|
|
ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
|
|
ALSource->Params.Send[i].iirFilter.coeff = a;
|
|
}
|
|
}
|
|
|
|
ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
|
|
{
|
|
const ALCdevice *Device = ALContext->Device;
|
|
ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
|
|
ALfloat Direction[3],Position[3],SourceToListener[3];
|
|
ALfloat Velocity[3],ListenerVel[3];
|
|
ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
|
|
ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
|
|
ALfloat DopplerFactor, DopplerVelocity, SpeedOfSound;
|
|
ALfloat AirAbsorptionFactor;
|
|
ALfloat RoomAirAbsorption[MAX_SENDS];
|
|
ALbufferlistitem *BufferListItem;
|
|
ALfloat Attenuation, EffectiveDist;
|
|
ALfloat RoomAttenuation[MAX_SENDS];
|
|
ALfloat MetersPerUnit;
|
|
ALfloat RoomRolloffBase;
|
|
ALfloat RoomRolloff[MAX_SENDS];
|
|
ALfloat DecayDistance[MAX_SENDS];
|
|
ALfloat DryGain;
|
|
ALfloat DryGainHF;
|
|
ALboolean DryGainHFAuto;
|
|
ALfloat WetGain[MAX_SENDS];
|
|
ALfloat WetGainHF[MAX_SENDS];
|
|
ALboolean WetGainAuto;
|
|
ALboolean WetGainHFAuto;
|
|
ALfloat Pitch;
|
|
ALuint Frequency;
|
|
ALint NumSends;
|
|
ALfloat cw;
|
|
ALint i;
|
|
|
|
DryGainHF = 1.0f;
|
|
for(i = 0;i < MAX_SENDS;i++)
|
|
WetGainHF[i] = 1.0f;
|
|
|
|
//Get context properties
|
|
DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
|
|
DopplerVelocity = ALContext->DopplerVelocity;
|
|
SpeedOfSound = ALContext->flSpeedOfSound;
|
|
NumSends = Device->NumAuxSends;
|
|
Frequency = Device->Frequency;
|
|
|
|
//Get listener properties
|
|
ListenerGain = ALContext->Listener.Gain;
|
|
MetersPerUnit = ALContext->Listener.MetersPerUnit;
|
|
memcpy(ListenerVel, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));
|
|
|
|
//Get source properties
|
|
SourceVolume = ALSource->flGain;
|
|
MinVolume = ALSource->flMinGain;
|
|
MaxVolume = ALSource->flMaxGain;
|
|
memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
|
|
memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
|
|
memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity));
|
|
MinDist = ALSource->flRefDistance;
|
|
MaxDist = ALSource->flMaxDistance;
|
|
Rolloff = ALSource->flRollOffFactor;
|
|
InnerAngle = ALSource->flInnerAngle * ConeScale;
|
|
OuterAngle = ALSource->flOuterAngle * ConeScale;
|
|
AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
|
|
DryGainHFAuto = ALSource->DryGainHFAuto;
|
|
WetGainAuto = ALSource->WetGainAuto;
|
|
WetGainHFAuto = ALSource->WetGainHFAuto;
|
|
RoomRolloffBase = ALSource->RoomRolloffFactor;
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
ALeffectslot *Slot = ALSource->Send[i].Slot;
|
|
|
|
if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
|
|
{
|
|
RoomRolloff[i] = 0.0f;
|
|
DecayDistance[i] = 0.0f;
|
|
RoomAirAbsorption[i] = 1.0f;
|
|
}
|
|
else if(Slot->AuxSendAuto)
|
|
{
|
|
RoomRolloff[i] = RoomRolloffBase;
|
|
if(IsReverbEffect(Slot->effect.type))
|
|
{
|
|
RoomRolloff[i] += Slot->effect.Params.Reverb.RoomRolloffFactor;
|
|
DecayDistance[i] = Slot->effect.Params.Reverb.DecayTime *
|
|
SPEEDOFSOUNDMETRESPERSEC;
|
|
RoomAirAbsorption[i] = Slot->effect.Params.Reverb.AirAbsorptionGainHF;
|
|
}
|
|
else
|
|
{
|
|
DecayDistance[i] = 0.0f;
|
|
RoomAirAbsorption[i] = 1.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If the slot's auxiliary send auto is off, the data sent to the
|
|
* effect slot is the same as the dry path, sans filter effects */
|
|
RoomRolloff[i] = Rolloff;
|
|
DecayDistance[i] = 0.0f;
|
|
RoomAirAbsorption[i] = AIRABSORBGAINHF;
|
|
}
|
|
|
|
ALSource->Params.Send[i].Slot = Slot;
|
|
}
|
|
|
|
//1. Translate Listener to origin (convert to head relative)
|
|
if(ALSource->bHeadRelative == AL_FALSE)
|
|
{
|
|
ALfloat U[3],V[3],N[3];
|
|
ALfloat Matrix[4][4];
|
|
|
|
// Build transform matrix
|
|
memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
|
|
aluNormalize(N); // Normalized At-vector
|
|
memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
|
|
aluNormalize(V); // Normalized Up-vector
|
|
aluCrossproduct(N, V, U); // Right-vector
|
|
aluNormalize(U); // Normalized Right-vector
|
|
Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0]; Matrix[0][3] = 0.0f;
|
|
Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1]; Matrix[1][3] = 0.0f;
|
|
Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2]; Matrix[2][3] = 0.0f;
|
|
Matrix[3][0] = 0.0f; Matrix[3][1] = 0.0f; Matrix[3][2] = 0.0f; Matrix[3][3] = 1.0f;
|
|
|
|
// Translate position
|
|
Position[0] -= ALContext->Listener.Position[0];
|
|
Position[1] -= ALContext->Listener.Position[1];
|
|
Position[2] -= ALContext->Listener.Position[2];
|
|
|
|
// Transform source position and direction into listener space
|
|
aluMatrixVector(Position, 1.0f, Matrix);
|
|
aluMatrixVector(Direction, 0.0f, Matrix);
|
|
// Transform source and listener velocity into listener space
|
|
aluMatrixVector(Velocity, 0.0f, Matrix);
|
|
aluMatrixVector(ListenerVel, 0.0f, Matrix);
|
|
}
|
|
else
|
|
ListenerVel[0] = ListenerVel[1] = ListenerVel[2] = 0.0f;
|
|
|
|
SourceToListener[0] = -Position[0];
|
|
SourceToListener[1] = -Position[1];
|
|
SourceToListener[2] = -Position[2];
|
|
aluNormalize(SourceToListener);
|
|
aluNormalize(Direction);
|
|
|
|
//2. Calculate distance attenuation
|
|
Distance = aluSqrt(aluDotproduct(Position, Position));
|
|
ClampedDist = Distance;
|
|
|
|
Attenuation = 1.0f;
|
|
for(i = 0;i < NumSends;i++)
|
|
RoomAttenuation[i] = 1.0f;
|
|
switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
|
|
ALContext->DistanceModel)
|
|
{
|
|
case InverseDistanceClamped:
|
|
ClampedDist=__max(ClampedDist,MinDist);
|
|
ClampedDist=__min(ClampedDist,MaxDist);
|
|
if(MaxDist < MinDist)
|
|
break;
|
|
//fall-through
|
|
case InverseDistance:
|
|
if(MinDist > 0.0f)
|
|
{
|
|
if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
|
|
Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
|
|
RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case LinearDistanceClamped:
|
|
ClampedDist=__max(ClampedDist,MinDist);
|
|
ClampedDist=__min(ClampedDist,MaxDist);
|
|
if(MaxDist < MinDist)
|
|
break;
|
|
//fall-through
|
|
case LinearDistance:
|
|
if(MaxDist != MinDist)
|
|
{
|
|
Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
|
|
Attenuation = __max(Attenuation, 0.0f);
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
|
|
RoomAttenuation[i] = __max(RoomAttenuation[i], 0.0f);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ExponentDistanceClamped:
|
|
ClampedDist=__max(ClampedDist,MinDist);
|
|
ClampedDist=__min(ClampedDist,MaxDist);
|
|
if(MaxDist < MinDist)
|
|
break;
|
|
//fall-through
|
|
case ExponentDistance:
|
|
if(ClampedDist > 0.0f && MinDist > 0.0f)
|
|
{
|
|
Attenuation = aluPow(ClampedDist/MinDist, -Rolloff);
|
|
for(i = 0;i < NumSends;i++)
|
|
RoomAttenuation[i] = aluPow(ClampedDist/MinDist, -RoomRolloff[i]);
|
|
}
|
|
break;
|
|
|
|
case DisableDistance:
|
|
break;
|
|
}
|
|
|
|
// Source Gain + Attenuation
|
|
DryGain = SourceVolume * Attenuation;
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGain[i] = SourceVolume * RoomAttenuation[i];
|
|
|
|
// Distance-based air absorption
|
|
EffectiveDist = 0.0f;
|
|
if(MinDist > 0.0f && Attenuation < 1.0f)
|
|
EffectiveDist = (MinDist/Attenuation - MinDist)*MetersPerUnit;
|
|
if(AirAbsorptionFactor > 0.0f && EffectiveDist > 0.0f)
|
|
{
|
|
DryGainHF *= aluPow(AIRABSORBGAINHF, AirAbsorptionFactor*EffectiveDist);
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGainHF[i] *= aluPow(RoomAirAbsorption[i],
|
|
AirAbsorptionFactor*EffectiveDist);
|
|
}
|
|
|
|
//3. Apply directional soundcones
|
|
Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * (180.0/M_PI);
|
|
if(Angle >= InnerAngle && Angle <= OuterAngle)
|
|
{
|
|
ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
|
|
ConeVolume = lerp(1.0, ALSource->flOuterGain, scale);
|
|
ConeHF = lerp(1.0, ALSource->OuterGainHF, scale);
|
|
}
|
|
else if(Angle > OuterAngle)
|
|
{
|
|
ConeVolume = ALSource->flOuterGain;
|
|
ConeHF = ALSource->OuterGainHF;
|
|
}
|
|
else
|
|
{
|
|
ConeVolume = 1.0f;
|
|
ConeHF = 1.0f;
|
|
}
|
|
|
|
DryGain *= ConeVolume;
|
|
if(WetGainAuto)
|
|
{
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGain[i] *= ConeVolume;
|
|
}
|
|
if(DryGainHFAuto)
|
|
DryGainHF *= ConeHF;
|
|
if(WetGainHFAuto)
|
|
{
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGain[i] *= ConeHF;
|
|
}
|
|
|
|
// Clamp to Min/Max Gain
|
|
DryGain = __min(DryGain,MaxVolume);
|
|
DryGain = __max(DryGain,MinVolume);
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
WetGain[i] = __min(WetGain[i],MaxVolume);
|
|
WetGain[i] = __max(WetGain[i],MinVolume);
|
|
}
|
|
|
|
// Apply filter gains and filters
|
|
switch(ALSource->DirectFilter.type)
|
|
{
|
|
case AL_FILTER_LOWPASS:
|
|
DryGain *= ALSource->DirectFilter.Gain;
|
|
DryGainHF *= ALSource->DirectFilter.GainHF;
|
|
break;
|
|
}
|
|
DryGain *= ListenerGain;
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
switch(ALSource->Send[i].WetFilter.type)
|
|
{
|
|
case AL_FILTER_LOWPASS:
|
|
WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
|
|
WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
|
|
break;
|
|
}
|
|
WetGain[i] *= ListenerGain;
|
|
}
|
|
|
|
if(WetGainAuto)
|
|
{
|
|
/* Apply a decay-time transformation to the wet path, based on the
|
|
* attenuation of the dry path.
|
|
*
|
|
* Using the approximate (effective) source to listener distance, the
|
|
* initial decay of the reverb effect is calculated and applied to the
|
|
* wet path.
|
|
*/
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
if(DecayDistance[i] > 0.0f)
|
|
WetGain[i] *= aluPow(0.001f /* -60dB */,
|
|
EffectiveDist / DecayDistance[i]);
|
|
}
|
|
}
|
|
|
|
// Calculate Velocity
|
|
Pitch = ALSource->flPitch;
|
|
if(DopplerFactor != 0.0f)
|
|
{
|
|
ALfloat VSS, VLS;
|
|
ALfloat MaxVelocity = (SpeedOfSound*DopplerVelocity) /
|
|
DopplerFactor;
|
|
|
|
VSS = aluDotproduct(Velocity, SourceToListener);
|
|
if(VSS >= MaxVelocity)
|
|
VSS = (MaxVelocity - 1.0f);
|
|
else if(VSS <= -MaxVelocity)
|
|
VSS = -MaxVelocity + 1.0f;
|
|
|
|
VLS = aluDotproduct(ListenerVel, SourceToListener);
|
|
if(VLS >= MaxVelocity)
|
|
VLS = (MaxVelocity - 1.0f);
|
|
else if(VLS <= -MaxVelocity)
|
|
VLS = -MaxVelocity + 1.0f;
|
|
|
|
Pitch *= ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VLS)) /
|
|
((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VSS));
|
|
}
|
|
|
|
BufferListItem = ALSource->queue;
|
|
while(BufferListItem != NULL)
|
|
{
|
|
ALbuffer *ALBuffer;
|
|
if((ALBuffer=BufferListItem->buffer) != NULL)
|
|
{
|
|
ALint maxstep = STACK_DATA_SIZE / ALSource->NumChannels /
|
|
ALSource->SampleSize;
|
|
maxstep -= ResamplerPadding[ALSource->Resampler] +
|
|
ResamplerPrePadding[ALSource->Resampler] + 1;
|
|
maxstep = min(maxstep, INT_MAX>>FRACTIONBITS);
|
|
|
|
Pitch = Pitch * ALBuffer->Frequency / Frequency;
|
|
if(Pitch > (ALfloat)maxstep)
|
|
ALSource->Params.Step = maxstep<<FRACTIONBITS;
|
|
else
|
|
{
|
|
ALSource->Params.Step = Pitch*FRACTIONONE;
|
|
if(ALSource->Params.Step == 0)
|
|
ALSource->Params.Step = 1;
|
|
}
|
|
|
|
ALSource->Params.DoMix = ((Device->Flags&DEVICE_USE_HRTF) ?
|
|
SelectHrtfMixer(ALBuffer, (ALSource->Params.Step==FRACTIONONE) ?
|
|
POINT_RESAMPLER : ALSource->Resampler) :
|
|
SelectMixer(ALBuffer, (ALSource->Params.Step==FRACTIONONE) ?
|
|
POINT_RESAMPLER : ALSource->Resampler));
|
|
break;
|
|
}
|
|
BufferListItem = BufferListItem->next;
|
|
}
|
|
|
|
if((Device->Flags&DEVICE_USE_HRTF))
|
|
{
|
|
// Use a binaural HRTF algorithm for stereo headphone playback
|
|
if(Distance > 0.0f)
|
|
{
|
|
ALfloat invlen = 1.0f/Distance;
|
|
Position[0] *= invlen;
|
|
Position[1] *= invlen;
|
|
Position[2] *= invlen;
|
|
GetLerpedHrtfCoeffs(asin(Position[1]),
|
|
atan2(Position[0], -Position[2]*ZScale),
|
|
DryGain, ALSource->Params.HrtfCoeffs[0],
|
|
ALSource->Params.HrtfDelay[0]);
|
|
}
|
|
else
|
|
{
|
|
/* Force front-centered for sounds that comes from the listener,
|
|
* to prevent +0 and -0 Z from producing inconsistent panning */
|
|
GetLerpedHrtfCoeffs(0.0f, 0.0f, DryGain,
|
|
ALSource->Params.HrtfCoeffs[0],
|
|
ALSource->Params.HrtfDelay[0]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Use energy-preserving panning algorithm for multi-speaker playback
|
|
ALfloat DirGain, AmbientGain;
|
|
const ALfloat *SpeakerGain;
|
|
ALfloat length;
|
|
ALint pos;
|
|
|
|
length = __max(Distance, MinDist);
|
|
if(length > 0.0f)
|
|
{
|
|
ALfloat invlen = 1.0f/length;
|
|
Position[0] *= invlen;
|
|
Position[1] *= invlen;
|
|
Position[2] *= invlen;
|
|
}
|
|
|
|
pos = aluCart2LUTpos(-Position[2]*ZScale, Position[0]);
|
|
SpeakerGain = Device->PanningLUT[pos];
|
|
|
|
DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
|
|
// elevation adjustment for directional gain. this sucks, but
|
|
// has low complexity
|
|
AmbientGain = aluSqrt(1.0/Device->NumChan);
|
|
for(i = 0;i < MAXCHANNELS;i++)
|
|
{
|
|
ALuint i2;
|
|
for(i2 = 0;i2 < MAXCHANNELS;i2++)
|
|
ALSource->Params.DryGains[i][i2] = 0.0f;
|
|
}
|
|
for(i = 0;i < (ALint)Device->NumChan;i++)
|
|
{
|
|
enum Channel chan = Device->Speaker2Chan[i];
|
|
ALfloat gain = lerp(AmbientGain, SpeakerGain[chan], DirGain);
|
|
ALSource->Params.DryGains[0][chan] = DryGain * gain;
|
|
}
|
|
}
|
|
for(i = 0;i < NumSends;i++)
|
|
ALSource->Params.Send[i].WetGain = WetGain[i];
|
|
|
|
/* Update filter coefficients. */
|
|
cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);
|
|
|
|
ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
|
|
ALSource->Params.Send[i].iirFilter.coeff = a;
|
|
}
|
|
}
|
|
|
|
|
|
static __inline ALfloat aluF2F(ALfloat val)
|
|
{
|
|
return val;
|
|
}
|
|
static __inline ALushort aluF2US(ALfloat val)
|
|
{
|
|
if(val > 1.0f) return 65535;
|
|
if(val < -1.0f) return 0;
|
|
return (ALint)(val*32767.0f) + 32768;
|
|
}
|
|
static __inline ALshort aluF2S(ALfloat val)
|
|
{
|
|
if(val > 1.0f) return 32767;
|
|
if(val < -1.0f) return -32768;
|
|
return (ALint)(val*32767.0f);
|
|
}
|
|
static __inline ALubyte aluF2UB(ALfloat val)
|
|
{
|
|
ALushort i = aluF2US(val);
|
|
return i>>8;
|
|
}
|
|
static __inline ALbyte aluF2B(ALfloat val)
|
|
{
|
|
ALshort i = aluF2S(val);
|
|
return i>>8;
|
|
}
|
|
|
|
static const enum Channel MonoChans[] = { FRONT_CENTER };
|
|
static const enum Channel StereoChans[] = { FRONT_LEFT, FRONT_RIGHT };
|
|
static const enum Channel QuadChans[] = { FRONT_LEFT, FRONT_RIGHT,
|
|
BACK_LEFT, BACK_RIGHT };
|
|
static const enum Channel X51Chans[] = { FRONT_LEFT, FRONT_RIGHT,
|
|
FRONT_CENTER, LFE,
|
|
BACK_LEFT, BACK_RIGHT };
|
|
static const enum Channel X51SideChans[] = { FRONT_LEFT, FRONT_RIGHT,
|
|
FRONT_CENTER, LFE,
|
|
SIDE_LEFT, SIDE_RIGHT };
|
|
static const enum Channel X61Chans[] = { FRONT_LEFT, FRONT_LEFT,
|
|
FRONT_CENTER, LFE, BACK_CENTER,
|
|
SIDE_LEFT, SIDE_RIGHT };
|
|
static const enum Channel X71Chans[] = { FRONT_LEFT, FRONT_RIGHT,
|
|
FRONT_CENTER, LFE,
|
|
BACK_LEFT, BACK_RIGHT,
|
|
SIDE_LEFT, SIDE_RIGHT };
|
|
|
|
#define DECL_TEMPLATE(T, chans,N, func) \
|
|
static void Write_##T##_##chans(ALCdevice *device, T *RESTRICT buffer, \
|
|
ALuint SamplesToDo) \
|
|
{ \
|
|
ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer; \
|
|
const ALuint *ChanMap = device->DevChannels; \
|
|
ALuint i, j; \
|
|
\
|
|
for(i = 0;i < SamplesToDo;i++) \
|
|
{ \
|
|
for(j = 0;j < N;j++) \
|
|
buffer[ChanMap[chans[j]]] = func(DryBuffer[i][chans[j]]); \
|
|
buffer += N; \
|
|
} \
|
|
}
|
|
|
|
DECL_TEMPLATE(ALfloat, MonoChans,1, aluF2F)
|
|
DECL_TEMPLATE(ALfloat, QuadChans,4, aluF2F)
|
|
DECL_TEMPLATE(ALfloat, X51Chans,6, aluF2F)
|
|
DECL_TEMPLATE(ALfloat, X51SideChans,6, aluF2F)
|
|
DECL_TEMPLATE(ALfloat, X61Chans,7, aluF2F)
|
|
DECL_TEMPLATE(ALfloat, X71Chans,8, aluF2F)
|
|
|
|
DECL_TEMPLATE(ALushort, MonoChans,1, aluF2US)
|
|
DECL_TEMPLATE(ALushort, QuadChans,4, aluF2US)
|
|
DECL_TEMPLATE(ALushort, X51Chans,6, aluF2US)
|
|
DECL_TEMPLATE(ALushort, X51SideChans,6, aluF2US)
|
|
DECL_TEMPLATE(ALushort, X61Chans,7, aluF2US)
|
|
DECL_TEMPLATE(ALushort, X71Chans,8, aluF2US)
|
|
|
|
DECL_TEMPLATE(ALshort, MonoChans,1, aluF2S)
|
|
DECL_TEMPLATE(ALshort, QuadChans,4, aluF2S)
|
|
DECL_TEMPLATE(ALshort, X51Chans,6, aluF2S)
|
|
DECL_TEMPLATE(ALshort, X51SideChans,6, aluF2S)
|
|
DECL_TEMPLATE(ALshort, X61Chans,7, aluF2S)
|
|
DECL_TEMPLATE(ALshort, X71Chans,8, aluF2S)
|
|
|
|
DECL_TEMPLATE(ALubyte, MonoChans,1, aluF2UB)
|
|
DECL_TEMPLATE(ALubyte, QuadChans,4, aluF2UB)
|
|
DECL_TEMPLATE(ALubyte, X51Chans,6, aluF2UB)
|
|
DECL_TEMPLATE(ALubyte, X51SideChans,6, aluF2UB)
|
|
DECL_TEMPLATE(ALubyte, X61Chans,7, aluF2UB)
|
|
DECL_TEMPLATE(ALubyte, X71Chans,8, aluF2UB)
|
|
|
|
DECL_TEMPLATE(ALbyte, MonoChans,1, aluF2B)
|
|
DECL_TEMPLATE(ALbyte, QuadChans,4, aluF2B)
|
|
DECL_TEMPLATE(ALbyte, X51Chans,6, aluF2B)
|
|
DECL_TEMPLATE(ALbyte, X51SideChans,6, aluF2B)
|
|
DECL_TEMPLATE(ALbyte, X61Chans,7, aluF2B)
|
|
DECL_TEMPLATE(ALbyte, X71Chans,8, aluF2B)
|
|
|
|
#undef DECL_TEMPLATE
|
|
|
|
#define DECL_TEMPLATE(T, chans,N, func) \
|
|
static void Write_##T##_##chans(ALCdevice *device, T *RESTRICT buffer, \
|
|
ALuint SamplesToDo) \
|
|
{ \
|
|
ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer; \
|
|
const ALuint *ChanMap = device->DevChannels; \
|
|
ALuint i, j; \
|
|
\
|
|
if(device->Bs2b) \
|
|
{ \
|
|
for(i = 0;i < SamplesToDo;i++) \
|
|
{ \
|
|
float samples[2]; \
|
|
samples[0] = DryBuffer[i][chans[0]]; \
|
|
samples[1] = DryBuffer[i][chans[1]]; \
|
|
bs2b_cross_feed(device->Bs2b, samples); \
|
|
buffer[ChanMap[chans[0]]] = func(samples[0]); \
|
|
buffer[ChanMap[chans[1]]] = func(samples[1]); \
|
|
buffer += 2; \
|
|
} \
|
|
} \
|
|
else \
|
|
{ \
|
|
for(i = 0;i < SamplesToDo;i++) \
|
|
{ \
|
|
for(j = 0;j < N;j++) \
|
|
buffer[ChanMap[chans[j]]] = func(DryBuffer[i][chans[j]]); \
|
|
buffer += N; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
DECL_TEMPLATE(ALfloat, StereoChans,2, aluF2F)
|
|
DECL_TEMPLATE(ALushort, StereoChans,2, aluF2US)
|
|
DECL_TEMPLATE(ALshort, StereoChans,2, aluF2S)
|
|
DECL_TEMPLATE(ALubyte, StereoChans,2, aluF2UB)
|
|
DECL_TEMPLATE(ALbyte, StereoChans,2, aluF2B)
|
|
|
|
#undef DECL_TEMPLATE
|
|
|
|
#define DECL_TEMPLATE(T) \
|
|
static void Write_##T(ALCdevice *device, T *buffer, ALuint SamplesToDo) \
|
|
{ \
|
|
switch(device->FmtChans) \
|
|
{ \
|
|
case DevFmtMono: \
|
|
Write_##T##_MonoChans(device, buffer, SamplesToDo); \
|
|
break; \
|
|
case DevFmtStereo: \
|
|
Write_##T##_StereoChans(device, buffer, SamplesToDo); \
|
|
break; \
|
|
case DevFmtQuad: \
|
|
Write_##T##_QuadChans(device, buffer, SamplesToDo); \
|
|
break; \
|
|
case DevFmtX51: \
|
|
Write_##T##_X51Chans(device, buffer, SamplesToDo); \
|
|
break; \
|
|
case DevFmtX51Side: \
|
|
Write_##T##_X51SideChans(device, buffer, SamplesToDo); \
|
|
break; \
|
|
case DevFmtX61: \
|
|
Write_##T##_X61Chans(device, buffer, SamplesToDo); \
|
|
break; \
|
|
case DevFmtX71: \
|
|
Write_##T##_X71Chans(device, buffer, SamplesToDo); \
|
|
break; \
|
|
} \
|
|
}
|
|
|
|
DECL_TEMPLATE(ALfloat)
|
|
DECL_TEMPLATE(ALushort)
|
|
DECL_TEMPLATE(ALshort)
|
|
DECL_TEMPLATE(ALubyte)
|
|
DECL_TEMPLATE(ALbyte)
|
|
|
|
#undef DECL_TEMPLATE
|
|
|
|
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
|
|
{
|
|
ALuint SamplesToDo;
|
|
ALeffectslot *ALEffectSlot;
|
|
ALCcontext **ctx, **ctx_end;
|
|
ALsource **src, **src_end;
|
|
int fpuState;
|
|
ALuint i, c;
|
|
ALsizei e;
|
|
|
|
#if defined(HAVE_FESETROUND)
|
|
fpuState = fegetround();
|
|
fesetround(FE_TOWARDZERO);
|
|
#elif defined(HAVE__CONTROLFP)
|
|
fpuState = _controlfp(0, 0);
|
|
(void)_controlfp(_RC_CHOP, _MCW_RC);
|
|
#else
|
|
(void)fpuState;
|
|
#endif
|
|
|
|
while(size > 0)
|
|
{
|
|
/* Setup variables */
|
|
SamplesToDo = min(size, BUFFERSIZE);
|
|
|
|
/* Clear mixing buffer */
|
|
memset(device->DryBuffer, 0, SamplesToDo*MAXCHANNELS*sizeof(ALfloat));
|
|
|
|
LockDevice(device);
|
|
ctx = device->Contexts;
|
|
ctx_end = ctx + device->NumContexts;
|
|
while(ctx != ctx_end)
|
|
{
|
|
ALboolean UpdateSources;
|
|
|
|
UpdateSources = (*ctx)->UpdateSources;
|
|
(*ctx)->UpdateSources = AL_FALSE;
|
|
|
|
src = (*ctx)->ActiveSources;
|
|
src_end = src + (*ctx)->ActiveSourceCount;
|
|
while(src != src_end)
|
|
{
|
|
if((*src)->state != AL_PLAYING)
|
|
{
|
|
--((*ctx)->ActiveSourceCount);
|
|
*src = *(--src_end);
|
|
continue;
|
|
}
|
|
|
|
if((*src)->NeedsUpdate || UpdateSources)
|
|
{
|
|
(*src)->NeedsUpdate = AL_FALSE;
|
|
ALsource_Update(*src, *ctx);
|
|
}
|
|
|
|
MixSource(*src, device, SamplesToDo);
|
|
src++;
|
|
}
|
|
|
|
/* effect slot processing */
|
|
for(e = 0;e < (*ctx)->EffectSlotMap.size;e++)
|
|
{
|
|
ALEffectSlot = (*ctx)->EffectSlotMap.array[e].value;
|
|
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
{
|
|
ALEffectSlot->ClickRemoval[0] -= ALEffectSlot->ClickRemoval[0] / 256.0f;
|
|
ALEffectSlot->WetBuffer[i] += ALEffectSlot->ClickRemoval[0];
|
|
}
|
|
for(i = 0;i < 1;i++)
|
|
{
|
|
ALEffectSlot->ClickRemoval[i] += ALEffectSlot->PendingClicks[i];
|
|
ALEffectSlot->PendingClicks[i] = 0.0f;
|
|
}
|
|
|
|
if(ALEffectSlot->NeedsUpdate)
|
|
{
|
|
ALEffectSlot->NeedsUpdate = AL_FALSE;
|
|
ALEffect_Update(ALEffectSlot->EffectState, *ctx, &ALEffectSlot->effect);
|
|
}
|
|
|
|
ALEffect_Process(ALEffectSlot->EffectState, ALEffectSlot,
|
|
SamplesToDo, ALEffectSlot->WetBuffer,
|
|
device->DryBuffer);
|
|
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
ALEffectSlot->WetBuffer[i] = 0.0f;
|
|
}
|
|
|
|
ctx++;
|
|
}
|
|
UnlockDevice(device);
|
|
|
|
//Post processing loop
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
{
|
|
for(c = 0;c < MAXCHANNELS;c++)
|
|
{
|
|
device->ClickRemoval[c] -= device->ClickRemoval[c] / 256.0f;
|
|
device->DryBuffer[i][c] += device->ClickRemoval[c];
|
|
}
|
|
}
|
|
for(i = 0;i < MAXCHANNELS;i++)
|
|
{
|
|
device->ClickRemoval[i] += device->PendingClicks[i];
|
|
device->PendingClicks[i] = 0.0f;
|
|
}
|
|
|
|
switch(device->FmtType)
|
|
{
|
|
case DevFmtByte:
|
|
Write_ALbyte(device, buffer, SamplesToDo);
|
|
break;
|
|
case DevFmtUByte:
|
|
Write_ALubyte(device, buffer, SamplesToDo);
|
|
break;
|
|
case DevFmtShort:
|
|
Write_ALshort(device, buffer, SamplesToDo);
|
|
break;
|
|
case DevFmtUShort:
|
|
Write_ALushort(device, buffer, SamplesToDo);
|
|
break;
|
|
case DevFmtFloat:
|
|
Write_ALfloat(device, buffer, SamplesToDo);
|
|
break;
|
|
}
|
|
|
|
size -= SamplesToDo;
|
|
}
|
|
|
|
#if defined(HAVE_FESETROUND)
|
|
fesetround(fpuState);
|
|
#elif defined(HAVE__CONTROLFP)
|
|
_controlfp(fpuState, _MCW_RC);
|
|
#endif
|
|
}
|
|
|
|
|
|
ALvoid aluHandleDisconnect(ALCdevice *device)
|
|
{
|
|
ALuint i;
|
|
|
|
LockDevice(device);
|
|
for(i = 0;i < device->NumContexts;i++)
|
|
{
|
|
ALCcontext *Context = device->Contexts[i];
|
|
ALsource *source;
|
|
ALsizei pos;
|
|
|
|
for(pos = 0;pos < Context->SourceMap.size;pos++)
|
|
{
|
|
source = Context->SourceMap.array[pos].value;
|
|
if(source->state == AL_PLAYING)
|
|
{
|
|
source->state = AL_STOPPED;
|
|
source->BuffersPlayed = source->BuffersInQueue;
|
|
source->position = 0;
|
|
source->position_fraction = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
device->Connected = ALC_FALSE;
|
|
UnlockDevice(device);
|
|
}
|