AuroraOpenALSoft/Alc/hrtf.c

1092 lines
35 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2011 by Chris Robinson
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <stdlib.h>
#include <ctype.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alSource.h"
#include "alu.h"
#include "bformatdec.h"
#include "hrtf.h"
#include "compat.h"
#include "almalloc.h"
/* Current data set limits defined by the makehrtf utility. */
#define MIN_IR_SIZE (8)
#define MAX_IR_SIZE (128)
#define MOD_IR_SIZE (8)
#define MIN_EV_COUNT (5)
#define MAX_EV_COUNT (128)
#define MIN_AZ_COUNT (1)
#define MAX_AZ_COUNT (128)
static const ALchar magicMarker00[8] = "MinPHR00";
static const ALchar magicMarker01[8] = "MinPHR01";
/* First value for pass-through coefficients (remaining are 0), used for omni-
* directional sounds. */
static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/;
static struct Hrtf *LoadedHrtfs = NULL;
/* Calculate the elevation indices given the polar elevation in radians.
* This will return two indices between 0 and (evcount - 1) and an
* interpolation factor between 0.0 and 1.0.
*/
static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu)
{
ev = (F_PI_2 + ev) * (evcount-1) / F_PI;
evidx[0] = fastf2u(ev);
evidx[1] = minu(evidx[0] + 1, evcount-1);
*evmu = ev - evidx[0];
}
/* Calculate the azimuth indices given the polar azimuth in radians. This
* will return two indices between 0 and (azcount - 1) and an interpolation
* factor between 0.0 and 1.0.
*/
static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu)
{
az = (F_TAU + az) * azcount / F_TAU;
azidx[0] = fastf2u(az) % azcount;
azidx[1] = (azidx[0] + 1) % azcount;
*azmu = az - floorf(az);
}
/* Calculates static HRIR coefficients and delays for the given polar
* elevation and azimuth in radians. Linear interpolation is used to
* increase the apparent resolution of the HRIR data set. The coefficients
* are also normalized and attenuated by the specified gain.
*/
void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat spread, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
{
ALuint evidx[2], lidx[4], ridx[4];
ALfloat mu[3], blend[4];
ALfloat dirfact;
ALuint i;
dirfact = 1.0f - (spread / F_TAU);
/* Claculate elevation indices and interpolation factor. */
CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
for(i = 0;i < 2;i++)
{
ALuint azcount = Hrtf->azCount[evidx[i]];
ALuint evoffset = Hrtf->evOffset[evidx[i]];
ALuint azidx[2];
/* Calculate azimuth indices and interpolation factor for this elevation. */
CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
/* Calculate a set of linear HRIR indices for left and right channels. */
lidx[i*2 + 0] = evoffset + azidx[0];
lidx[i*2 + 1] = evoffset + azidx[1];
ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
}
/* Calculate 4 blending weights for 2D bilinear interpolation. */
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
blend[1] = ( mu[0]) * (1.0f-mu[2]);
blend[2] = (1.0f-mu[1]) * ( mu[2]);
blend[3] = ( mu[1]) * ( mu[2]);
/* Calculate the HRIR delays using linear interpolation. */
delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
/* Calculate the sample offsets for the HRIR indices. */
lidx[0] *= Hrtf->irSize;
lidx[1] *= Hrtf->irSize;
lidx[2] *= Hrtf->irSize;
lidx[3] *= Hrtf->irSize;
ridx[0] *= Hrtf->irSize;
ridx[1] *= Hrtf->irSize;
ridx[2] *= Hrtf->irSize;
ridx[3] *= Hrtf->irSize;
/* Calculate the normalized and attenuated HRIR coefficients using linear
* interpolation when there is enough gain to warrant it. Zero the
* coefficients if gain is too low.
*/
if(gain > 0.0001f)
{
ALfloat c;
i = 0;
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
for(i = 1;i < Hrtf->irSize;i++)
{
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
}
}
else
{
for(i = 0;i < Hrtf->irSize;i++)
{
coeffs[i][0] = 0.0f;
coeffs[i][1] = 0.0f;
}
}
}
ALuint BuildBFormatHrtf(const struct Hrtf *Hrtf, ALfloat (*coeffs)[HRIR_LENGTH][2], ALuint NumChannels)
{
static const struct {
ALfloat elevation;
ALfloat azimuth;
} Ambi3DPoints[14] = {
{ DEG2RAD( 90.0f), DEG2RAD( 0.0f) },
{ DEG2RAD( 35.0f), DEG2RAD( -45.0f) },
{ DEG2RAD( 35.0f), DEG2RAD( 45.0f) },
{ DEG2RAD( 35.0f), DEG2RAD( 135.0f) },
{ DEG2RAD( 35.0f), DEG2RAD(-135.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 0.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 90.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 180.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( -90.0f) },
{ DEG2RAD(-35.0f), DEG2RAD( -45.0f) },
{ DEG2RAD(-35.0f), DEG2RAD( 45.0f) },
{ DEG2RAD(-35.0f), DEG2RAD( 135.0f) },
{ DEG2RAD(-35.0f), DEG2RAD(-135.0f) },
{ DEG2RAD(-90.0f), DEG2RAD( 0.0f) },
};
static const ALfloat Ambi3DMatrix[14][2][MAX_AMBI_COEFFS] = {
{ { 0.071428392f, 0.000000000f, 0.071428392f, 0.000000000f }, { 0.0269973975f, 0.0000000000f, 0.0467610443f, 0.0000000000f } },
{ { 0.071428392f, 0.041239332f, 0.041239332f, 0.041239332f }, { 0.0269973975f, 0.0269973975f, 0.0269973975f, 0.0269973975f } },
{ { 0.071428392f, -0.041239332f, 0.041239332f, 0.041239332f }, { 0.0269973975f, -0.0269973975f, 0.0269973975f, 0.0269973975f } },
{ { 0.071428392f, -0.041239332f, 0.041239332f, -0.041239332f }, { 0.0269973975f, -0.0269973975f, 0.0269973975f, -0.0269973975f } },
{ { 0.071428392f, 0.041239332f, 0.041239332f, -0.041239332f }, { 0.0269973975f, 0.0269973975f, 0.0269973975f, -0.0269973975f } },
{ { 0.071428392f, 0.000000000f, 0.000000000f, 0.071428392f }, { 0.0269973975f, 0.0000000000f, 0.0000000000f, 0.0467610443f } },
{ { 0.071428392f, -0.071428392f, 0.000000000f, 0.000000000f }, { 0.0269973975f, -0.0467610443f, 0.0000000000f, 0.0000000000f } },
{ { 0.071428392f, 0.000000000f, 0.000000000f, -0.071428392f }, { 0.0269973975f, 0.0000000000f, 0.0000000000f, -0.0467610443f } },
{ { 0.071428392f, 0.071428392f, 0.000000000f, 0.000000000f }, { 0.0269973975f, 0.0467610443f, 0.0000000000f, 0.0000000000f } },
{ { 0.071428392f, 0.041239332f, -0.041239332f, 0.041239332f }, { 0.0269973975f, 0.0269973975f, -0.0269973975f, 0.0269973975f } },
{ { 0.071428392f, -0.041239332f, -0.041239332f, 0.041239332f }, { 0.0269973975f, -0.0269973975f, -0.0269973975f, 0.0269973975f } },
{ { 0.071428392f, -0.041239332f, -0.041239332f, -0.041239332f }, { 0.0269973975f, -0.0269973975f, -0.0269973975f, -0.0269973975f } },
{ { 0.071428392f, 0.041239332f, -0.041239332f, -0.041239332f }, { 0.0269973975f, 0.0269973975f, -0.0269973975f, -0.0269973975f } },
{ { 0.071428392f, 0.000000000f, -0.071428392f, 0.000000000f }, { 0.0269973975f, 0.0000000000f, -0.0467610443f, 0.0000000000f } },
};
/* Change this to 2 for dual-band HRTF processing. May require a higher quality
* band-splitter, or better calculation of the new IR length to deal with the
* tail generated by the filter.
*/
#define NUM_BANDS 1
BandSplitter splitter;
ALfloat temps[3][HRIR_LENGTH];
ALuint lidx[14], ridx[14];
ALuint min_delay = HRTF_HISTORY_LENGTH;
ALuint max_length = 0;
ALuint i, j, c, b;
assert(NumChannels == 4);
for(c = 0;c < COUNTOF(Ambi3DPoints);c++)
{
ALuint evidx, azidx;
ALuint evoffset;
ALuint azcount;
/* Calculate elevation index. */
evidx = (ALuint)floorf((F_PI_2 + Ambi3DPoints[c].elevation) *
(Hrtf->evCount-1)/F_PI + 0.5f);
evidx = minu(evidx, Hrtf->evCount-1);
azcount = Hrtf->azCount[evidx];
evoffset = Hrtf->evOffset[evidx];
/* Calculate azimuth index for this elevation. */
azidx = (ALuint)floorf((F_TAU+Ambi3DPoints[c].azimuth) *
azcount/F_TAU + 0.5f) % azcount;
/* Calculate indices for left and right channels. */
lidx[c] = evoffset + azidx;
ridx[c] = evoffset + ((azcount-azidx) % azcount);
min_delay = minu(min_delay, minu(Hrtf->delays[lidx[c]], Hrtf->delays[ridx[c]]));
}
memset(temps, 0, sizeof(temps));
bandsplit_init(&splitter, 400.0f / (ALfloat)Hrtf->sampleRate);
for(c = 0;c < COUNTOF(Ambi3DMatrix);c++)
{
const ALshort *fir;
ALuint delay;
/* Convert the left FIR from shorts to float */
fir = &Hrtf->coeffs[lidx[c] * Hrtf->irSize];
if(NUM_BANDS == 1)
{
for(i = 0;i < Hrtf->irSize;i++)
temps[0][i] = fir[i] / 32767.0f;
}
else
{
/* Band-split left HRIR into low and high frequency responses. */
bandsplit_clear(&splitter);
for(i = 0;i < Hrtf->irSize;i++)
temps[2][i] = fir[i] / 32767.0f;
bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH);
}
/* Add to the left output coefficients with the specified delay. */
delay = Hrtf->delays[lidx[c]] - min_delay;
for(i = 0;i < NumChannels;++i)
{
for(b = 0;b < NUM_BANDS;b++)
{
ALuint k = 0;
for(j = delay;j < HRIR_LENGTH;++j)
coeffs[i][j][0] += temps[b][k++] * Ambi3DMatrix[c][b][i];
}
}
max_length = maxu(max_length, minu(delay + Hrtf->irSize, HRIR_LENGTH));
/* Convert the right FIR from shorts to float */
fir = &Hrtf->coeffs[ridx[c] * Hrtf->irSize];
if(NUM_BANDS == 1)
{
for(i = 0;i < Hrtf->irSize;i++)
temps[0][i] = fir[i] / 32767.0f;
}
else
{
/* Band-split right HRIR into low and high frequency responses. */
bandsplit_clear(&splitter);
for(i = 0;i < Hrtf->irSize;i++)
temps[2][i] = fir[i] / 32767.0f;
bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH);
}
/* Add to the right output coefficients with the specified delay. */
delay = Hrtf->delays[ridx[c]] - min_delay;
for(i = 0;i < NumChannels;++i)
{
for(b = 0;b < NUM_BANDS;b++)
{
ALuint k = 0;
for(j = delay;j < HRIR_LENGTH;++j)
coeffs[i][j][1] += temps[b][k++] * Ambi3DMatrix[c][b][i];
}
}
max_length = maxu(max_length, minu(delay + Hrtf->irSize, HRIR_LENGTH));
}
TRACE("Skipped min delay: %u, new combined length: %u\n", min_delay, max_length);
#undef NUM_BANDS
return max_length;
}
static struct Hrtf *LoadHrtf00(const ALubyte *data, size_t datalen, const_al_string filename)
{
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALushort irSize = 0;
ALubyte evCount = 0;
ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
const ALubyte *delays = NULL;
ALuint i, j;
if(datalen < 9)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n",
al_string_get_cstr(filename), 9, datalen);
return NULL;
}
rate = *(data++);
rate |= *(data++)<<8;
rate |= *(data++)<<16;
rate |= *(data++)<<24;
datalen -= 4;
irCount = *(data++);
irCount |= *(data++)<<8;
datalen -= 2;
irSize = *(data++);
irSize |= *(data++)<<8;
datalen -= 2;
evCount = *(data++);
datalen -= 1;
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
if(datalen < evCount*2)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n",
al_string_get_cstr(filename), evCount*2, datalen);
return NULL;
}
azCount = malloc(sizeof(azCount[0])*evCount);
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
evOffset[0] = *(data++);
evOffset[0] |= *(data++)<<8;
datalen -= 2;
for(i = 1;i < evCount;i++)
{
evOffset[i] = *(data++);
evOffset[i] |= *(data++)<<8;
datalen -= 2;
if(evOffset[i] <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
i, evOffset[i], evOffset[i-1]);
failed = AL_TRUE;
}
azCount[i-1] = evOffset[i] - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(irCount <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n",
i-1, evOffset[i-1], irCount);
failed = AL_TRUE;
}
azCount[i-1] = irCount - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(!failed)
{
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
if(coeffs == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
size_t reqsize = 2*irSize*irCount + irCount;
if(datalen < reqsize)
{
ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT")\n",
al_string_get_cstr(filename), reqsize, datalen);
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
coeffs[i+j] = *(data++);
coeffs[i+j] |= *(data++)<<8;
datalen -= 2;
}
}
delays = data;
data += irCount;
datalen -= irCount;
for(i = 0;i < irCount;i++)
{
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
}
if(!failed)
{
size_t total = sizeof(struct Hrtf);
total += sizeof(azCount[0])*evCount;
total = (total+1)&~1; /* Align for (u)short fields */
total += sizeof(evOffset[0])*evCount;
total += sizeof(coeffs[0])*irSize*irCount;
total += sizeof(delays[0])*irCount;
total += al_string_length(filename)+1;
Hrtf = al_calloc(16, total);
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
char *base = (char*)Hrtf;
uintptr_t offset = sizeof(*Hrtf);
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = ((ALubyte*)(base + offset)); offset += evCount*sizeof(Hrtf->azCount[0]);
offset = (offset+1)&~1; /* Align for (u)short fields */
Hrtf->evOffset = ((ALushort*)(base + offset)); offset += evCount*sizeof(Hrtf->evOffset[0]);
Hrtf->coeffs = ((ALshort*)(base + offset)); offset += irSize*irCount*sizeof(Hrtf->coeffs[0]);
Hrtf->delays = ((ALubyte*)(base + offset)); offset += irCount*sizeof(Hrtf->delays[0]);
Hrtf->filename = ((char*)(base + offset));
Hrtf->next = NULL;
memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount);
memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount);
memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount);
memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount);
memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1);
}
free(azCount);
free(evOffset);
free(coeffs);
return Hrtf;
}
static struct Hrtf *LoadHrtf01(const ALubyte *data, size_t datalen, const_al_string filename)
{
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALubyte irSize = 0, evCount = 0;
const ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
const ALubyte *delays = NULL;
ALuint i, j;
if(datalen < 6)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n",
al_string_get_cstr(filename), 6, datalen);
return NULL;
}
rate = *(data++);
rate |= *(data++)<<8;
rate |= *(data++)<<16;
rate |= *(data++)<<24;
datalen -= 4;
irSize = *(data++);
datalen -= 1;
evCount = *(data++);
datalen -= 1;
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
if(datalen < evCount)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n",
al_string_get_cstr(filename), evCount, datalen);
return NULL;
}
azCount = data;
data += evCount;
datalen -= evCount;
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
for(i = 0;i < evCount;i++)
{
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
}
if(!failed)
{
evOffset[0] = 0;
irCount = azCount[0];
for(i = 1;i < evCount;i++)
{
evOffset[i] = evOffset[i-1] + azCount[i-1];
irCount += azCount[i];
}
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
if(coeffs == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
size_t reqsize = 2*irSize*irCount + irCount;
if(datalen < reqsize)
{
ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n",
al_string_get_cstr(filename), reqsize, datalen);
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
ALshort coeff;
coeff = *(data++);
coeff |= *(data++)<<8;
datalen -= 2;
coeffs[i+j] = coeff;
}
}
delays = data;
data += irCount;
datalen -= irCount;
for(i = 0;i < irCount;i++)
{
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
}
if(!failed)
{
size_t total = sizeof(struct Hrtf);
total += sizeof(azCount[0])*evCount;
total = (total+1)&~1; /* Align for (u)short fields */
total += sizeof(evOffset[0])*evCount;
total += sizeof(coeffs[0])*irSize*irCount;
total += sizeof(delays[0])*irCount;
total += al_string_length(filename)+1;
Hrtf = al_calloc(16, total);
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
char *base = (char*)Hrtf;
uintptr_t offset = sizeof(*Hrtf);
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = ((ALubyte*)(base + offset)); offset += evCount*sizeof(Hrtf->azCount[0]);
offset = (offset+1)&~1; /* Align for (u)short fields */
Hrtf->evOffset = ((ALushort*)(base + offset)); offset += evCount*sizeof(Hrtf->evOffset[0]);
Hrtf->coeffs = ((ALshort*)(base + offset)); offset += irSize*irCount*sizeof(Hrtf->coeffs[0]);
Hrtf->delays = ((ALubyte*)(base + offset)); offset += irCount*sizeof(Hrtf->delays[0]);
Hrtf->filename = ((char*)(base + offset));
Hrtf->next = NULL;
memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount);
memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount);
memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount);
memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount);
memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1);
}
free(evOffset);
free(coeffs);
return Hrtf;
}
static void AddFileEntry(vector_HrtfEntry *list, al_string *filename)
{
HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL };
struct Hrtf *hrtf = NULL;
const HrtfEntry *iter;
struct FileMapping fmap;
const char *name;
const char *ext;
int i;
#define MATCH_FNAME(i) (al_string_cmp_cstr(*filename, (i)->hrtf->filename) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_FNAME);
if(iter != VECTOR_END(*list))
{
TRACE("Skipping duplicate file entry %s\n", al_string_get_cstr(*filename));
goto done;
}
#undef MATCH_FNAME
entry.hrtf = LoadedHrtfs;
while(entry.hrtf)
{
if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0)
{
TRACE("Skipping load of already-loaded file %s\n", al_string_get_cstr(*filename));
goto skip_load;
}
entry.hrtf = entry.hrtf->next;
}
TRACE("Loading %s...\n", al_string_get_cstr(*filename));
fmap = MapFileToMem(al_string_get_cstr(*filename));
if(fmap.ptr == NULL)
{
ERR("Could not open %s\n", al_string_get_cstr(*filename));
goto done;
}
if(fmap.len < sizeof(magicMarker01))
ERR("%s data is too short ("SZFMT" bytes)\n", al_string_get_cstr(*filename), fmap.len);
else if(memcmp(fmap.ptr, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
hrtf = LoadHrtf01((const ALubyte*)fmap.ptr+sizeof(magicMarker01),
fmap.len-sizeof(magicMarker01), *filename
);
}
else if(memcmp(fmap.ptr, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
hrtf = LoadHrtf00((const ALubyte*)fmap.ptr+sizeof(magicMarker00),
fmap.len-sizeof(magicMarker00), *filename
);
}
else
ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), (const char*)fmap.ptr);
UnmapFileMem(&fmap);
if(!hrtf)
{
ERR("Failed to load %s\n", al_string_get_cstr(*filename));
goto done;
}
hrtf->next = LoadedHrtfs;
LoadedHrtfs = hrtf;
TRACE("Loaded HRTF support for format: %s %uhz\n",
DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
entry.hrtf = hrtf;
skip_load:
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
name = strrchr(al_string_get_cstr(*filename), '/');
if(!name) name = strrchr(al_string_get_cstr(*filename), '\\');
if(!name) name = al_string_get_cstr(*filename);
else ++name;
ext = strrchr(name, '.');
i = 0;
do {
if(!ext)
al_string_copy_cstr(&entry.name, name);
else
al_string_copy_range(&entry.name, name, ext);
if(i != 0)
{
char str[64];
snprintf(str, sizeof(str), " #%d", i+1);
al_string_append_cstr(&entry.name, str);
}
++i;
#define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_NAME);
#undef MATCH_NAME
} while(iter != VECTOR_END(*list));
TRACE("Adding entry \"%s\" from file \"%s\"\n", al_string_get_cstr(entry.name),
al_string_get_cstr(*filename));
VECTOR_PUSH_BACK(*list, entry);
done:
al_string_deinit(filename);
}
/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
* for input instead of opening the given filename.
*/
static void AddBuiltInEntry(vector_HrtfEntry *list, const ALubyte *data, size_t datalen, al_string *filename)
{
HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL };
struct Hrtf *hrtf = NULL;
const HrtfEntry *iter;
int i;
#define MATCH_FNAME(i) (al_string_cmp_cstr(*filename, (i)->hrtf->filename) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_FNAME);
if(iter != VECTOR_END(*list))
{
TRACE("Skipping duplicate file entry %s\n", al_string_get_cstr(*filename));
goto done;
}
#undef MATCH_FNAME
entry.hrtf = LoadedHrtfs;
while(entry.hrtf)
{
if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0)
{
TRACE("Skipping load of already-loaded file %s\n", al_string_get_cstr(*filename));
goto skip_load;
}
entry.hrtf = entry.hrtf->next;
}
TRACE("Loading %s...\n", al_string_get_cstr(*filename));
if(datalen < sizeof(magicMarker01))
{
ERR("%s data is too short ("SZFMT" bytes)\n", al_string_get_cstr(*filename), datalen);
goto done;
}
if(memcmp(data, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
hrtf = LoadHrtf01(data+sizeof(magicMarker01),
datalen-sizeof(magicMarker01), *filename
);
}
else if(memcmp(data, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
hrtf = LoadHrtf00(data+sizeof(magicMarker00),
datalen-sizeof(magicMarker00), *filename
);
}
else
ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), data);
if(!hrtf)
{
ERR("Failed to load %s\n", al_string_get_cstr(*filename));
goto done;
}
hrtf->next = LoadedHrtfs;
LoadedHrtfs = hrtf;
TRACE("Loaded HRTF support for format: %s %uhz\n",
DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
entry.hrtf = hrtf;
skip_load:
i = 0;
do {
al_string_copy(&entry.name, *filename);
if(i != 0)
{
char str[64];
snprintf(str, sizeof(str), " #%d", i+1);
al_string_append_cstr(&entry.name, str);
}
++i;
#define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_NAME);
#undef MATCH_NAME
} while(iter != VECTOR_END(*list));
TRACE("Adding built-in entry \"%s\"\n", al_string_get_cstr(entry.name));
VECTOR_PUSH_BACK(*list, entry);
done:
al_string_deinit(filename);
}
#ifndef ALSOFT_EMBED_HRTF_DATA
#define IDR_DEFAULT_44100_MHR 0
#define IDR_DEFAULT_48000_MHR 1
static const ALubyte *GetResource(int UNUSED(name), size_t *size)
{
*size = 0;
return NULL;
}
#else
#include "hrtf_res.h"
#ifdef _WIN32
static const ALubyte *GetResource(int name, size_t *size)
{
HMODULE handle;
HGLOBAL res;
HRSRC rc;
GetModuleHandleExW(
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
(LPCWSTR)GetResource, &handle
);
rc = FindResourceW(handle, MAKEINTRESOURCEW(name), MAKEINTRESOURCEW(MHRTYPE));
res = LoadResource(handle, rc);
*size = SizeofResource(handle, rc);
return LockResource(res);
}
#else
extern const ALubyte _binary_default_44100_mhr_start[] HIDDEN_DECL;
extern const ALubyte _binary_default_44100_mhr_end[] HIDDEN_DECL;
extern const ALubyte _binary_default_44100_mhr_size[] HIDDEN_DECL;
extern const ALubyte _binary_default_48000_mhr_start[] HIDDEN_DECL;
extern const ALubyte _binary_default_48000_mhr_end[] HIDDEN_DECL;
extern const ALubyte _binary_default_48000_mhr_size[] HIDDEN_DECL;
static const ALubyte *GetResource(int name, size_t *size)
{
if(name == IDR_DEFAULT_44100_MHR)
{
/* Make sure all symbols are referenced, to ensure the compiler won't
* ignore the declarations and lose the visibility attribute used to
* hide them (would be nice if ld or objcopy could automatically mark
* them as hidden when generating them, but apparently they can't).
*/
const void *volatile ptr =_binary_default_44100_mhr_size;
(void)ptr;
*size = _binary_default_44100_mhr_end - _binary_default_44100_mhr_start;
return _binary_default_44100_mhr_start;
}
if(name == IDR_DEFAULT_48000_MHR)
{
const void *volatile ptr =_binary_default_48000_mhr_size;
(void)ptr;
*size = _binary_default_48000_mhr_end - _binary_default_48000_mhr_start;
return _binary_default_48000_mhr_start;
}
*size = 0;
return NULL;
}
#endif
#endif
vector_HrtfEntry EnumerateHrtf(const_al_string devname)
{
vector_HrtfEntry list = VECTOR_INIT_STATIC();
const char *defaulthrtf = "";
const char *pathlist = "";
bool usedefaults = true;
if(ConfigValueStr(al_string_get_cstr(devname), NULL, "hrtf-paths", &pathlist))
{
while(pathlist && *pathlist)
{
const char *next, *end;
while(isspace(*pathlist) || *pathlist == ',')
pathlist++;
if(*pathlist == '\0')
continue;
next = strchr(pathlist, ',');
if(next)
end = next++;
else
{
end = pathlist + strlen(pathlist);
usedefaults = false;
}
while(end != pathlist && isspace(*(end-1)))
--end;
if(end != pathlist)
{
al_string pname = AL_STRING_INIT_STATIC();
vector_al_string flist;
al_string_append_range(&pname, pathlist, end);
flist = SearchDataFiles(".mhr", al_string_get_cstr(pname));
VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list);
VECTOR_DEINIT(flist);
al_string_deinit(&pname);
}
pathlist = next;
}
}
else if(ConfigValueExists(al_string_get_cstr(devname), NULL, "hrtf_tables"))
ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n");
if(usedefaults)
{
vector_al_string flist;
const ALubyte *rdata;
size_t rsize;
flist = SearchDataFiles(".mhr", "openal/hrtf");
VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list);
VECTOR_DEINIT(flist);
rdata = GetResource(IDR_DEFAULT_44100_MHR, &rsize);
if(rdata != NULL && rsize > 0)
{
al_string ename = AL_STRING_INIT_STATIC();
al_string_copy_cstr(&ename, "Built-In 44100hz");
AddBuiltInEntry(&list, rdata, rsize, &ename);
}
rdata = GetResource(IDR_DEFAULT_48000_MHR, &rsize);
if(rdata != NULL && rsize > 0)
{
al_string ename = AL_STRING_INIT_STATIC();
al_string_copy_cstr(&ename, "Built-In 48000hz");
AddBuiltInEntry(&list, rdata, rsize, &ename);
}
}
if(VECTOR_SIZE(list) > 1 && ConfigValueStr(al_string_get_cstr(devname), NULL, "default-hrtf", &defaulthrtf))
{
const HrtfEntry *iter;
/* Find the preferred HRTF and move it to the front of the list. */
#define FIND_ENTRY(i) (al_string_cmp_cstr((i)->name, defaulthrtf) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, list, FIND_ENTRY);
#undef FIND_ENTRY
if(iter == VECTOR_END(list))
WARN("Failed to find default HRTF \"%s\"\n", defaulthrtf);
else if(iter != VECTOR_BEGIN(list))
{
HrtfEntry entry = *iter;
memmove(&VECTOR_ELEM(list,1), &VECTOR_ELEM(list,0),
(iter-VECTOR_BEGIN(list))*sizeof(HrtfEntry));
VECTOR_ELEM(list,0) = entry;
}
}
return list;
}
void FreeHrtfList(vector_HrtfEntry *list)
{
#define CLEAR_ENTRY(i) do { \
al_string_deinit(&(i)->name); \
} while(0)
VECTOR_FOR_EACH(HrtfEntry, *list, CLEAR_ENTRY);
VECTOR_DEINIT(*list);
#undef CLEAR_ENTRY
}
void FreeHrtfs(void)
{
struct Hrtf *Hrtf = LoadedHrtfs;
LoadedHrtfs = NULL;
while(Hrtf != NULL)
{
struct Hrtf *next = Hrtf->next;
al_free(Hrtf);
Hrtf = next;
}
}