741 lines
30 KiB
C
741 lines
30 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2007 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
#include "alMain.h"
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
|
|
#if defined(HAVE_STDINT_H)
|
|
#include <stdint.h>
|
|
typedef int64_t ALint64;
|
|
#elif defined(HAVE___INT64)
|
|
typedef __int64 ALint64;
|
|
#elif (SIZEOF_LONG == 8)
|
|
typedef long ALint64;
|
|
#elif (SIZEOF_LONG_LONG == 8)
|
|
typedef long long ALint64;
|
|
#endif
|
|
|
|
#ifdef HAVE_SQRTF
|
|
#define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
|
|
#else
|
|
#define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
|
|
#endif
|
|
|
|
// fixes for mingw32.
|
|
#if defined(max) && !defined(__max)
|
|
#define __max max
|
|
#endif
|
|
#if defined(min) && !defined(__min)
|
|
#define __min min
|
|
#endif
|
|
|
|
__inline ALuint aluBytesFromFormat(ALenum format)
|
|
{
|
|
switch(format)
|
|
{
|
|
case AL_FORMAT_MONO8:
|
|
case AL_FORMAT_STEREO8:
|
|
case AL_FORMAT_QUAD8:
|
|
return 1;
|
|
|
|
case AL_FORMAT_MONO16:
|
|
case AL_FORMAT_STEREO16:
|
|
case AL_FORMAT_QUAD16:
|
|
return 2;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
__inline ALuint aluChannelsFromFormat(ALenum format)
|
|
{
|
|
switch(format)
|
|
{
|
|
case AL_FORMAT_MONO8:
|
|
case AL_FORMAT_MONO16:
|
|
return 1;
|
|
|
|
case AL_FORMAT_STEREO8:
|
|
case AL_FORMAT_STEREO16:
|
|
return 2;
|
|
|
|
case AL_FORMAT_QUAD8:
|
|
case AL_FORMAT_QUAD16:
|
|
return 4;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static __inline ALint aluF2L(ALfloat Value)
|
|
{
|
|
if(sizeof(ALint) == 4 && sizeof(double) == 8)
|
|
{
|
|
double temp;
|
|
temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0);
|
|
return *((ALint*)&temp);
|
|
}
|
|
return (ALint)Value;
|
|
}
|
|
|
|
static __inline ALshort aluF2S(ALfloat Value)
|
|
{
|
|
ALint i;
|
|
|
|
i = aluF2L(Value);
|
|
i = __min( 32767, i);
|
|
i = __max(-32768, i);
|
|
return ((ALshort)i);
|
|
}
|
|
|
|
static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
|
|
{
|
|
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
|
|
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
|
|
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
|
|
}
|
|
|
|
static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
|
|
{
|
|
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
|
|
inVector1[2]*inVector2[2];
|
|
}
|
|
|
|
static __inline ALvoid aluNormalize(ALfloat *inVector)
|
|
{
|
|
ALfloat length, inverse_length;
|
|
|
|
length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector));
|
|
if(length != 0)
|
|
{
|
|
inverse_length = 1.0f/length;
|
|
inVector[0] *= inverse_length;
|
|
inVector[1] *= inverse_length;
|
|
inVector[2] *= inverse_length;
|
|
}
|
|
}
|
|
|
|
static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
|
|
{
|
|
ALfloat result[3];
|
|
|
|
result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
|
|
result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
|
|
result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
|
|
memcpy(vector, result, sizeof(result));
|
|
}
|
|
|
|
static __inline ALfloat aluComputeDrySample(ALsource *source, ALfloat DryGainHF, ALfloat sample)
|
|
{
|
|
if(DryGainHF < 1.0f)
|
|
{
|
|
sample *= DryGainHF;
|
|
sample += source->LastDrySample * (1.0f - DryGainHF);
|
|
}
|
|
|
|
source->LastDrySample = sample;
|
|
return sample;
|
|
}
|
|
|
|
static __inline ALfloat aluComputeWetSample(ALsource *source, ALfloat WetGainHF, ALfloat sample)
|
|
{
|
|
if(WetGainHF < 1.0f)
|
|
{
|
|
sample *= WetGainHF;
|
|
sample += source->LastWetSample * (1.0f - WetGainHF);
|
|
}
|
|
|
|
source->LastWetSample = sample;
|
|
return sample;
|
|
}
|
|
|
|
static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
|
|
ALenum isMono, ALenum OutputFormat,
|
|
ALfloat *drysend, ALfloat *wetsend,
|
|
ALfloat *pitch, ALfloat *drygainhf,
|
|
ALfloat *wetgainhf)
|
|
{
|
|
ALfloat ListenerOrientation[6],ListenerPosition[3],ListenerVelocity[3];
|
|
ALfloat InnerAngle,OuterAngle,OuterGain,Angle,Distance,DryMix,WetMix;
|
|
ALfloat Direction[3],Position[3],Velocity[3],SourceToListener[3];
|
|
ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
|
|
ALfloat Pitch,ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
|
|
ALfloat U[3],V[3],N[3];
|
|
ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
|
|
ALfloat flVSS, flVLS;
|
|
ALint DistanceModel;
|
|
ALfloat Matrix[3][3];
|
|
ALint HeadRelative;
|
|
ALfloat flAttenuation;
|
|
ALfloat MetersPerUnit;
|
|
ALfloat DryGainHF = 1.0f;
|
|
ALfloat WetGainHF = 1.0f;
|
|
|
|
//Get context properties
|
|
DopplerFactor = ALContext->DopplerFactor;
|
|
DistanceModel = ALContext->DistanceModel;
|
|
DopplerVelocity = ALContext->DopplerVelocity;
|
|
flSpeedOfSound = ALContext->flSpeedOfSound;
|
|
|
|
//Get listener properties
|
|
ListenerGain = ALContext->Listener.Gain;
|
|
MetersPerUnit = ALContext->Listener.MetersPerUnit;
|
|
memcpy(ListenerPosition, ALContext->Listener.Position, sizeof(ALContext->Listener.Position));
|
|
memcpy(ListenerVelocity, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));
|
|
memcpy(&ListenerOrientation[0], ALContext->Listener.Forward, sizeof(ALContext->Listener.Forward));
|
|
memcpy(&ListenerOrientation[3], ALContext->Listener.Up, sizeof(ALContext->Listener.Up));
|
|
|
|
//Get source properties
|
|
Pitch = ALSource->flPitch;
|
|
SourceVolume = ALSource->flGain;
|
|
memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
|
|
memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity));
|
|
memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
|
|
MinVolume = ALSource->flMinGain;
|
|
MaxVolume = ALSource->flMaxGain;
|
|
MinDist = ALSource->flRefDistance;
|
|
MaxDist = ALSource->flMaxDistance;
|
|
Rolloff = ALSource->flRollOffFactor;
|
|
OuterGain = ALSource->flOuterGain;
|
|
InnerAngle = ALSource->flInnerAngle;
|
|
OuterAngle = ALSource->flOuterAngle;
|
|
HeadRelative = ALSource->bHeadRelative;
|
|
OuterGainHF = (ALSource->DryGainHFAuto ? ALSource->OuterGainHF : 1.0f);
|
|
|
|
//Set working variables
|
|
DryMix = (ALfloat)(1.0f);
|
|
WetMix = (ALfloat)(0.0f);
|
|
|
|
//Only apply 3D calculations for mono buffers
|
|
if(isMono != AL_FALSE)
|
|
{
|
|
//1. Translate Listener to origin (convert to head relative)
|
|
if(HeadRelative==AL_FALSE)
|
|
{
|
|
Position[0] -= ListenerPosition[0];
|
|
Position[1] -= ListenerPosition[1];
|
|
Position[2] -= ListenerPosition[2];
|
|
}
|
|
|
|
//2. Calculate distance attenuation
|
|
Distance = aluSqrt(aluDotproduct(Position, Position));
|
|
|
|
flAttenuation = 1.0f;
|
|
switch (DistanceModel)
|
|
{
|
|
case AL_INVERSE_DISTANCE_CLAMPED:
|
|
Distance=__max(Distance,MinDist);
|
|
Distance=__min(Distance,MaxDist);
|
|
if (MaxDist < MinDist)
|
|
break;
|
|
//fall-through
|
|
case AL_INVERSE_DISTANCE:
|
|
if (MinDist > 0.0f)
|
|
{
|
|
if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
|
|
flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
|
|
}
|
|
break;
|
|
|
|
case AL_LINEAR_DISTANCE_CLAMPED:
|
|
Distance=__max(Distance,MinDist);
|
|
Distance=__min(Distance,MaxDist);
|
|
if (MaxDist < MinDist)
|
|
break;
|
|
//fall-through
|
|
case AL_LINEAR_DISTANCE:
|
|
Distance=__min(Distance,MaxDist);
|
|
if (MaxDist != MinDist)
|
|
flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
|
|
break;
|
|
|
|
case AL_EXPONENT_DISTANCE_CLAMPED:
|
|
Distance=__max(Distance,MinDist);
|
|
Distance=__min(Distance,MaxDist);
|
|
if (MaxDist < MinDist)
|
|
break;
|
|
//fall-through
|
|
case AL_EXPONENT_DISTANCE:
|
|
if ((Distance > 0.0f) && (MinDist > 0.0f))
|
|
flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
|
|
break;
|
|
|
|
case AL_NONE:
|
|
default:
|
|
flAttenuation = 1.0f;
|
|
break;
|
|
}
|
|
|
|
// Source Gain + Attenuation
|
|
DryMix = SourceVolume * flAttenuation;
|
|
|
|
// Clamp to Min/Max Gain
|
|
DryMix = __min(DryMix,MaxVolume);
|
|
DryMix = __max(DryMix,MinVolume);
|
|
WetMix = __min(WetMix,MaxVolume);
|
|
WetMix = __max(WetMix,MinVolume);
|
|
//3. Apply directional soundcones
|
|
SourceToListener[0] = -Position[0];
|
|
SourceToListener[1] = -Position[1];
|
|
SourceToListener[2] = -Position[2];
|
|
aluNormalize(Direction);
|
|
aluNormalize(SourceToListener);
|
|
Angle = (ALfloat)(180.0*acos(aluDotproduct(Direction,SourceToListener))/3.141592654f);
|
|
if(Angle >= InnerAngle && Angle <= OuterAngle)
|
|
{
|
|
ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
|
|
ConeVolume = (1.0f+(OuterGain-1.0f)*scale);
|
|
DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
|
|
}
|
|
else if(Angle > OuterAngle)
|
|
{
|
|
ConeVolume = (1.0f+(OuterGain-1.0f));
|
|
DryGainHF *= (1.0f+(OuterGainHF-1.0f));
|
|
}
|
|
else
|
|
ConeVolume = 1.0f;
|
|
|
|
//4. Calculate Velocity
|
|
if(DopplerFactor != 0.0f)
|
|
{
|
|
flVLS = aluDotproduct(ListenerVelocity, SourceToListener);
|
|
flVSS = aluDotproduct(Velocity, SourceToListener);
|
|
|
|
flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
|
|
|
|
if (flVSS >= flMaxVelocity)
|
|
flVSS = (flMaxVelocity - 1.0f);
|
|
else if (flVSS <= -flMaxVelocity)
|
|
flVSS = -flMaxVelocity + 1.0f;
|
|
|
|
if (flVLS >= flMaxVelocity)
|
|
flVLS = (flMaxVelocity - 1.0f);
|
|
else if (flVLS <= -flMaxVelocity)
|
|
flVLS = -flMaxVelocity + 1.0f;
|
|
|
|
pitch[0] = Pitch * ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
|
|
((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
|
|
}
|
|
else
|
|
pitch[0] = Pitch;
|
|
|
|
//5. Align coordinate system axes
|
|
aluCrossproduct(&ListenerOrientation[0], &ListenerOrientation[3], U); // Right-vector
|
|
aluNormalize(U); // Normalized Right-vector
|
|
memcpy(V, &ListenerOrientation[3], sizeof(V)); // Up-vector
|
|
aluNormalize(V); // Normalized Up-vector
|
|
memcpy(N, &ListenerOrientation[0], sizeof(N)); // At-vector
|
|
aluNormalize(N); // Normalized At-vector
|
|
Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
|
|
Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
|
|
Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
|
|
aluMatrixVector(Position, Matrix);
|
|
|
|
//6. Convert normalized position into left/right front/back pannings
|
|
if(Distance != 0.0f)
|
|
{
|
|
aluNormalize(Position);
|
|
PanningLR = 0.5f + 0.5f*Position[0];
|
|
PanningFB = 0.5f + 0.5f*Position[2];
|
|
}
|
|
else
|
|
{
|
|
PanningLR = 0.5f;
|
|
PanningFB = 0.5f;
|
|
}
|
|
|
|
//7. Apply filter gains and filters
|
|
switch(ALSource->DirectFilter.filter)
|
|
{
|
|
case AL_FILTER_LOWPASS:
|
|
DryMix *= ALSource->DirectFilter.Gain;
|
|
DryGainHF *= ALSource->DirectFilter.GainHF;
|
|
break;
|
|
}
|
|
|
|
if(ALSource->AirAbsorptionFactor > 0.0f)
|
|
DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
|
|
Distance * MetersPerUnit);
|
|
|
|
*drygainhf = DryGainHF;
|
|
*wetgainhf = WetGainHF;
|
|
|
|
//8. Convert pannings into channel volumes
|
|
switch(OutputFormat)
|
|
{
|
|
case AL_FORMAT_MONO8:
|
|
case AL_FORMAT_MONO16:
|
|
drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
|
|
drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
|
|
wetsend[0] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
|
|
wetsend[1] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
|
|
break;
|
|
case AL_FORMAT_STEREO8:
|
|
case AL_FORMAT_STEREO16:
|
|
drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f-PanningLR); //L Direct
|
|
drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt( PanningLR); //R Direct
|
|
wetsend[0] = ListenerGain * WetMix * aluSqrt(1.0f-PanningLR); //L Room
|
|
wetsend[1] = ListenerGain * WetMix * aluSqrt( PanningLR); //R Room
|
|
break;
|
|
case AL_FORMAT_QUAD8:
|
|
case AL_FORMAT_QUAD16:
|
|
drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB)); //FL Direct
|
|
drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB)); //FR Direct
|
|
drysend[2] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB)); //BL Direct
|
|
drysend[3] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB)); //BR Direct
|
|
wetsend[0] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB)); //FL Room
|
|
wetsend[1] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB)); //FR Room
|
|
wetsend[2] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB)); //BL Room
|
|
wetsend[3] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB)); //BR Room
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//1. Multi-channel buffers always play "normal"
|
|
drysend[0] = SourceVolume * 1.0f * ListenerGain;
|
|
drysend[1] = SourceVolume * 1.0f * ListenerGain;
|
|
drysend[2] = SourceVolume * 1.0f * ListenerGain;
|
|
drysend[3] = SourceVolume * 1.0f * ListenerGain;
|
|
wetsend[0] = SourceVolume * 0.0f * ListenerGain;
|
|
wetsend[1] = SourceVolume * 0.0f * ListenerGain;
|
|
wetsend[2] = SourceVolume * 0.0f * ListenerGain;
|
|
wetsend[3] = SourceVolume * 0.0f * ListenerGain;
|
|
|
|
pitch[0] = Pitch;
|
|
|
|
*drygainhf = DryGainHF;
|
|
*wetgainhf = WetGainHF;
|
|
}
|
|
}
|
|
|
|
ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
|
|
{
|
|
static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
|
|
static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
|
|
ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
|
ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
|
ALfloat DryGainHF = 0.0f;
|
|
ALfloat WetGainHF = 0.0f;
|
|
ALuint BlockAlign,BufferSize;
|
|
ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
|
|
ALuint Channels,Bits,Frequency,ulExtraSamples;
|
|
ALfloat Pitch;
|
|
ALint Looping,increment,State;
|
|
ALuint Buffer,fraction;
|
|
ALuint SamplesToDo;
|
|
ALsource *ALSource;
|
|
ALbuffer *ALBuffer;
|
|
ALfloat value;
|
|
ALshort *Data;
|
|
ALuint i,j,k;
|
|
ALbufferlistitem *BufferListItem;
|
|
ALuint loop;
|
|
ALint64 DataSize64,DataPos64;
|
|
|
|
SuspendContext(ALContext);
|
|
|
|
if(buffer)
|
|
{
|
|
//Figure output format variables
|
|
BlockAlign = aluChannelsFromFormat(format);
|
|
BlockAlign *= aluBytesFromFormat(format);
|
|
|
|
size /= BlockAlign;
|
|
while(size > 0)
|
|
{
|
|
//Setup variables
|
|
ALSource = (ALContext ? ALContext->Source : NULL);
|
|
SamplesToDo = min(size, BUFFERSIZE);
|
|
|
|
//Clear mixing buffer
|
|
memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
|
|
memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
|
|
|
|
//Actual mixing loop
|
|
while(ALSource)
|
|
{
|
|
j = 0;
|
|
State = ALSource->state;
|
|
while(State == AL_PLAYING && j < SamplesToDo)
|
|
{
|
|
DataSize = 0;
|
|
DataPosInt = 0;
|
|
DataPosFrac = 0;
|
|
|
|
//Get buffer info
|
|
if((Buffer = ALSource->ulBufferID))
|
|
{
|
|
ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
|
|
|
|
Data = ALBuffer->data;
|
|
Bits = aluBytesFromFormat(ALBuffer->format) * 8;
|
|
Channels = aluChannelsFromFormat(ALBuffer->format);
|
|
DataSize = ALBuffer->size;
|
|
Frequency = ALBuffer->frequency;
|
|
|
|
CalcSourceParams(ALContext, ALSource,
|
|
(Channels==1) ? AL_TRUE : AL_FALSE,
|
|
format, DrySend, WetSend, &Pitch,
|
|
&DryGainHF, &WetGainHF);
|
|
|
|
|
|
Pitch = (Pitch*Frequency) / ALContext->Frequency;
|
|
DataSize = DataSize / (Bits*Channels/8);
|
|
|
|
//Get source info
|
|
DataPosInt = ALSource->position;
|
|
DataPosFrac = ALSource->position_fraction;
|
|
|
|
//Compute 18.14 fixed point step
|
|
increment = aluF2L(Pitch*(1L<<FRACTIONBITS));
|
|
if(increment > (MAX_PITCH<<FRACTIONBITS))
|
|
increment = (MAX_PITCH<<FRACTIONBITS);
|
|
|
|
//Figure out how many samples we can mix.
|
|
//Pitch must be <= 4 (the number below !)
|
|
DataSize64 = DataSize+MAX_PITCH;
|
|
DataSize64 <<= FRACTIONBITS;
|
|
DataPos64 = DataPosInt;
|
|
DataPos64 <<= FRACTIONBITS;
|
|
DataPos64 += DataPosFrac;
|
|
BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
|
|
BufferListItem = ALSource->queue;
|
|
for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
|
|
{
|
|
if(BufferListItem)
|
|
BufferListItem = BufferListItem->next;
|
|
}
|
|
if (BufferListItem)
|
|
{
|
|
if (BufferListItem->next)
|
|
{
|
|
if(BufferListItem->next->buffer &&
|
|
((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data)
|
|
{
|
|
ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->size, (ALint)(16*Channels));
|
|
memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data, ulExtraSamples);
|
|
}
|
|
}
|
|
else if (ALSource->bLooping)
|
|
{
|
|
if (ALSource->queue->buffer)
|
|
{
|
|
if(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data)
|
|
{
|
|
ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->size, (ALint)(16*Channels));
|
|
memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data, ulExtraSamples);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
BufferSize = min(BufferSize, (SamplesToDo-j));
|
|
|
|
//Actual sample mixing loop
|
|
Data += DataPosInt*Channels;
|
|
while(BufferSize--)
|
|
{
|
|
k = DataPosFrac>>FRACTIONBITS;
|
|
fraction = DataPosFrac&FRACTIONMASK;
|
|
if(Channels==1)
|
|
{
|
|
//First order interpolator
|
|
ALfloat sample = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
|
|
|
|
//Direct path final mix buffer and panning
|
|
value = aluComputeDrySample(ALSource, DryGainHF, sample);
|
|
DryBuffer[j][0] += value*DrySend[0];
|
|
DryBuffer[j][1] += value*DrySend[1];
|
|
DryBuffer[j][2] += value*DrySend[2];
|
|
DryBuffer[j][3] += value*DrySend[3];
|
|
|
|
//Room path final mix buffer and panning
|
|
value = aluComputeWetSample(ALSource, WetGainHF, sample);
|
|
WetBuffer[j][0] += value*WetSend[0];
|
|
WetBuffer[j][1] += value*WetSend[1];
|
|
WetBuffer[j][2] += value*WetSend[2];
|
|
WetBuffer[j][3] += value*WetSend[3];
|
|
}
|
|
else
|
|
{
|
|
//First order interpolator (left)
|
|
value = (ALfloat)((ALshort)(((Data[k*2 ]*((1L<<FRACTIONBITS)-fraction))+(Data[k*2+2]*(fraction)))>>FRACTIONBITS));
|
|
//Direct path final mix buffer and panning (left)
|
|
DryBuffer[j][0] += value*DrySend[0];
|
|
//Room path final mix buffer and panning (left)
|
|
WetBuffer[j][0] += value*WetSend[0];
|
|
//First order interpolator (right)
|
|
value = (ALfloat)((ALshort)(((Data[k*2+1]*((1L<<FRACTIONBITS)-fraction))+(Data[k*2+3]*(fraction)))>>FRACTIONBITS));
|
|
//Direct path final mix buffer and panning (right)
|
|
DryBuffer[j][1] += value*DrySend[1];
|
|
//Room path final mix buffer and panning (right)
|
|
WetBuffer[j][1] += value*WetSend[1];
|
|
}
|
|
DataPosFrac += increment;
|
|
j++;
|
|
}
|
|
DataPosInt += (DataPosFrac>>FRACTIONBITS);
|
|
DataPosFrac = (DataPosFrac&FRACTIONMASK);
|
|
|
|
//Update source info
|
|
ALSource->position = DataPosInt;
|
|
ALSource->position_fraction = DataPosFrac;
|
|
}
|
|
|
|
//Handle looping sources
|
|
if(!Buffer || DataPosInt >= DataSize)
|
|
{
|
|
//queueing
|
|
if(ALSource->queue)
|
|
{
|
|
Looping = ALSource->bLooping;
|
|
if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
|
|
{
|
|
BufferListItem = ALSource->queue;
|
|
for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
|
|
{
|
|
if(BufferListItem)
|
|
{
|
|
if(!Looping)
|
|
BufferListItem->bufferstate = PROCESSED;
|
|
BufferListItem = BufferListItem->next;
|
|
}
|
|
}
|
|
if(!Looping)
|
|
ALSource->BuffersProcessed++;
|
|
if(BufferListItem)
|
|
ALSource->ulBufferID = BufferListItem->buffer;
|
|
ALSource->position = DataPosInt-DataSize;
|
|
ALSource->position_fraction = DataPosFrac;
|
|
ALSource->BuffersPlayed++;
|
|
}
|
|
else
|
|
{
|
|
if(!Looping)
|
|
{
|
|
/* alSourceStop */
|
|
ALSource->state = AL_STOPPED;
|
|
ALSource->inuse = AL_FALSE;
|
|
ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
|
|
BufferListItem = ALSource->queue;
|
|
while(BufferListItem != NULL)
|
|
{
|
|
BufferListItem->bufferstate = PROCESSED;
|
|
BufferListItem = BufferListItem->next;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* alSourceRewind */
|
|
/* alSourcePlay */
|
|
ALSource->state = AL_PLAYING;
|
|
ALSource->inuse = AL_TRUE;
|
|
ALSource->play = AL_TRUE;
|
|
ALSource->BuffersPlayed = 0;
|
|
ALSource->BufferPosition = 0;
|
|
ALSource->lBytesPlayed = 0;
|
|
ALSource->BuffersProcessed = 0;
|
|
BufferListItem = ALSource->queue;
|
|
while(BufferListItem != NULL)
|
|
{
|
|
BufferListItem->bufferstate = PENDING;
|
|
BufferListItem = BufferListItem->next;
|
|
}
|
|
ALSource->ulBufferID = ALSource->queue->buffer;
|
|
|
|
ALSource->position = DataPosInt-DataSize;
|
|
ALSource->position_fraction = DataPosFrac;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Get source state
|
|
State = ALSource->state;
|
|
}
|
|
|
|
ALSource = ALSource->next;
|
|
}
|
|
|
|
//Post processing loop
|
|
switch(format)
|
|
{
|
|
case AL_FORMAT_MONO8:
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
{
|
|
*((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i][0]+DryBuffer[i][1]+WetBuffer[i][0]+WetBuffer[i][1])>>8)+128);
|
|
buffer = ((ALubyte*)buffer) + 1;
|
|
}
|
|
break;
|
|
case AL_FORMAT_STEREO8:
|
|
for(i = 0;i < SamplesToDo*2;i++)
|
|
{
|
|
*((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i>>1][i&1]+WetBuffer[i>>1][i&1])>>8)+128);
|
|
buffer = ((ALubyte*)buffer) + 1;
|
|
}
|
|
break;
|
|
case AL_FORMAT_QUAD8:
|
|
for(i = 0;i < SamplesToDo*4;i++)
|
|
{
|
|
*((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i>>2][i&3]+WetBuffer[i>>2][i&3])>>8)+128);
|
|
buffer = ((ALubyte*)buffer) + 1;
|
|
}
|
|
break;
|
|
case AL_FORMAT_MONO16:
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
{
|
|
*((ALshort*)buffer) = aluF2S(DryBuffer[i][0]+DryBuffer[i][1]+WetBuffer[i][0]+WetBuffer[i][1]);
|
|
buffer = ((ALshort*)buffer) + 1;
|
|
}
|
|
break;
|
|
case AL_FORMAT_STEREO16:
|
|
default:
|
|
for(i = 0;i < SamplesToDo*2;i++)
|
|
{
|
|
*((ALshort*)buffer) = aluF2S(DryBuffer[i>>1][i&1]+WetBuffer[i>>1][i&1]);
|
|
buffer = ((ALshort*)buffer) + 1;
|
|
}
|
|
break;
|
|
case AL_FORMAT_QUAD16:
|
|
for(i = 0;i < SamplesToDo*4;i++)
|
|
{
|
|
*((ALshort*)buffer) = aluF2S(DryBuffer[i>>2][i&3]+WetBuffer[i>>2][i&3]);
|
|
buffer = ((ALshort*)buffer) + 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
size -= SamplesToDo;
|
|
}
|
|
}
|
|
|
|
ProcessContext(ALContext);
|
|
}
|