AuroraOpenALSoft/Alc/ALu.c
2014-08-01 02:04:40 -07:00

1322 lines
45 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "bs2b.h"
#include "hrtf.h"
#include "static_assert.h"
#include "midi/base.h"
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
struct ChanMap {
enum Channel channel;
ALfloat angle;
};
/* Cone scalar */
ALfloat ConeScale = 1.0f;
/* Localized Z scalar for mono sources */
ALfloat ZScale = 1.0f;
extern inline ALfloat minf(ALfloat a, ALfloat b);
extern inline ALfloat maxf(ALfloat a, ALfloat b);
extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
extern inline ALdouble mind(ALdouble a, ALdouble b);
extern inline ALdouble maxd(ALdouble a, ALdouble b);
extern inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max);
extern inline ALuint minu(ALuint a, ALuint b);
extern inline ALuint maxu(ALuint a, ALuint b);
extern inline ALuint clampu(ALuint val, ALuint min, ALuint max);
extern inline ALint mini(ALint a, ALint b);
extern inline ALint maxi(ALint a, ALint b);
extern inline ALint clampi(ALint val, ALint min, ALint max);
extern inline ALint64 mini64(ALint64 a, ALint64 b);
extern inline ALint64 maxi64(ALint64 a, ALint64 b);
extern inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max);
extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
extern inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu);
static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
{
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
}
static inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
{
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
inVector1[2]*inVector2[2];
}
static inline void aluNormalize(ALfloat *inVector)
{
ALfloat lengthsqr = aluDotproduct(inVector, inVector);
if(lengthsqr > 0.0f)
{
ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
inVector[0] *= inv_length;
inVector[1] *= inv_length;
inVector[2] *= inv_length;
}
}
static inline ALvoid aluMatrixVector(ALfloat *vector, ALfloat w, ALfloat (*restrict matrix)[4])
{
ALfloat temp[4] = {
vector[0], vector[1], vector[2], w
};
vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
}
static ALvoid CalcListenerParams(ALlistener *Listener)
{
ALfloat N[3], V[3], U[3], P[3];
/* AT then UP */
N[0] = Listener->Forward[0];
N[1] = Listener->Forward[1];
N[2] = Listener->Forward[2];
aluNormalize(N);
V[0] = Listener->Up[0];
V[1] = Listener->Up[1];
V[2] = Listener->Up[2];
aluNormalize(V);
/* Build and normalize right-vector */
aluCrossproduct(N, V, U);
aluNormalize(U);
Listener->Params.Matrix[0][0] = U[0];
Listener->Params.Matrix[0][1] = V[0];
Listener->Params.Matrix[0][2] = -N[0];
Listener->Params.Matrix[0][3] = 0.0f;
Listener->Params.Matrix[1][0] = U[1];
Listener->Params.Matrix[1][1] = V[1];
Listener->Params.Matrix[1][2] = -N[1];
Listener->Params.Matrix[1][3] = 0.0f;
Listener->Params.Matrix[2][0] = U[2];
Listener->Params.Matrix[2][1] = V[2];
Listener->Params.Matrix[2][2] = -N[2];
Listener->Params.Matrix[2][3] = 0.0f;
Listener->Params.Matrix[3][0] = 0.0f;
Listener->Params.Matrix[3][1] = 0.0f;
Listener->Params.Matrix[3][2] = 0.0f;
Listener->Params.Matrix[3][3] = 1.0f;
P[0] = Listener->Position[0];
P[1] = Listener->Position[1];
P[2] = Listener->Position[2];
aluMatrixVector(P, 1.0f, Listener->Params.Matrix);
Listener->Params.Matrix[3][0] = -P[0];
Listener->Params.Matrix[3][1] = -P[1];
Listener->Params.Matrix[3][2] = -P[2];
Listener->Params.Velocity[0] = Listener->Velocity[0];
Listener->Params.Velocity[1] = Listener->Velocity[1];
Listener->Params.Velocity[2] = Listener->Velocity[2];
aluMatrixVector(Listener->Params.Velocity, 0.0f, Listener->Params.Matrix);
}
ALvoid CalcNonAttnSourceParams(ALactivesource *src, const ALCcontext *ALContext)
{
static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f } };
static const struct ChanMap StereoMap[2] = {
{ FrontLeft, DEG2RAD(-30.0f) },
{ FrontRight, DEG2RAD( 30.0f) }
};
static const struct ChanMap StereoWideMap[2] = {
{ FrontLeft, DEG2RAD(-90.0f) },
{ FrontRight, DEG2RAD( 90.0f) }
};
static const struct ChanMap RearMap[2] = {
{ BackLeft, DEG2RAD(-150.0f) },
{ BackRight, DEG2RAD( 150.0f) }
};
static const struct ChanMap QuadMap[4] = {
{ FrontLeft, DEG2RAD( -45.0f) },
{ FrontRight, DEG2RAD( 45.0f) },
{ BackLeft, DEG2RAD(-135.0f) },
{ BackRight, DEG2RAD( 135.0f) }
};
static const struct ChanMap X51Map[6] = {
{ FrontLeft, DEG2RAD( -30.0f) },
{ FrontRight, DEG2RAD( 30.0f) },
{ FrontCenter, DEG2RAD( 0.0f) },
{ LFE, 0.0f },
{ BackLeft, DEG2RAD(-110.0f) },
{ BackRight, DEG2RAD( 110.0f) }
};
static const struct ChanMap X61Map[7] = {
{ FrontLeft, DEG2RAD(-30.0f) },
{ FrontRight, DEG2RAD( 30.0f) },
{ FrontCenter, DEG2RAD( 0.0f) },
{ LFE, 0.0f },
{ BackCenter, DEG2RAD(180.0f) },
{ SideLeft, DEG2RAD(-90.0f) },
{ SideRight, DEG2RAD( 90.0f) }
};
static const struct ChanMap X71Map[8] = {
{ FrontLeft, DEG2RAD( -30.0f) },
{ FrontRight, DEG2RAD( 30.0f) },
{ FrontCenter, DEG2RAD( 0.0f) },
{ LFE, 0.0f },
{ BackLeft, DEG2RAD(-150.0f) },
{ BackRight, DEG2RAD( 150.0f) },
{ SideLeft, DEG2RAD( -90.0f) },
{ SideRight, DEG2RAD( 90.0f) }
};
ALCdevice *Device = ALContext->Device;
const ALsource *ALSource = src->Source;
ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
ALbufferlistitem *BufferListItem;
enum FmtChannels Channels;
ALfloat DryGain, DryGainHF, DryGainLF;
ALfloat WetGain[MAX_SENDS];
ALfloat WetGainHF[MAX_SENDS];
ALfloat WetGainLF[MAX_SENDS];
ALint NumSends, Frequency;
const struct ChanMap *chans = NULL;
ALint num_channels = 0;
ALboolean DirectChannels;
ALfloat hwidth = 0.0f;
ALfloat Pitch;
ALint i, j, c;
/* Get device properties */
NumSends = Device->NumAuxSends;
Frequency = Device->Frequency;
/* Get listener properties */
ListenerGain = ALContext->Listener->Gain;
/* Get source properties */
SourceVolume = ALSource->Gain;
MinVolume = ALSource->MinGain;
MaxVolume = ALSource->MaxGain;
Pitch = ALSource->Pitch;
DirectChannels = ALSource->DirectChannels;
src->Direct.OutBuffer = Device->DryBuffer;
for(i = 0;i < NumSends;i++)
{
ALeffectslot *Slot = ALSource->Send[i].Slot;
if(!Slot && i == 0)
Slot = Device->DefaultSlot;
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
src->Send[i].OutBuffer = NULL;
else
src->Send[i].OutBuffer = Slot->WetBuffer;
}
/* Calculate the stepping value */
Channels = FmtMono;
BufferListItem = ATOMIC_LOAD(&ALSource->queue);
while(BufferListItem != NULL)
{
ALbuffer *ALBuffer;
if((ALBuffer=BufferListItem->buffer) != NULL)
{
Pitch = Pitch * ALBuffer->Frequency / Frequency;
if(Pitch > (ALfloat)MAX_PITCH)
src->Step = MAX_PITCH<<FRACTIONBITS;
else
{
src->Step = fastf2i(Pitch*FRACTIONONE);
if(src->Step == 0)
src->Step = 1;
}
Channels = ALBuffer->FmtChannels;
break;
}
BufferListItem = BufferListItem->next;
}
/* Calculate gains */
DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
DryGain *= ALSource->Direct.Gain * ListenerGain;
DryGainHF = ALSource->Direct.GainHF;
DryGainLF = ALSource->Direct.GainLF;
for(i = 0;i < NumSends;i++)
{
WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
WetGainHF[i] = ALSource->Send[i].GainHF;
WetGainLF[i] = ALSource->Send[i].GainLF;
}
switch(Channels)
{
case FmtMono:
chans = MonoMap;
num_channels = 1;
break;
case FmtStereo:
if(!(Device->Flags&DEVICE_WIDE_STEREO))
{
/* HACK: Place the stereo channels at +/-90 degrees when using non-
* HRTF stereo output. This helps reduce the "monoization" caused
* by them panning towards the center. */
if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
chans = StereoWideMap;
else
chans = StereoMap;
}
else
{
chans = StereoWideMap;
hwidth = DEG2RAD(60.0f);
}
num_channels = 2;
break;
case FmtRear:
chans = RearMap;
num_channels = 2;
break;
case FmtQuad:
chans = QuadMap;
num_channels = 4;
break;
case FmtX51:
chans = X51Map;
num_channels = 6;
break;
case FmtX61:
chans = X61Map;
num_channels = 7;
break;
case FmtX71:
chans = X71Map;
num_channels = 8;
break;
}
if(DirectChannels != AL_FALSE)
{
for(c = 0;c < num_channels;c++)
{
MixGains *gains = src->Direct.Mix.Gains[c];
for(j = 0;j < MaxChannels;j++)
gains[j].Target = 0.0f;
}
for(c = 0;c < num_channels;c++)
{
MixGains *gains = src->Direct.Mix.Gains[c];
for(i = 0;i < (ALint)Device->NumChan;i++)
{
enum Channel chan = Device->Speaker2Chan[i];
if(chan == chans[c].channel)
{
gains[chan].Target = DryGain;
break;
}
}
}
if(!src->Direct.Moving)
{
for(i = 0;i < num_channels;i++)
{
MixGains *gains = src->Direct.Mix.Gains[i];
for(j = 0;j < MaxChannels;j++)
{
gains[j].Current = gains[j].Target;
gains[j].Step = 1.0f;
}
}
src->Direct.Counter = 0;
src->Direct.Moving = AL_TRUE;
}
else
{
for(i = 0;i < num_channels;i++)
{
MixGains *gains = src->Direct.Mix.Gains[i];
for(j = 0;j < MaxChannels;j++)
{
ALfloat cur = maxf(gains[j].Current, FLT_EPSILON);
ALfloat trg = maxf(gains[j].Target, FLT_EPSILON);
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
gains[j].Step = powf(trg/cur, 1.0f/64.0f);
else
gains[j].Step = 1.0f;
gains[j].Current = cur;
}
}
src->Direct.Counter = 64;
}
src->IsHrtf = AL_FALSE;
}
else if(Device->Hrtf)
{
for(c = 0;c < num_channels;c++)
{
if(chans[c].channel == LFE)
{
/* Skip LFE */
src->Direct.Mix.Hrtf.Params[c].Delay[0] = 0;
src->Direct.Mix.Hrtf.Params[c].Delay[1] = 0;
for(i = 0;i < HRIR_LENGTH;i++)
{
src->Direct.Mix.Hrtf.Params[c].Coeffs[i][0] = 0.0f;
src->Direct.Mix.Hrtf.Params[c].Coeffs[i][1] = 0.0f;
}
}
else
{
/* Get the static HRIR coefficients and delays for this
* channel. */
GetLerpedHrtfCoeffs(Device->Hrtf,
0.0f, chans[c].angle, 1.0f, DryGain,
src->Direct.Mix.Hrtf.Params[c].Coeffs,
src->Direct.Mix.Hrtf.Params[c].Delay);
}
}
src->Direct.Counter = 0;
src->Direct.Moving = AL_TRUE;
src->Direct.Mix.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
src->IsHrtf = AL_TRUE;
}
else
{
for(i = 0;i < num_channels;i++)
{
MixGains *gains = src->Direct.Mix.Gains[i];
for(j = 0;j < MaxChannels;j++)
gains[j].Target = 0.0f;
}
DryGain *= lerp(1.0f, 1.0f/sqrtf((float)Device->NumChan), hwidth/F_PI);
for(c = 0;c < num_channels;c++)
{
MixGains *gains = src->Direct.Mix.Gains[c];
ALfloat Target[MaxChannels];
/* Special-case LFE */
if(chans[c].channel == LFE)
{
gains[chans[c].channel].Target = DryGain;
continue;
}
ComputeAngleGains(Device, chans[c].angle, hwidth, DryGain, Target);
for(i = 0;i < MaxChannels;i++)
gains[i].Target = Target[i];
}
if(!src->Direct.Moving)
{
for(i = 0;i < num_channels;i++)
{
MixGains *gains = src->Direct.Mix.Gains[i];
for(j = 0;j < MaxChannels;j++)
{
gains[j].Current = gains[j].Target;
gains[j].Step = 1.0f;
}
}
src->Direct.Counter = 0;
src->Direct.Moving = AL_TRUE;
}
else
{
for(i = 0;i < num_channels;i++)
{
MixGains *gains = src->Direct.Mix.Gains[i];
for(j = 0;j < MaxChannels;j++)
{
ALfloat trg = maxf(gains[j].Target, FLT_EPSILON);
ALfloat cur = maxf(gains[j].Current, FLT_EPSILON);
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
gains[j].Step = powf(trg/cur, 1.0f/64.0f);
else
gains[j].Step = 1.0f;
gains[j].Current = cur;
}
}
src->Direct.Counter = 64;
}
src->IsHrtf = AL_FALSE;
}
for(i = 0;i < NumSends;i++)
{
src->Send[i].Gain.Target = WetGain[i];
if(!src->Send[i].Moving)
{
src->Send[i].Gain.Current = src->Send[i].Gain.Target;
src->Send[i].Gain.Step = 1.0f;
src->Send[i].Counter = 0;
src->Send[i].Moving = AL_TRUE;
}
else
{
ALfloat cur = maxf(src->Send[i].Gain.Current, FLT_EPSILON);
ALfloat trg = maxf(src->Send[i].Gain.Target, FLT_EPSILON);
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
src->Send[i].Gain.Step = powf(trg/cur, 1.0f/64.0f);
else
src->Send[i].Gain.Step = 1.0f;
src->Send[i].Gain.Current = cur;
src->Send[i].Counter = 64;
}
}
{
ALfloat gainhf = maxf(0.01f, DryGainHF);
ALfloat gainlf = maxf(0.01f, DryGainLF);
ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
for(c = 0;c < num_channels;c++)
{
src->Direct.Filters[c].ActiveType = AF_None;
if(gainhf != 1.0f) src->Direct.Filters[c].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) src->Direct.Filters[c].ActiveType |= AF_HighPass;
ALfilterState_setParams(
&src->Direct.Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
&src->Direct.Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
}
for(i = 0;i < NumSends;i++)
{
ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
for(c = 0;c < num_channels;c++)
{
src->Send[i].Filters[c].ActiveType = AF_None;
if(gainhf != 1.0f) src->Send[i].Filters[c].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) src->Send[i].Filters[c].ActiveType |= AF_HighPass;
ALfilterState_setParams(
&src->Send[i].Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
&src->Send[i].Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
}
}
ALvoid CalcSourceParams(ALactivesource *src, const ALCcontext *ALContext)
{
ALCdevice *Device = ALContext->Device;
const ALsource *ALSource = src->Source;
ALfloat Velocity[3],Direction[3],Position[3],SourceToListener[3];
ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
ALfloat DopplerFactor, SpeedOfSound;
ALfloat AirAbsorptionFactor;
ALfloat RoomAirAbsorption[MAX_SENDS];
ALbufferlistitem *BufferListItem;
ALfloat Attenuation;
ALfloat RoomAttenuation[MAX_SENDS];
ALfloat MetersPerUnit;
ALfloat RoomRolloffBase;
ALfloat RoomRolloff[MAX_SENDS];
ALfloat DecayDistance[MAX_SENDS];
ALfloat DryGain;
ALfloat DryGainHF;
ALfloat DryGainLF;
ALboolean DryGainHFAuto;
ALfloat WetGain[MAX_SENDS];
ALfloat WetGainHF[MAX_SENDS];
ALfloat WetGainLF[MAX_SENDS];
ALboolean WetGainAuto;
ALboolean WetGainHFAuto;
ALfloat Pitch;
ALuint Frequency;
ALint NumSends;
ALint i, j;
DryGainHF = 1.0f;
DryGainLF = 1.0f;
for(i = 0;i < MAX_SENDS;i++)
{
WetGainHF[i] = 1.0f;
WetGainLF[i] = 1.0f;
}
/* Get context/device properties */
DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
NumSends = Device->NumAuxSends;
Frequency = Device->Frequency;
/* Get listener properties */
ListenerGain = ALContext->Listener->Gain;
MetersPerUnit = ALContext->Listener->MetersPerUnit;
/* Get source properties */
SourceVolume = ALSource->Gain;
MinVolume = ALSource->MinGain;
MaxVolume = ALSource->MaxGain;
Pitch = ALSource->Pitch;
Position[0] = ALSource->Position[0];
Position[1] = ALSource->Position[1];
Position[2] = ALSource->Position[2];
Direction[0] = ALSource->Orientation[0];
Direction[1] = ALSource->Orientation[1];
Direction[2] = ALSource->Orientation[2];
Velocity[0] = ALSource->Velocity[0];
Velocity[1] = ALSource->Velocity[1];
Velocity[2] = ALSource->Velocity[2];
MinDist = ALSource->RefDistance;
MaxDist = ALSource->MaxDistance;
Rolloff = ALSource->RollOffFactor;
InnerAngle = ALSource->InnerAngle;
OuterAngle = ALSource->OuterAngle;
AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
DryGainHFAuto = ALSource->DryGainHFAuto;
WetGainAuto = ALSource->WetGainAuto;
WetGainHFAuto = ALSource->WetGainHFAuto;
RoomRolloffBase = ALSource->RoomRolloffFactor;
src->Direct.OutBuffer = Device->DryBuffer;
for(i = 0;i < NumSends;i++)
{
ALeffectslot *Slot = ALSource->Send[i].Slot;
if(!Slot && i == 0)
Slot = Device->DefaultSlot;
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
{
Slot = NULL;
RoomRolloff[i] = 0.0f;
DecayDistance[i] = 0.0f;
RoomAirAbsorption[i] = 1.0f;
}
else if(Slot->AuxSendAuto)
{
RoomRolloff[i] = RoomRolloffBase;
if(IsReverbEffect(Slot->EffectType))
{
RoomRolloff[i] += Slot->EffectProps.Reverb.RoomRolloffFactor;
DecayDistance[i] = Slot->EffectProps.Reverb.DecayTime *
SPEEDOFSOUNDMETRESPERSEC;
RoomAirAbsorption[i] = Slot->EffectProps.Reverb.AirAbsorptionGainHF;
}
else
{
DecayDistance[i] = 0.0f;
RoomAirAbsorption[i] = 1.0f;
}
}
else
{
/* If the slot's auxiliary send auto is off, the data sent to the
* effect slot is the same as the dry path, sans filter effects */
RoomRolloff[i] = Rolloff;
DecayDistance[i] = 0.0f;
RoomAirAbsorption[i] = AIRABSORBGAINHF;
}
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
src->Send[i].OutBuffer = NULL;
else
src->Send[i].OutBuffer = Slot->WetBuffer;
}
/* Transform source to listener space (convert to head relative) */
if(ALSource->HeadRelative == AL_FALSE)
{
ALfloat (*restrict Matrix)[4] = ALContext->Listener->Params.Matrix;
/* Transform source vectors */
aluMatrixVector(Position, 1.0f, Matrix);
aluMatrixVector(Direction, 0.0f, Matrix);
aluMatrixVector(Velocity, 0.0f, Matrix);
}
else
{
const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
/* Offset the source velocity to be relative of the listener velocity */
Velocity[0] += ListenerVel[0];
Velocity[1] += ListenerVel[1];
Velocity[2] += ListenerVel[2];
}
SourceToListener[0] = -Position[0];
SourceToListener[1] = -Position[1];
SourceToListener[2] = -Position[2];
aluNormalize(SourceToListener);
aluNormalize(Direction);
/* Calculate distance attenuation */
Distance = sqrtf(aluDotproduct(Position, Position));
ClampedDist = Distance;
Attenuation = 1.0f;
for(i = 0;i < NumSends;i++)
RoomAttenuation[i] = 1.0f;
switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
ALContext->DistanceModel)
{
case InverseDistanceClamped:
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
break;
/*fall-through*/
case InverseDistance:
if(MinDist > 0.0f)
{
if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
for(i = 0;i < NumSends;i++)
{
if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
}
}
break;
case LinearDistanceClamped:
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
break;
/*fall-through*/
case LinearDistance:
if(MaxDist != MinDist)
{
Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
Attenuation = maxf(Attenuation, 0.0f);
for(i = 0;i < NumSends;i++)
{
RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
}
}
break;
case ExponentDistanceClamped:
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
break;
/*fall-through*/
case ExponentDistance:
if(ClampedDist > 0.0f && MinDist > 0.0f)
{
Attenuation = powf(ClampedDist/MinDist, -Rolloff);
for(i = 0;i < NumSends;i++)
RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
}
break;
case DisableDistance:
ClampedDist = MinDist;
break;
}
/* Source Gain + Attenuation */
DryGain = SourceVolume * Attenuation;
for(i = 0;i < NumSends;i++)
WetGain[i] = SourceVolume * RoomAttenuation[i];
/* Distance-based air absorption */
if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
{
ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
for(i = 0;i < NumSends;i++)
WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
}
if(WetGainAuto)
{
ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
/* Apply a decay-time transformation to the wet path, based on the
* attenuation of the dry path.
*
* Using the apparent distance, based on the distance attenuation, the
* initial decay of the reverb effect is calculated and applied to the
* wet path.
*/
for(i = 0;i < NumSends;i++)
{
if(DecayDistance[i] > 0.0f)
WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
}
}
/* Calculate directional soundcones */
Angle = RAD2DEG(acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale) * 2.0f;
if(Angle > InnerAngle && Angle <= OuterAngle)
{
ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
}
else if(Angle > OuterAngle)
{
ConeVolume = ALSource->OuterGain;
ConeHF = ALSource->OuterGainHF;
}
else
{
ConeVolume = 1.0f;
ConeHF = 1.0f;
}
DryGain *= ConeVolume;
if(WetGainAuto)
{
for(i = 0;i < NumSends;i++)
WetGain[i] *= ConeVolume;
}
if(DryGainHFAuto)
DryGainHF *= ConeHF;
if(WetGainHFAuto)
{
for(i = 0;i < NumSends;i++)
WetGainHF[i] *= ConeHF;
}
/* Clamp to Min/Max Gain */
DryGain = clampf(DryGain, MinVolume, MaxVolume);
for(i = 0;i < NumSends;i++)
WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
/* Apply gain and frequency filters */
DryGain *= ALSource->Direct.Gain * ListenerGain;
DryGainHF *= ALSource->Direct.GainHF;
DryGainLF *= ALSource->Direct.GainLF;
for(i = 0;i < NumSends;i++)
{
WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
WetGainHF[i] *= ALSource->Send[i].GainHF;
WetGainLF[i] *= ALSource->Send[i].GainLF;
}
/* Calculate velocity-based doppler effect */
if(DopplerFactor > 0.0f)
{
const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
ALfloat VSS, VLS;
if(SpeedOfSound < 1.0f)
{
DopplerFactor *= 1.0f/SpeedOfSound;
SpeedOfSound = 1.0f;
}
VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
}
BufferListItem = ATOMIC_LOAD(&ALSource->queue);
while(BufferListItem != NULL)
{
ALbuffer *ALBuffer;
if((ALBuffer=BufferListItem->buffer) != NULL)
{
/* Calculate fixed-point stepping value, based on the pitch, buffer
* frequency, and output frequency. */
Pitch = Pitch * ALBuffer->Frequency / Frequency;
if(Pitch > (ALfloat)MAX_PITCH)
src->Step = MAX_PITCH<<FRACTIONBITS;
else
{
src->Step = fastf2i(Pitch*FRACTIONONE);
if(src->Step == 0)
src->Step = 1;
}
break;
}
BufferListItem = BufferListItem->next;
}
if(Device->Hrtf)
{
/* Use a binaural HRTF algorithm for stereo headphone playback */
ALfloat delta, ev = 0.0f, az = 0.0f;
ALfloat radius = ALSource->Radius;
ALfloat dirfact = 1.0f;
if(Distance > FLT_EPSILON)
{
ALfloat invlen = 1.0f/Distance;
Position[0] *= invlen;
Position[1] *= invlen;
Position[2] *= invlen;
/* Calculate elevation and azimuth only when the source is not at
* the listener. This prevents +0 and -0 Z from producing
* inconsistent panning. Also, clamp Y in case FP precision errors
* cause it to land outside of -1..+1. */
ev = asinf(clampf(Position[1], -1.0f, 1.0f));
az = atan2f(Position[0], -Position[2]*ZScale);
}
if(radius > Distance)
dirfact *= Distance / radius;
/* Check to see if the HRIR is already moving. */
if(src->Direct.Moving)
{
/* Calculate the normalized HRTF transition factor (delta). */
delta = CalcHrtfDelta(src->Direct.Mix.Hrtf.Gain, DryGain,
src->Direct.Mix.Hrtf.Dir, Position);
/* If the delta is large enough, get the moving HRIR target
* coefficients, target delays, steppping values, and counter. */
if(delta > 0.001f)
{
ALuint counter = GetMovingHrtfCoeffs(Device->Hrtf,
ev, az, dirfact, DryGain, delta, src->Direct.Counter,
src->Direct.Mix.Hrtf.Params[0].Coeffs, src->Direct.Mix.Hrtf.Params[0].Delay,
src->Direct.Mix.Hrtf.Params[0].CoeffStep, src->Direct.Mix.Hrtf.Params[0].DelayStep
);
src->Direct.Counter = counter;
src->Direct.Mix.Hrtf.Gain = DryGain;
src->Direct.Mix.Hrtf.Dir[0] = Position[0];
src->Direct.Mix.Hrtf.Dir[1] = Position[1];
src->Direct.Mix.Hrtf.Dir[2] = Position[2];
}
}
else
{
/* Get the initial (static) HRIR coefficients and delays. */
GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, dirfact, DryGain,
src->Direct.Mix.Hrtf.Params[0].Coeffs,
src->Direct.Mix.Hrtf.Params[0].Delay);
src->Direct.Counter = 0;
src->Direct.Moving = AL_TRUE;
src->Direct.Mix.Hrtf.Gain = DryGain;
src->Direct.Mix.Hrtf.Dir[0] = Position[0];
src->Direct.Mix.Hrtf.Dir[1] = Position[1];
src->Direct.Mix.Hrtf.Dir[2] = Position[2];
}
src->Direct.Mix.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
src->IsHrtf = AL_TRUE;
}
else
{
MixGains *gains = src->Direct.Mix.Gains[0];
ALfloat DirGain = 0.0f;
ALfloat AmbientGain;
for(j = 0;j < MaxChannels;j++)
gains[j].Target = 0.0f;
/* Normalize the length, and compute panned gains. */
if(Distance > FLT_EPSILON)
{
ALfloat radius = ALSource->Radius;
ALfloat Target[MaxChannels];
ALfloat invlen = 1.0f/maxf(Distance, radius);
Position[0] *= invlen;
Position[1] *= invlen;
Position[2] *= invlen;
DirGain = sqrtf(Position[0]*Position[0] + Position[2]*Position[2]);
ComputeAngleGains(Device, atan2f(Position[0], -Position[2]*ZScale), 0.0f,
DryGain*DirGain, Target);
for(j = 0;j < MaxChannels;j++)
gains[j].Target = Target[j];
}
/* Adjustment for vertical offsets. Not the greatest, but simple
* enough. */
AmbientGain = DryGain * sqrtf(1.0f/Device->NumChan) * (1.0f-DirGain);
for(i = 0;i < (ALint)Device->NumChan;i++)
{
enum Channel chan = Device->Speaker2Chan[i];
gains[chan].Target = maxf(gains[chan].Target, AmbientGain);
}
if(!src->Direct.Moving)
{
for(j = 0;j < MaxChannels;j++)
{
gains[j].Current = gains[j].Target;
gains[j].Step = 1.0f;
}
src->Direct.Counter = 0;
src->Direct.Moving = AL_TRUE;
}
else
{
for(j = 0;j < MaxChannels;j++)
{
ALfloat cur = maxf(gains[j].Current, FLT_EPSILON);
ALfloat trg = maxf(gains[j].Target, FLT_EPSILON);
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
gains[j].Step = powf(trg/cur, 1.0f/64.0f);
else
gains[j].Step = 1.0f;
gains[j].Current = cur;
}
src->Direct.Counter = 64;
}
src->IsHrtf = AL_FALSE;
}
for(i = 0;i < NumSends;i++)
{
src->Send[i].Gain.Target = WetGain[i];
if(!src->Send[i].Moving)
{
src->Send[i].Gain.Current = src->Send[i].Gain.Target;
src->Send[i].Gain.Step = 1.0f;
src->Send[i].Counter = 0;
src->Send[i].Moving = AL_TRUE;
}
else
{
ALfloat cur = maxf(src->Send[i].Gain.Current, FLT_EPSILON);
ALfloat trg = maxf(src->Send[i].Gain.Target, FLT_EPSILON);
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
src->Send[i].Gain.Step = powf(trg/cur, 1.0f/64.0f);
else
src->Send[i].Gain.Step = 1.0f;
src->Send[i].Gain.Current = cur;
src->Send[i].Counter = 64;
}
}
{
ALfloat gainhf = maxf(0.01f, DryGainHF);
ALfloat gainlf = maxf(0.01f, DryGainLF);
ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
src->Direct.Filters[0].ActiveType = AF_None;
if(gainhf != 1.0f) src->Direct.Filters[0].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) src->Direct.Filters[0].ActiveType |= AF_HighPass;
ALfilterState_setParams(
&src->Direct.Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
&src->Direct.Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
for(i = 0;i < NumSends;i++)
{
ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
src->Send[i].Filters[0].ActiveType = AF_None;
if(gainhf != 1.0f) src->Send[i].Filters[0].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) src->Send[i].Filters[0].ActiveType |= AF_HighPass;
ALfilterState_setParams(
&src->Send[i].Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
&src->Send[i].Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
}
static inline ALint aluF2I25(ALfloat val)
{
/* Clamp the value between -1 and +1. This handles that with only a single branch. */
if(fabsf(val) > 1.0f)
val = (ALfloat)((0.0f < val) - (val < 0.0f));
/* Convert to a signed integer, between -16777215 and +16777215. */
return fastf2i(val*16777215.0f);
}
static inline ALfloat aluF2F(ALfloat val)
{ return val; }
static inline ALint aluF2I(ALfloat val)
{ return aluF2I25(val)<<7; }
static inline ALuint aluF2UI(ALfloat val)
{ return aluF2I(val)+2147483648u; }
static inline ALshort aluF2S(ALfloat val)
{ return aluF2I25(val)>>9; }
static inline ALushort aluF2US(ALfloat val)
{ return aluF2S(val)+32768; }
static inline ALbyte aluF2B(ALfloat val)
{ return aluF2I25(val)>>17; }
static inline ALubyte aluF2UB(ALfloat val)
{ return aluF2B(val)+128; }
#define DECL_TEMPLATE(T, func) \
static void Write_##T(ALCdevice *device, ALvoid **buffer, ALuint SamplesToDo) \
{ \
ALfloat (*restrict DryBuffer)[BUFFERSIZE] = device->DryBuffer; \
const ALuint numchans = ChannelsFromDevFmt(device->FmtChans); \
const ALuint *offsets = device->ChannelOffsets; \
ALuint i, j; \
\
for(j = 0;j < MaxChannels;j++) \
{ \
T *restrict out; \
\
if(offsets[j] == INVALID_OFFSET) \
continue; \
\
out = (T*)(*buffer) + offsets[j]; \
for(i = 0;i < SamplesToDo;i++) \
out[i*numchans] = func(DryBuffer[j][i]); \
} \
*buffer = (char*)(*buffer) + SamplesToDo*numchans*sizeof(T); \
}
DECL_TEMPLATE(ALfloat, aluF2F)
DECL_TEMPLATE(ALuint, aluF2UI)
DECL_TEMPLATE(ALint, aluF2I)
DECL_TEMPLATE(ALushort, aluF2US)
DECL_TEMPLATE(ALshort, aluF2S)
DECL_TEMPLATE(ALubyte, aluF2UB)
DECL_TEMPLATE(ALbyte, aluF2B)
#undef DECL_TEMPLATE
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
{
ALuint SamplesToDo;
ALeffectslot **slot, **slot_end;
ALactivesource **src, **src_end;
ALCcontext *ctx;
FPUCtl oldMode;
ALuint i, c;
SetMixerFPUMode(&oldMode);
while(size > 0)
{
IncrementRef(&device->MixCount);
SamplesToDo = minu(size, BUFFERSIZE);
for(c = 0;c < MaxChannels;c++)
memset(device->DryBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
ALCdevice_Lock(device);
V(device->Synth,process)(SamplesToDo, device->DryBuffer);
ctx = ATOMIC_LOAD(&device->ContextList);
while(ctx)
{
ALenum DeferUpdates = ctx->DeferUpdates;
ALenum UpdateSources = AL_FALSE;
if(!DeferUpdates)
UpdateSources = ATOMIC_EXCHANGE(ALenum, &ctx->UpdateSources, AL_FALSE);
if(UpdateSources)
CalcListenerParams(ctx->Listener);
/* source processing */
src = ctx->ActiveSources;
src_end = src + ctx->ActiveSourceCount;
while(src != src_end)
{
ALsource *source = (*src)->Source;
if(source->state != AL_PLAYING && source->state != AL_PAUSED)
{
ALactivesource *temp = *(--src_end);
*src_end = *src;
*src = temp;
--(ctx->ActiveSourceCount);
continue;
}
if(!DeferUpdates && (ATOMIC_EXCHANGE(ALenum, &source->NeedsUpdate, AL_FALSE) ||
UpdateSources))
(*src)->Update(*src, ctx);
if(source->state != AL_PAUSED)
MixSource(*src, device, SamplesToDo);
src++;
}
/* effect slot processing */
slot = VECTOR_ITER_BEGIN(ctx->ActiveAuxSlots);
slot_end = VECTOR_ITER_END(ctx->ActiveAuxSlots);
while(slot != slot_end)
{
if(!DeferUpdates && ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
V((*slot)->EffectState,update)(device, *slot);
V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
device->DryBuffer);
for(i = 0;i < SamplesToDo;i++)
(*slot)->WetBuffer[0][i] = 0.0f;
slot++;
}
ctx = ctx->next;
}
slot = &device->DefaultSlot;
if(*slot != NULL)
{
if(ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
V((*slot)->EffectState,update)(device, *slot);
V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
device->DryBuffer);
for(i = 0;i < SamplesToDo;i++)
(*slot)->WetBuffer[0][i] = 0.0f;
}
/* Increment the clock time. Every second's worth of samples is
* converted and added to clock base so that large sample counts don't
* overflow during conversion. This also guarantees an exact, stable
* conversion. */
device->SamplesDone += SamplesToDo;
device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
device->SamplesDone %= device->Frequency;
ALCdevice_Unlock(device);
if(device->Bs2b)
{
/* Apply binaural/crossfeed filter */
for(i = 0;i < SamplesToDo;i++)
{
float samples[2];
samples[0] = device->DryBuffer[FrontLeft][i];
samples[1] = device->DryBuffer[FrontRight][i];
bs2b_cross_feed(device->Bs2b, samples);
device->DryBuffer[FrontLeft][i] = samples[0];
device->DryBuffer[FrontRight][i] = samples[1];
}
}
if(buffer)
{
switch(device->FmtType)
{
case DevFmtByte:
Write_ALbyte(device, &buffer, SamplesToDo);
break;
case DevFmtUByte:
Write_ALubyte(device, &buffer, SamplesToDo);
break;
case DevFmtShort:
Write_ALshort(device, &buffer, SamplesToDo);
break;
case DevFmtUShort:
Write_ALushort(device, &buffer, SamplesToDo);
break;
case DevFmtInt:
Write_ALint(device, &buffer, SamplesToDo);
break;
case DevFmtUInt:
Write_ALuint(device, &buffer, SamplesToDo);
break;
case DevFmtFloat:
Write_ALfloat(device, &buffer, SamplesToDo);
break;
}
}
size -= SamplesToDo;
IncrementRef(&device->MixCount);
}
RestoreFPUMode(&oldMode);
}
ALvoid aluHandleDisconnect(ALCdevice *device)
{
ALCcontext *Context;
device->Connected = ALC_FALSE;
Context = ATOMIC_LOAD(&device->ContextList);
while(Context)
{
ALactivesource **src, **src_end;
src = Context->ActiveSources;
src_end = src + Context->ActiveSourceCount;
while(src != src_end)
{
ALsource *source = (*src)->Source;
if(source->state == AL_PLAYING)
{
source->state = AL_STOPPED;
ATOMIC_STORE(&source->current_buffer, NULL);
source->position = 0;
source->position_fraction = 0;
}
src++;
}
Context->ActiveSourceCount = 0;
Context = Context->next;
}
}