AuroraOpenALSoft/Alc/hrtf.c

821 lines
25 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2011 by Chris Robinson
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <stdlib.h>
#include <ctype.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alSource.h"
#include "alu.h"
#include "hrtf.h"
/* Current data set limits defined by the makehrtf utility. */
#define MIN_IR_SIZE (8)
#define MAX_IR_SIZE (128)
#define MOD_IR_SIZE (8)
#define MIN_EV_COUNT (5)
#define MAX_EV_COUNT (128)
#define MIN_AZ_COUNT (1)
#define MAX_AZ_COUNT (128)
struct Hrtf {
ALuint sampleRate;
ALuint irSize;
ALubyte evCount;
const ALubyte *azCount;
const ALushort *evOffset;
const ALshort *coeffs;
const ALubyte *delays;
struct Hrtf *next;
};
static const ALchar magicMarker00[8] = "MinPHR00";
static const ALchar magicMarker01[8] = "MinPHR01";
/* First value for pass-through coefficients (remaining are 0), used for omni-
* directional sounds. */
static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/;
static struct Hrtf *LoadedHrtfs = NULL;
/* Calculate the elevation indices given the polar elevation in radians.
* This will return two indices between 0 and (evcount - 1) and an
* interpolation factor between 0.0 and 1.0.
*/
static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu)
{
ev = (F_PI_2 + ev) * (evcount-1) / F_PI;
evidx[0] = fastf2u(ev);
evidx[1] = minu(evidx[0] + 1, evcount-1);
*evmu = ev - evidx[0];
}
/* Calculate the azimuth indices given the polar azimuth in radians. This
* will return two indices between 0 and (azcount - 1) and an interpolation
* factor between 0.0 and 1.0.
*/
static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu)
{
az = (F_2PI + az) * azcount / (F_2PI);
azidx[0] = fastf2u(az) % azcount;
azidx[1] = (azidx[0] + 1) % azcount;
*azmu = az - floorf(az);
}
/* Calculates the normalized HRTF transition factor (delta) from the changes
* in gain and listener to source angle between updates. The result is a
* normalized delta factor that can be used to calculate moving HRIR stepping
* values.
*/
ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3])
{
ALfloat gainChange, angleChange, change;
// Calculate the normalized dB gain change.
newGain = maxf(newGain, 0.0001f);
oldGain = maxf(oldGain, 0.0001f);
gainChange = fabsf(log10f(newGain / oldGain) / log10f(0.0001f));
// Calculate the angle change only when there is enough gain to notice it.
angleChange = 0.0f;
if(gainChange > 0.0001f || newGain > 0.0001f)
{
// No angle change when the directions are equal or degenerate (when
// both have zero length).
if(newdir[0] != olddir[0] || newdir[1] != olddir[1] || newdir[2] != olddir[2])
{
ALfloat dotp = olddir[0]*newdir[0] + olddir[1]*newdir[1] + olddir[2]*newdir[2];
angleChange = acosf(clampf(dotp, -1.0f, 1.0f)) / F_PI;
}
}
// Use the largest of the two changes for the delta factor, and apply a
// significance shaping function to it.
change = maxf(angleChange * 25.0f, gainChange) * 2.0f;
return minf(change, 1.0f);
}
/* Calculates static HRIR coefficients and delays for the given polar
* elevation and azimuth in radians. Linear interpolation is used to
* increase the apparent resolution of the HRIR data set. The coefficients
* are also normalized and attenuated by the specified gain.
*/
void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
{
ALuint evidx[2], lidx[4], ridx[4];
ALfloat mu[3], blend[4];
ALuint i;
/* Claculate elevation indices and interpolation factor. */
CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
for(i = 0;i < 2;i++)
{
ALuint azcount = Hrtf->azCount[evidx[i]];
ALuint evoffset = Hrtf->evOffset[evidx[i]];
ALuint azidx[2];
/* Calculate azimuth indices and interpolation factor for this elevation. */
CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
/* Calculate a set of linear HRIR indices for left and right channels. */
lidx[i*2 + 0] = evoffset + azidx[0];
lidx[i*2 + 1] = evoffset + azidx[1];
ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
}
/* Calculate 4 blending weights for 2D bilinear interpolation. */
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
blend[1] = ( mu[0]) * (1.0f-mu[2]);
blend[2] = (1.0f-mu[1]) * ( mu[2]);
blend[3] = ( mu[1]) * ( mu[2]);
/* Calculate the HRIR delays using linear interpolation. */
delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
/* Calculate the sample offsets for the HRIR indices. */
lidx[0] *= Hrtf->irSize;
lidx[1] *= Hrtf->irSize;
lidx[2] *= Hrtf->irSize;
lidx[3] *= Hrtf->irSize;
ridx[0] *= Hrtf->irSize;
ridx[1] *= Hrtf->irSize;
ridx[2] *= Hrtf->irSize;
ridx[3] *= Hrtf->irSize;
/* Calculate the normalized and attenuated HRIR coefficients using linear
* interpolation when there is enough gain to warrant it. Zero the
* coefficients if gain is too low.
*/
if(gain > 0.0001f)
{
ALfloat c;
gain *= 1.0f/32767.0f;
i = 0;
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain;
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain;
for(i = 1;i < Hrtf->irSize;i++)
{
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(0.0f, c, dirfact) * gain;
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(0.0f, c, dirfact) * gain;
}
}
else
{
for(i = 0;i < Hrtf->irSize;i++)
{
coeffs[i][0] = 0.0f;
coeffs[i][1] = 0.0f;
}
}
}
/* Calculates the moving HRIR target coefficients, target delays, and
* stepping values for the given polar elevation and azimuth in radians.
* Linear interpolation is used to increase the apparent resolution of the
* HRIR data set. The coefficients are also normalized and attenuated by the
* specified gain. Stepping resolution and count is determined using the
* given delta factor between 0.0 and 1.0.
*/
ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep)
{
ALuint evidx[2], lidx[4], ridx[4];
ALfloat mu[3], blend[4];
ALfloat left, right;
ALfloat step;
ALuint i;
/* Claculate elevation indices and interpolation factor. */
CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
for(i = 0;i < 2;i++)
{
ALuint azcount = Hrtf->azCount[evidx[i]];
ALuint evoffset = Hrtf->evOffset[evidx[i]];
ALuint azidx[2];
/* Calculate azimuth indices and interpolation factor for this elevation. */
CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
/* Calculate a set of linear HRIR indices for left and right channels. */
lidx[i*2 + 0] = evoffset + azidx[0];
lidx[i*2 + 1] = evoffset + azidx[1];
ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
}
// Calculate the stepping parameters.
delta = maxf(floorf(delta*(Hrtf->sampleRate*0.015f) + 0.5f), 1.0f);
step = 1.0f / delta;
/* Calculate 4 blending weights for 2D bilinear interpolation. */
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
blend[1] = ( mu[0]) * (1.0f-mu[2]);
blend[2] = (1.0f-mu[1]) * ( mu[2]);
blend[3] = ( mu[1]) * ( mu[2]);
/* Calculate the HRIR delays using linear interpolation. Then calculate
* the delay stepping values using the target and previous running
* delays.
*/
left = (ALfloat)(delays[0] - (delayStep[0] * counter));
right = (ALfloat)(delays[1] - (delayStep[1] * counter));
delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
delayStep[0] = fastf2i(step * (delays[0] - left));
delayStep[1] = fastf2i(step * (delays[1] - right));
/* Calculate the sample offsets for the HRIR indices. */
lidx[0] *= Hrtf->irSize;
lidx[1] *= Hrtf->irSize;
lidx[2] *= Hrtf->irSize;
lidx[3] *= Hrtf->irSize;
ridx[0] *= Hrtf->irSize;
ridx[1] *= Hrtf->irSize;
ridx[2] *= Hrtf->irSize;
ridx[3] *= Hrtf->irSize;
/* Calculate the normalized and attenuated target HRIR coefficients using
* linear interpolation when there is enough gain to warrant it. Zero
* the target coefficients if gain is too low. Then calculate the
* coefficient stepping values using the target and previous running
* coefficients.
*/
if(gain > 0.0001f)
{
ALfloat c;
gain *= 1.0f/32767.0f;
i = 0;
left = coeffs[i][0] - (coeffStep[i][0] * counter);
right = coeffs[i][1] - (coeffStep[i][1] * counter);
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain;
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain;
coeffStep[i][0] = step * (coeffs[i][0] - left);
coeffStep[i][1] = step * (coeffs[i][1] - right);
for(i = 1;i < Hrtf->irSize;i++)
{
left = coeffs[i][0] - (coeffStep[i][0] * counter);
right = coeffs[i][1] - (coeffStep[i][1] * counter);
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(0.0f, c, dirfact) * gain;
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(0.0f, c, dirfact) * gain;
coeffStep[i][0] = step * (coeffs[i][0] - left);
coeffStep[i][1] = step * (coeffs[i][1] - right);
}
}
else
{
for(i = 0;i < Hrtf->irSize;i++)
{
left = coeffs[i][0] - (coeffStep[i][0] * counter);
right = coeffs[i][1] - (coeffStep[i][1] * counter);
coeffs[i][0] = 0.0f;
coeffs[i][1] = 0.0f;
coeffStep[i][0] = step * -left;
coeffStep[i][1] = step * -right;
}
}
/* The stepping count is the number of samples necessary for the HRIR to
* complete its transition. The mixer will only apply stepping for this
* many samples.
*/
return fastf2u(delta);
}
static struct Hrtf *LoadHrtf00(FILE *f, ALuint deviceRate)
{
const ALubyte maxDelay = SRC_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALushort irSize = 0;
ALubyte evCount = 0;
ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
ALubyte *delays = NULL;
ALuint i, j;
rate = fgetc(f);
rate |= fgetc(f)<<8;
rate |= fgetc(f)<<16;
rate |= fgetc(f)<<24;
irCount = fgetc(f);
irCount |= fgetc(f)<<8;
irSize = fgetc(f);
irSize |= fgetc(f)<<8;
evCount = fgetc(f);
if(rate != deviceRate)
{
ERR("HRIR rate does not match device rate: rate=%d (%d)\n",
rate, deviceRate);
failed = AL_TRUE;
}
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
azCount = malloc(sizeof(azCount[0])*evCount);
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
evOffset[0] = fgetc(f);
evOffset[0] |= fgetc(f)<<8;
for(i = 1;i < evCount;i++)
{
evOffset[i] = fgetc(f);
evOffset[i] |= fgetc(f)<<8;
if(evOffset[i] <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
i, evOffset[i], evOffset[i-1]);
failed = AL_TRUE;
}
azCount[i-1] = evOffset[i] - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(irCount <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n",
i-1, evOffset[i-1], irCount);
failed = AL_TRUE;
}
azCount[i-1] = irCount - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(!failed)
{
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
delays = malloc(sizeof(delays[0])*irCount);
if(coeffs == NULL || delays == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
ALshort coeff;
coeff = fgetc(f);
coeff |= fgetc(f)<<8;
coeffs[i+j] = coeff;
}
}
for(i = 0;i < irCount;i++)
{
delays[i] = fgetc(f);
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
if(feof(f))
{
ERR("Premature end of data\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf = malloc(sizeof(struct Hrtf));
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = azCount;
Hrtf->evOffset = evOffset;
Hrtf->coeffs = coeffs;
Hrtf->delays = delays;
Hrtf->next = NULL;
return Hrtf;
}
free(azCount);
free(evOffset);
free(coeffs);
free(delays);
return NULL;
}
static struct Hrtf *LoadHrtf01(FILE *f, ALuint deviceRate)
{
const ALubyte maxDelay = SRC_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALubyte irSize = 0, evCount = 0;
ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
ALubyte *delays = NULL;
ALuint i, j;
rate = fgetc(f);
rate |= fgetc(f)<<8;
rate |= fgetc(f)<<16;
rate |= fgetc(f)<<24;
irSize = fgetc(f);
evCount = fgetc(f);
if(rate != deviceRate)
{
ERR("HRIR rate does not match device rate: rate=%d (%d)\n",
rate, deviceRate);
failed = AL_TRUE;
}
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
azCount = malloc(sizeof(azCount[0])*evCount);
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
for(i = 0;i < evCount;i++)
{
azCount[i] = fgetc(f);
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
}
if(!failed)
{
evOffset[0] = 0;
irCount = azCount[0];
for(i = 1;i < evCount;i++)
{
evOffset[i] = evOffset[i-1] + azCount[i-1];
irCount += azCount[i];
}
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
delays = malloc(sizeof(delays[0])*irCount);
if(coeffs == NULL || delays == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
ALshort coeff;
coeff = fgetc(f);
coeff |= fgetc(f)<<8;
coeffs[i+j] = coeff;
}
}
for(i = 0;i < irCount;i++)
{
delays[i] = fgetc(f);
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
if(feof(f))
{
ERR("Premature end of data\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf = malloc(sizeof(struct Hrtf));
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = azCount;
Hrtf->evOffset = evOffset;
Hrtf->coeffs = coeffs;
Hrtf->delays = delays;
Hrtf->next = NULL;
return Hrtf;
}
free(azCount);
free(evOffset);
free(coeffs);
free(delays);
return NULL;
}
static struct Hrtf *LoadHrtf(ALuint deviceRate)
{
const char *fnamelist = "default-%r.mhr";
ConfigValueStr(NULL, "hrtf_tables", &fnamelist);
while(*fnamelist != '\0')
{
struct Hrtf *Hrtf = NULL;
char fname[PATH_MAX];
const char *next;
ALchar magic[8];
ALuint i;
FILE *f;
i = 0;
while(isspace(*fnamelist) || *fnamelist == ',')
fnamelist++;
next = fnamelist;
while(*(fnamelist=next) != '\0' && *fnamelist != ',')
{
next = strpbrk(fnamelist, "%,");
while(fnamelist != next && *fnamelist && i < sizeof(fname))
fname[i++] = *(fnamelist++);
if(!next || *next == ',')
break;
/* *next == '%' */
next++;
if(*next == 'r')
{
int wrote = snprintf(&fname[i], sizeof(fname)-i, "%u", deviceRate);
i += minu(wrote, sizeof(fname)-i);
next++;
}
else if(*next == '%')
{
if(i < sizeof(fname))
fname[i++] = '%';
next++;
}
else
ERR("Invalid marker '%%%c'\n", *next);
}
i = minu(i, sizeof(fname)-1);
fname[i] = '\0';
while(i > 0 && isspace(fname[i-1]))
i--;
fname[i] = '\0';
if(fname[0] == '\0')
continue;
TRACE("Loading %s...\n", fname);
f = OpenDataFile(fname, "openal/hrtf");
if(f == NULL)
{
ERR("Could not open %s\n", fname);
continue;
}
if(fread(magic, 1, sizeof(magic), f) != sizeof(magic))
ERR("Failed to read header from %s\n", fname);
else
{
if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
Hrtf = LoadHrtf00(f, deviceRate);
}
else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
Hrtf = LoadHrtf01(f, deviceRate);
}
else
ERR("Invalid header in %s: \"%.8s\"\n", fname, magic);
}
fclose(f);
f = NULL;
if(Hrtf)
{
Hrtf->next = LoadedHrtfs;
LoadedHrtfs = Hrtf;
TRACE("Loaded HRTF support for format: %s %uhz\n",
DevFmtChannelsString(DevFmtStereo), Hrtf->sampleRate);
return Hrtf;
}
ERR("Failed to load %s\n", fname);
}
return NULL;
}
const struct Hrtf *GetHrtf(enum DevFmtChannels chans, ALCuint srate)
{
if(chans == DevFmtStereo)
{
struct Hrtf *Hrtf = LoadedHrtfs;
while(Hrtf != NULL)
{
if(srate == Hrtf->sampleRate)
return Hrtf;
Hrtf = Hrtf->next;
}
Hrtf = LoadHrtf(srate);
if(Hrtf != NULL)
return Hrtf;
}
ERR("Incompatible format: %s %uhz\n", DevFmtChannelsString(chans), srate);
return NULL;
}
ALCboolean FindHrtfFormat(enum DevFmtChannels *chans, ALCuint *srate)
{
const struct Hrtf *hrtf = LoadedHrtfs;
while(hrtf != NULL)
{
if(*srate == hrtf->sampleRate)
break;
hrtf = hrtf->next;
}
if(hrtf == NULL)
{
hrtf = LoadHrtf(*srate);
if(hrtf == NULL) return ALC_FALSE;
}
*chans = DevFmtStereo;
*srate = hrtf->sampleRate;
return ALC_TRUE;
}
void FreeHrtfs(void)
{
struct Hrtf *Hrtf = NULL;
while((Hrtf=LoadedHrtfs) != NULL)
{
LoadedHrtfs = Hrtf->next;
free((void*)Hrtf->azCount);
free((void*)Hrtf->evOffset);
free((void*)Hrtf->coeffs);
free((void*)Hrtf->delays);
free(Hrtf);
}
}
ALuint GetHrtfIrSize (const struct Hrtf *Hrtf)
{
return Hrtf->irSize;
}