2016-08-22 18:43:47 +00:00
|
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
// DirectXMathMatrix.inl -- SIMD C++ Math library
|
|
|
|
//
|
|
|
|
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
|
|
|
|
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
|
|
|
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
|
|
|
|
// PARTICULAR PURPOSE.
|
|
|
|
//
|
|
|
|
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
|
|
//
|
|
|
|
// http://go.microsoft.com/fwlink/?LinkID=615560
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
*
|
|
|
|
* Matrix
|
|
|
|
*
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// Comparison operations
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
// Return true if any entry in the matrix is NaN
|
|
|
|
inline bool XM_CALLCONV XMMatrixIsNaN
|
|
|
|
(
|
|
|
|
FXMMATRIX M
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
size_t i = 16;
|
|
|
|
const uint32_t *pWork = (const uint32_t *)(&M.m[0][0]);
|
|
|
|
do {
|
|
|
|
// Fetch value into integer unit
|
|
|
|
uint32_t uTest = pWork[0];
|
|
|
|
// Remove sign
|
|
|
|
uTest &= 0x7FFFFFFFU;
|
|
|
|
// NaN is 0x7F800001 through 0x7FFFFFFF inclusive
|
|
|
|
uTest -= 0x7F800001U;
|
|
|
|
if (uTest<0x007FFFFFU) {
|
|
|
|
break; // NaN found
|
|
|
|
}
|
|
|
|
++pWork; // Next entry
|
|
|
|
} while (--i);
|
|
|
|
return (i!=0); // i == 0 if nothing matched
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
// Load in registers
|
|
|
|
XMVECTOR vX = M.r[0];
|
|
|
|
XMVECTOR vY = M.r[1];
|
|
|
|
XMVECTOR vZ = M.r[2];
|
|
|
|
XMVECTOR vW = M.r[3];
|
|
|
|
// Test themselves to check for NaN
|
|
|
|
vX = vmvnq_u32(vceqq_f32(vX, vX));
|
|
|
|
vY = vmvnq_u32(vceqq_f32(vY, vY));
|
|
|
|
vZ = vmvnq_u32(vceqq_f32(vZ, vZ));
|
|
|
|
vW = vmvnq_u32(vceqq_f32(vW, vW));
|
|
|
|
// Or all the results
|
|
|
|
vX = vorrq_u32(vX,vZ);
|
|
|
|
vY = vorrq_u32(vY,vW);
|
|
|
|
vX = vorrq_u32(vX,vY);
|
|
|
|
// If any tested true, return true
|
|
|
|
int8x8x2_t vTemp = vzip_u8(vget_low_u8(vX), vget_high_u8(vX));
|
|
|
|
vTemp = vzip_u16(vTemp.val[0], vTemp.val[1]);
|
|
|
|
uint32_t r = vget_lane_u32(vTemp.val[1], 1);
|
|
|
|
return (r != 0);
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
// Load in registers
|
|
|
|
XMVECTOR vX = M.r[0];
|
|
|
|
XMVECTOR vY = M.r[1];
|
|
|
|
XMVECTOR vZ = M.r[2];
|
|
|
|
XMVECTOR vW = M.r[3];
|
|
|
|
// Test themselves to check for NaN
|
|
|
|
vX = _mm_cmpneq_ps(vX,vX);
|
|
|
|
vY = _mm_cmpneq_ps(vY,vY);
|
|
|
|
vZ = _mm_cmpneq_ps(vZ,vZ);
|
|
|
|
vW = _mm_cmpneq_ps(vW,vW);
|
|
|
|
// Or all the results
|
|
|
|
vX = _mm_or_ps(vX,vZ);
|
|
|
|
vY = _mm_or_ps(vY,vW);
|
|
|
|
vX = _mm_or_ps(vX,vY);
|
|
|
|
// If any tested true, return true
|
|
|
|
return (_mm_movemask_ps(vX)!=0);
|
|
|
|
#else
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
// Return true if any entry in the matrix is +/-INF
|
|
|
|
inline bool XM_CALLCONV XMMatrixIsInfinite
|
|
|
|
(
|
|
|
|
FXMMATRIX M
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
size_t i = 16;
|
|
|
|
const uint32_t *pWork = (const uint32_t *)(&M.m[0][0]);
|
|
|
|
do {
|
|
|
|
// Fetch value into integer unit
|
|
|
|
uint32_t uTest = pWork[0];
|
|
|
|
// Remove sign
|
|
|
|
uTest &= 0x7FFFFFFFU;
|
|
|
|
// INF is 0x7F800000
|
|
|
|
if (uTest==0x7F800000U) {
|
|
|
|
break; // INF found
|
|
|
|
}
|
|
|
|
++pWork; // Next entry
|
|
|
|
} while (--i);
|
|
|
|
return (i!=0); // i == 0 if nothing matched
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
// Mask off the sign bits
|
|
|
|
XMVECTOR vTemp1 = vandq_u32(M.r[0],g_XMAbsMask);
|
|
|
|
XMVECTOR vTemp2 = vandq_u32(M.r[1],g_XMAbsMask);
|
|
|
|
XMVECTOR vTemp3 = vandq_u32(M.r[2],g_XMAbsMask);
|
|
|
|
XMVECTOR vTemp4 = vandq_u32(M.r[3],g_XMAbsMask);
|
|
|
|
// Compare to infinity
|
|
|
|
vTemp1 = vceqq_f32(vTemp1,g_XMInfinity);
|
|
|
|
vTemp2 = vceqq_f32(vTemp2,g_XMInfinity);
|
|
|
|
vTemp3 = vceqq_f32(vTemp3,g_XMInfinity);
|
|
|
|
vTemp4 = vceqq_f32(vTemp4,g_XMInfinity);
|
|
|
|
// Or the answers together
|
|
|
|
vTemp1 = vorrq_u32(vTemp1,vTemp2);
|
|
|
|
vTemp3 = vorrq_u32(vTemp3,vTemp4);
|
|
|
|
vTemp1 = vorrq_u32(vTemp1,vTemp3);
|
|
|
|
// If any are infinity, the signs are true.
|
|
|
|
int8x8x2_t vTemp = vzip_u8(vget_low_u8(vTemp1), vget_high_u8(vTemp1));
|
|
|
|
vTemp = vzip_u16(vTemp.val[0], vTemp.val[1]);
|
|
|
|
uint32_t r = vget_lane_u32(vTemp.val[1], 1);
|
|
|
|
return (r != 0);
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
// Mask off the sign bits
|
|
|
|
XMVECTOR vTemp1 = _mm_and_ps(M.r[0],g_XMAbsMask);
|
|
|
|
XMVECTOR vTemp2 = _mm_and_ps(M.r[1],g_XMAbsMask);
|
|
|
|
XMVECTOR vTemp3 = _mm_and_ps(M.r[2],g_XMAbsMask);
|
|
|
|
XMVECTOR vTemp4 = _mm_and_ps(M.r[3],g_XMAbsMask);
|
|
|
|
// Compare to infinity
|
|
|
|
vTemp1 = _mm_cmpeq_ps(vTemp1,g_XMInfinity);
|
|
|
|
vTemp2 = _mm_cmpeq_ps(vTemp2,g_XMInfinity);
|
|
|
|
vTemp3 = _mm_cmpeq_ps(vTemp3,g_XMInfinity);
|
|
|
|
vTemp4 = _mm_cmpeq_ps(vTemp4,g_XMInfinity);
|
|
|
|
// Or the answers together
|
|
|
|
vTemp1 = _mm_or_ps(vTemp1,vTemp2);
|
|
|
|
vTemp3 = _mm_or_ps(vTemp3,vTemp4);
|
|
|
|
vTemp1 = _mm_or_ps(vTemp1,vTemp3);
|
|
|
|
// If any are infinity, the signs are true.
|
|
|
|
return (_mm_movemask_ps(vTemp1)!=0);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
// Return true if the XMMatrix is equal to identity
|
|
|
|
inline bool XM_CALLCONV XMMatrixIsIdentity
|
|
|
|
(
|
|
|
|
FXMMATRIX M
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
// Use the integer pipeline to reduce branching to a minimum
|
|
|
|
const uint32_t *pWork = (const uint32_t*)(&M.m[0][0]);
|
|
|
|
// Convert 1.0f to zero and or them together
|
|
|
|
uint32_t uOne = pWork[0]^0x3F800000U;
|
|
|
|
// Or all the 0.0f entries together
|
|
|
|
uint32_t uZero = pWork[1];
|
|
|
|
uZero |= pWork[2];
|
|
|
|
uZero |= pWork[3];
|
|
|
|
// 2nd row
|
|
|
|
uZero |= pWork[4];
|
|
|
|
uOne |= pWork[5]^0x3F800000U;
|
|
|
|
uZero |= pWork[6];
|
|
|
|
uZero |= pWork[7];
|
|
|
|
// 3rd row
|
|
|
|
uZero |= pWork[8];
|
|
|
|
uZero |= pWork[9];
|
|
|
|
uOne |= pWork[10]^0x3F800000U;
|
|
|
|
uZero |= pWork[11];
|
|
|
|
// 4th row
|
|
|
|
uZero |= pWork[12];
|
|
|
|
uZero |= pWork[13];
|
|
|
|
uZero |= pWork[14];
|
|
|
|
uOne |= pWork[15]^0x3F800000U;
|
|
|
|
// If all zero entries are zero, the uZero==0
|
|
|
|
uZero &= 0x7FFFFFFF; // Allow -0.0f
|
|
|
|
// If all 1.0f entries are 1.0f, then uOne==0
|
|
|
|
uOne |= uZero;
|
|
|
|
return (uOne==0);
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
XMVECTOR vTemp1 = vceqq_f32(M.r[0],g_XMIdentityR0);
|
|
|
|
XMVECTOR vTemp2 = vceqq_f32(M.r[1],g_XMIdentityR1);
|
|
|
|
XMVECTOR vTemp3 = vceqq_f32(M.r[2],g_XMIdentityR2);
|
|
|
|
XMVECTOR vTemp4 = vceqq_f32(M.r[3],g_XMIdentityR3);
|
|
|
|
vTemp1 = vandq_u32(vTemp1,vTemp2);
|
|
|
|
vTemp3 = vandq_u32(vTemp3,vTemp4);
|
|
|
|
vTemp1 = vandq_u32(vTemp1,vTemp3);
|
|
|
|
int8x8x2_t vTemp = vzip_u8(vget_low_u8(vTemp1), vget_high_u8(vTemp1));
|
|
|
|
vTemp = vzip_u16(vTemp.val[0], vTemp.val[1]);
|
|
|
|
uint32_t r = vget_lane_u32(vTemp.val[1], 1);
|
|
|
|
return ( r == 0xFFFFFFFFU );
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMVECTOR vTemp1 = _mm_cmpeq_ps(M.r[0],g_XMIdentityR0);
|
|
|
|
XMVECTOR vTemp2 = _mm_cmpeq_ps(M.r[1],g_XMIdentityR1);
|
|
|
|
XMVECTOR vTemp3 = _mm_cmpeq_ps(M.r[2],g_XMIdentityR2);
|
|
|
|
XMVECTOR vTemp4 = _mm_cmpeq_ps(M.r[3],g_XMIdentityR3);
|
|
|
|
vTemp1 = _mm_and_ps(vTemp1,vTemp2);
|
|
|
|
vTemp3 = _mm_and_ps(vTemp3,vTemp4);
|
|
|
|
vTemp1 = _mm_and_ps(vTemp1,vTemp3);
|
|
|
|
return (_mm_movemask_ps(vTemp1)==0x0f);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// Computation operations
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// Perform a 4x4 matrix multiply by a 4x4 matrix
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixMultiply
|
|
|
|
(
|
|
|
|
FXMMATRIX M1,
|
|
|
|
CXMMATRIX M2
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
XMMATRIX mResult;
|
|
|
|
// Cache the invariants in registers
|
|
|
|
float x = M1.m[0][0];
|
|
|
|
float y = M1.m[0][1];
|
|
|
|
float z = M1.m[0][2];
|
|
|
|
float w = M1.m[0][3];
|
|
|
|
// Perform the operation on the first row
|
|
|
|
mResult.m[0][0] = (M2.m[0][0]*x)+(M2.m[1][0]*y)+(M2.m[2][0]*z)+(M2.m[3][0]*w);
|
|
|
|
mResult.m[0][1] = (M2.m[0][1]*x)+(M2.m[1][1]*y)+(M2.m[2][1]*z)+(M2.m[3][1]*w);
|
|
|
|
mResult.m[0][2] = (M2.m[0][2]*x)+(M2.m[1][2]*y)+(M2.m[2][2]*z)+(M2.m[3][2]*w);
|
|
|
|
mResult.m[0][3] = (M2.m[0][3]*x)+(M2.m[1][3]*y)+(M2.m[2][3]*z)+(M2.m[3][3]*w);
|
|
|
|
// Repeat for all the other rows
|
|
|
|
x = M1.m[1][0];
|
|
|
|
y = M1.m[1][1];
|
|
|
|
z = M1.m[1][2];
|
|
|
|
w = M1.m[1][3];
|
|
|
|
mResult.m[1][0] = (M2.m[0][0]*x)+(M2.m[1][0]*y)+(M2.m[2][0]*z)+(M2.m[3][0]*w);
|
|
|
|
mResult.m[1][1] = (M2.m[0][1]*x)+(M2.m[1][1]*y)+(M2.m[2][1]*z)+(M2.m[3][1]*w);
|
|
|
|
mResult.m[1][2] = (M2.m[0][2]*x)+(M2.m[1][2]*y)+(M2.m[2][2]*z)+(M2.m[3][2]*w);
|
|
|
|
mResult.m[1][3] = (M2.m[0][3]*x)+(M2.m[1][3]*y)+(M2.m[2][3]*z)+(M2.m[3][3]*w);
|
|
|
|
x = M1.m[2][0];
|
|
|
|
y = M1.m[2][1];
|
|
|
|
z = M1.m[2][2];
|
|
|
|
w = M1.m[2][3];
|
|
|
|
mResult.m[2][0] = (M2.m[0][0]*x)+(M2.m[1][0]*y)+(M2.m[2][0]*z)+(M2.m[3][0]*w);
|
|
|
|
mResult.m[2][1] = (M2.m[0][1]*x)+(M2.m[1][1]*y)+(M2.m[2][1]*z)+(M2.m[3][1]*w);
|
|
|
|
mResult.m[2][2] = (M2.m[0][2]*x)+(M2.m[1][2]*y)+(M2.m[2][2]*z)+(M2.m[3][2]*w);
|
|
|
|
mResult.m[2][3] = (M2.m[0][3]*x)+(M2.m[1][3]*y)+(M2.m[2][3]*z)+(M2.m[3][3]*w);
|
|
|
|
x = M1.m[3][0];
|
|
|
|
y = M1.m[3][1];
|
|
|
|
z = M1.m[3][2];
|
|
|
|
w = M1.m[3][3];
|
|
|
|
mResult.m[3][0] = (M2.m[0][0]*x)+(M2.m[1][0]*y)+(M2.m[2][0]*z)+(M2.m[3][0]*w);
|
|
|
|
mResult.m[3][1] = (M2.m[0][1]*x)+(M2.m[1][1]*y)+(M2.m[2][1]*z)+(M2.m[3][1]*w);
|
|
|
|
mResult.m[3][2] = (M2.m[0][2]*x)+(M2.m[1][2]*y)+(M2.m[2][2]*z)+(M2.m[3][2]*w);
|
|
|
|
mResult.m[3][3] = (M2.m[0][3]*x)+(M2.m[1][3]*y)+(M2.m[2][3]*z)+(M2.m[3][3]*w);
|
|
|
|
return mResult;
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
XMMATRIX mResult;
|
|
|
|
float32x2_t VL = vget_low_f32( M1.r[0] );
|
|
|
|
float32x2_t VH = vget_high_f32( M1.r[0] );
|
|
|
|
// Perform the operation on the first row
|
|
|
|
XMVECTOR vX = vmulq_lane_f32(M2.r[0], VL, 0);
|
|
|
|
XMVECTOR vY = vmulq_lane_f32(M2.r[1], VL, 1);
|
|
|
|
XMVECTOR vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
|
|
|
|
XMVECTOR vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
|
|
|
|
mResult.r[0] = vaddq_f32( vZ, vW );
|
|
|
|
// Repeat for the other 3 rows
|
|
|
|
VL = vget_low_f32( M1.r[1] );
|
|
|
|
VH = vget_high_f32( M1.r[1] );
|
|
|
|
vX = vmulq_lane_f32(M2.r[0], VL, 0);
|
|
|
|
vY = vmulq_lane_f32(M2.r[1], VL, 1);
|
|
|
|
vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
|
|
|
|
vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
|
|
|
|
mResult.r[1] = vaddq_f32( vZ, vW );
|
|
|
|
VL = vget_low_f32( M1.r[2] );
|
|
|
|
VH = vget_high_f32( M1.r[2] );
|
|
|
|
vX = vmulq_lane_f32(M2.r[0], VL, 0);
|
|
|
|
vY = vmulq_lane_f32(M2.r[1], VL, 1);
|
|
|
|
vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
|
|
|
|
vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
|
|
|
|
mResult.r[2] = vaddq_f32( vZ, vW );
|
|
|
|
VL = vget_low_f32( M1.r[3] );
|
|
|
|
VH = vget_high_f32( M1.r[3] );
|
|
|
|
vX = vmulq_lane_f32(M2.r[0], VL, 0);
|
|
|
|
vY = vmulq_lane_f32(M2.r[1], VL, 1);
|
|
|
|
vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
|
|
|
|
vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
|
|
|
|
mResult.r[3] = vaddq_f32( vZ, vW );
|
|
|
|
return mResult;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX mResult;
|
|
|
|
// Use vW to hold the original row
|
|
|
|
XMVECTOR vW = M1.r[0];
|
|
|
|
// Splat the component X,Y,Z then W
|
|
|
|
XMVECTOR vX = XM_PERMUTE_PS(vW,_MM_SHUFFLE(0,0,0,0));
|
|
|
|
XMVECTOR vY = XM_PERMUTE_PS(vW,_MM_SHUFFLE(1,1,1,1));
|
|
|
|
XMVECTOR vZ = XM_PERMUTE_PS(vW,_MM_SHUFFLE(2,2,2,2));
|
|
|
|
vW = XM_PERMUTE_PS(vW,_MM_SHUFFLE(3,3,3,3));
|
|
|
|
// Perform the operation on the first row
|
|
|
|
vX = _mm_mul_ps(vX,M2.r[0]);
|
|
|
|
vY = _mm_mul_ps(vY,M2.r[1]);
|
|
|
|
vZ = _mm_mul_ps(vZ,M2.r[2]);
|
|
|
|
vW = _mm_mul_ps(vW,M2.r[3]);
|
|
|
|
// Perform a binary add to reduce cumulative errors
|
|
|
|
vX = _mm_add_ps(vX,vZ);
|
|
|
|
vY = _mm_add_ps(vY,vW);
|
|
|
|
vX = _mm_add_ps(vX,vY);
|
|
|
|
mResult.r[0] = vX;
|
|
|
|
// Repeat for the other 3 rows
|
|
|
|
vW = M1.r[1];
|
|
|
|
vX = XM_PERMUTE_PS(vW,_MM_SHUFFLE(0,0,0,0));
|
|
|
|
vY = XM_PERMUTE_PS(vW,_MM_SHUFFLE(1,1,1,1));
|
|
|
|
vZ = XM_PERMUTE_PS(vW,_MM_SHUFFLE(2,2,2,2));
|
|
|
|
vW = XM_PERMUTE_PS(vW,_MM_SHUFFLE(3,3,3,3));
|
|
|
|
vX = _mm_mul_ps(vX,M2.r[0]);
|
|
|
|
vY = _mm_mul_ps(vY,M2.r[1]);
|
|
|
|
vZ = _mm_mul_ps(vZ,M2.r[2]);
|
|
|
|
vW = _mm_mul_ps(vW,M2.r[3]);
|
|
|
|
vX = _mm_add_ps(vX,vZ);
|
|
|
|
vY = _mm_add_ps(vY,vW);
|
|
|
|
vX = _mm_add_ps(vX,vY);
|
|
|
|
mResult.r[1] = vX;
|
|
|
|
vW = M1.r[2];
|
|
|
|
vX = XM_PERMUTE_PS(vW,_MM_SHUFFLE(0,0,0,0));
|
|
|
|
vY = XM_PERMUTE_PS(vW,_MM_SHUFFLE(1,1,1,1));
|
|
|
|
vZ = XM_PERMUTE_PS(vW,_MM_SHUFFLE(2,2,2,2));
|
|
|
|
vW = XM_PERMUTE_PS(vW,_MM_SHUFFLE(3,3,3,3));
|
|
|
|
vX = _mm_mul_ps(vX,M2.r[0]);
|
|
|
|
vY = _mm_mul_ps(vY,M2.r[1]);
|
|
|
|
vZ = _mm_mul_ps(vZ,M2.r[2]);
|
|
|
|
vW = _mm_mul_ps(vW,M2.r[3]);
|
|
|
|
vX = _mm_add_ps(vX,vZ);
|
|
|
|
vY = _mm_add_ps(vY,vW);
|
|
|
|
vX = _mm_add_ps(vX,vY);
|
|
|
|
mResult.r[2] = vX;
|
|
|
|
vW = M1.r[3];
|
|
|
|
vX = XM_PERMUTE_PS(vW,_MM_SHUFFLE(0,0,0,0));
|
|
|
|
vY = XM_PERMUTE_PS(vW,_MM_SHUFFLE(1,1,1,1));
|
|
|
|
vZ = XM_PERMUTE_PS(vW,_MM_SHUFFLE(2,2,2,2));
|
|
|
|
vW = XM_PERMUTE_PS(vW,_MM_SHUFFLE(3,3,3,3));
|
|
|
|
vX = _mm_mul_ps(vX,M2.r[0]);
|
|
|
|
vY = _mm_mul_ps(vY,M2.r[1]);
|
|
|
|
vZ = _mm_mul_ps(vZ,M2.r[2]);
|
|
|
|
vW = _mm_mul_ps(vW,M2.r[3]);
|
|
|
|
vX = _mm_add_ps(vX,vZ);
|
|
|
|
vY = _mm_add_ps(vY,vW);
|
|
|
|
vX = _mm_add_ps(vX,vY);
|
|
|
|
mResult.r[3] = vX;
|
|
|
|
return mResult;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixMultiplyTranspose
|
|
|
|
(
|
|
|
|
FXMMATRIX M1,
|
|
|
|
CXMMATRIX M2
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
XMMATRIX mResult;
|
|
|
|
// Cache the invariants in registers
|
|
|
|
float x = M2.m[0][0];
|
|
|
|
float y = M2.m[1][0];
|
|
|
|
float z = M2.m[2][0];
|
|
|
|
float w = M2.m[3][0];
|
|
|
|
// Perform the operation on the first row
|
|
|
|
mResult.m[0][0] = (M1.m[0][0]*x)+(M1.m[0][1]*y)+(M1.m[0][2]*z)+(M1.m[0][3]*w);
|
|
|
|
mResult.m[0][1] = (M1.m[1][0]*x)+(M1.m[1][1]*y)+(M1.m[1][2]*z)+(M1.m[1][3]*w);
|
|
|
|
mResult.m[0][2] = (M1.m[2][0]*x)+(M1.m[2][1]*y)+(M1.m[2][2]*z)+(M1.m[2][3]*w);
|
|
|
|
mResult.m[0][3] = (M1.m[3][0]*x)+(M1.m[3][1]*y)+(M1.m[3][2]*z)+(M1.m[3][3]*w);
|
|
|
|
// Repeat for all the other rows
|
|
|
|
x = M2.m[0][1];
|
|
|
|
y = M2.m[1][1];
|
|
|
|
z = M2.m[2][1];
|
|
|
|
w = M2.m[3][1];
|
|
|
|
mResult.m[1][0] = (M1.m[0][0]*x)+(M1.m[0][1]*y)+(M1.m[0][2]*z)+(M1.m[0][3]*w);
|
|
|
|
mResult.m[1][1] = (M1.m[1][0]*x)+(M1.m[1][1]*y)+(M1.m[1][2]*z)+(M1.m[1][3]*w);
|
|
|
|
mResult.m[1][2] = (M1.m[2][0]*x)+(M1.m[2][1]*y)+(M1.m[2][2]*z)+(M1.m[2][3]*w);
|
|
|
|
mResult.m[1][3] = (M1.m[3][0]*x)+(M1.m[3][1]*y)+(M1.m[3][2]*z)+(M1.m[3][3]*w);
|
|
|
|
x = M2.m[0][2];
|
|
|
|
y = M2.m[1][2];
|
|
|
|
z = M2.m[2][2];
|
|
|
|
w = M2.m[3][2];
|
|
|
|
mResult.m[2][0] = (M1.m[0][0]*x)+(M1.m[0][1]*y)+(M1.m[0][2]*z)+(M1.m[0][3]*w);
|
|
|
|
mResult.m[2][1] = (M1.m[1][0]*x)+(M1.m[1][1]*y)+(M1.m[1][2]*z)+(M1.m[1][3]*w);
|
|
|
|
mResult.m[2][2] = (M1.m[2][0]*x)+(M1.m[2][1]*y)+(M1.m[2][2]*z)+(M1.m[2][3]*w);
|
|
|
|
mResult.m[2][3] = (M1.m[3][0]*x)+(M1.m[3][1]*y)+(M1.m[3][2]*z)+(M1.m[3][3]*w);
|
|
|
|
x = M2.m[0][3];
|
|
|
|
y = M2.m[1][3];
|
|
|
|
z = M2.m[2][3];
|
|
|
|
w = M2.m[3][3];
|
|
|
|
mResult.m[3][0] = (M1.m[0][0]*x)+(M1.m[0][1]*y)+(M1.m[0][2]*z)+(M1.m[0][3]*w);
|
|
|
|
mResult.m[3][1] = (M1.m[1][0]*x)+(M1.m[1][1]*y)+(M1.m[1][2]*z)+(M1.m[1][3]*w);
|
|
|
|
mResult.m[3][2] = (M1.m[2][0]*x)+(M1.m[2][1]*y)+(M1.m[2][2]*z)+(M1.m[2][3]*w);
|
|
|
|
mResult.m[3][3] = (M1.m[3][0]*x)+(M1.m[3][1]*y)+(M1.m[3][2]*z)+(M1.m[3][3]*w);
|
|
|
|
return mResult;
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float32x2_t VL = vget_low_f32( M1.r[0] );
|
|
|
|
float32x2_t VH = vget_high_f32( M1.r[0] );
|
|
|
|
// Perform the operation on the first row
|
|
|
|
XMVECTOR vX = vmulq_lane_f32(M2.r[0], VL, 0);
|
|
|
|
XMVECTOR vY = vmulq_lane_f32(M2.r[1], VL, 1);
|
|
|
|
XMVECTOR vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
|
|
|
|
XMVECTOR vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
|
|
|
|
float32x4_t r0 = vaddq_f32( vZ, vW );
|
|
|
|
// Repeat for the other 3 rows
|
|
|
|
VL = vget_low_f32( M1.r[1] );
|
|
|
|
VH = vget_high_f32( M1.r[1] );
|
|
|
|
vX = vmulq_lane_f32(M2.r[0], VL, 0);
|
|
|
|
vY = vmulq_lane_f32(M2.r[1], VL, 1);
|
|
|
|
vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
|
|
|
|
vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
|
|
|
|
float32x4_t r1 = vaddq_f32( vZ, vW );
|
|
|
|
VL = vget_low_f32( M1.r[2] );
|
|
|
|
VH = vget_high_f32( M1.r[2] );
|
|
|
|
vX = vmulq_lane_f32(M2.r[0], VL, 0);
|
|
|
|
vY = vmulq_lane_f32(M2.r[1], VL, 1);
|
|
|
|
vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
|
|
|
|
vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
|
|
|
|
float32x4_t r2 = vaddq_f32( vZ, vW );
|
|
|
|
VL = vget_low_f32( M1.r[3] );
|
|
|
|
VH = vget_high_f32( M1.r[3] );
|
|
|
|
vX = vmulq_lane_f32(M2.r[0], VL, 0);
|
|
|
|
vY = vmulq_lane_f32(M2.r[1], VL, 1);
|
|
|
|
vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
|
|
|
|
vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
|
|
|
|
float32x4_t r3 = vaddq_f32( vZ, vW );
|
|
|
|
|
|
|
|
// Transpose result
|
|
|
|
float32x4x2_t P0 = vzipq_f32( r0, r2 );
|
|
|
|
float32x4x2_t P1 = vzipq_f32( r1, r3 );
|
|
|
|
|
|
|
|
float32x4x2_t T0 = vzipq_f32( P0.val[0], P1.val[0] );
|
|
|
|
float32x4x2_t T1 = vzipq_f32( P0.val[1], P1.val[1] );
|
|
|
|
|
|
|
|
XMMATRIX mResult;
|
|
|
|
mResult.r[0] = T0.val[0];
|
|
|
|
mResult.r[1] = T0.val[1];
|
|
|
|
mResult.r[2] = T1.val[0];
|
|
|
|
mResult.r[3] = T1.val[1];
|
|
|
|
return mResult;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
// Use vW to hold the original row
|
|
|
|
XMVECTOR vW = M1.r[0];
|
|
|
|
// Splat the component X,Y,Z then W
|
|
|
|
XMVECTOR vX = XM_PERMUTE_PS(vW,_MM_SHUFFLE(0,0,0,0));
|
|
|
|
XMVECTOR vY = XM_PERMUTE_PS(vW,_MM_SHUFFLE(1,1,1,1));
|
|
|
|
XMVECTOR vZ = XM_PERMUTE_PS(vW,_MM_SHUFFLE(2,2,2,2));
|
|
|
|
vW = XM_PERMUTE_PS(vW,_MM_SHUFFLE(3,3,3,3));
|
|
|
|
// Perform the operation on the first row
|
|
|
|
vX = _mm_mul_ps(vX,M2.r[0]);
|
|
|
|
vY = _mm_mul_ps(vY,M2.r[1]);
|
|
|
|
vZ = _mm_mul_ps(vZ,M2.r[2]);
|
|
|
|
vW = _mm_mul_ps(vW,M2.r[3]);
|
|
|
|
// Perform a binary add to reduce cumulative errors
|
|
|
|
vX = _mm_add_ps(vX,vZ);
|
|
|
|
vY = _mm_add_ps(vY,vW);
|
|
|
|
vX = _mm_add_ps(vX,vY);
|
|
|
|
__m128 r0 = vX;
|
|
|
|
// Repeat for the other 3 rows
|
|
|
|
vW = M1.r[1];
|
|
|
|
vX = XM_PERMUTE_PS(vW,_MM_SHUFFLE(0,0,0,0));
|
|
|
|
vY = XM_PERMUTE_PS(vW,_MM_SHUFFLE(1,1,1,1));
|
|
|
|
vZ = XM_PERMUTE_PS(vW,_MM_SHUFFLE(2,2,2,2));
|
|
|
|
vW = XM_PERMUTE_PS(vW,_MM_SHUFFLE(3,3,3,3));
|
|
|
|
vX = _mm_mul_ps(vX,M2.r[0]);
|
|
|
|
vY = _mm_mul_ps(vY,M2.r[1]);
|
|
|
|
vZ = _mm_mul_ps(vZ,M2.r[2]);
|
|
|
|
vW = _mm_mul_ps(vW,M2.r[3]);
|
|
|
|
vX = _mm_add_ps(vX,vZ);
|
|
|
|
vY = _mm_add_ps(vY,vW);
|
|
|
|
vX = _mm_add_ps(vX,vY);
|
|
|
|
__m128 r1 = vX;
|
|
|
|
vW = M1.r[2];
|
|
|
|
vX = XM_PERMUTE_PS(vW,_MM_SHUFFLE(0,0,0,0));
|
|
|
|
vY = XM_PERMUTE_PS(vW,_MM_SHUFFLE(1,1,1,1));
|
|
|
|
vZ = XM_PERMUTE_PS(vW,_MM_SHUFFLE(2,2,2,2));
|
|
|
|
vW = XM_PERMUTE_PS(vW,_MM_SHUFFLE(3,3,3,3));
|
|
|
|
vX = _mm_mul_ps(vX,M2.r[0]);
|
|
|
|
vY = _mm_mul_ps(vY,M2.r[1]);
|
|
|
|
vZ = _mm_mul_ps(vZ,M2.r[2]);
|
|
|
|
vW = _mm_mul_ps(vW,M2.r[3]);
|
|
|
|
vX = _mm_add_ps(vX,vZ);
|
|
|
|
vY = _mm_add_ps(vY,vW);
|
|
|
|
vX = _mm_add_ps(vX,vY);
|
|
|
|
__m128 r2 = vX;
|
|
|
|
vW = M1.r[3];
|
|
|
|
vX = XM_PERMUTE_PS(vW,_MM_SHUFFLE(0,0,0,0));
|
|
|
|
vY = XM_PERMUTE_PS(vW,_MM_SHUFFLE(1,1,1,1));
|
|
|
|
vZ = XM_PERMUTE_PS(vW,_MM_SHUFFLE(2,2,2,2));
|
|
|
|
vW = XM_PERMUTE_PS(vW,_MM_SHUFFLE(3,3,3,3));
|
|
|
|
vX = _mm_mul_ps(vX,M2.r[0]);
|
|
|
|
vY = _mm_mul_ps(vY,M2.r[1]);
|
|
|
|
vZ = _mm_mul_ps(vZ,M2.r[2]);
|
|
|
|
vW = _mm_mul_ps(vW,M2.r[3]);
|
|
|
|
vX = _mm_add_ps(vX,vZ);
|
|
|
|
vY = _mm_add_ps(vY,vW);
|
|
|
|
vX = _mm_add_ps(vX,vY);
|
|
|
|
__m128 r3 = vX;
|
|
|
|
|
|
|
|
// x.x,x.y,y.x,y.y
|
|
|
|
XMVECTOR vTemp1 = _mm_shuffle_ps(r0,r1,_MM_SHUFFLE(1,0,1,0));
|
|
|
|
// x.z,x.w,y.z,y.w
|
|
|
|
XMVECTOR vTemp3 = _mm_shuffle_ps(r0,r1,_MM_SHUFFLE(3,2,3,2));
|
|
|
|
// z.x,z.y,w.x,w.y
|
|
|
|
XMVECTOR vTemp2 = _mm_shuffle_ps(r2,r3,_MM_SHUFFLE(1,0,1,0));
|
|
|
|
// z.z,z.w,w.z,w.w
|
|
|
|
XMVECTOR vTemp4 = _mm_shuffle_ps(r2,r3,_MM_SHUFFLE(3,2,3,2));
|
|
|
|
|
|
|
|
XMMATRIX mResult;
|
|
|
|
// x.x,y.x,z.x,w.x
|
|
|
|
mResult.r[0] = _mm_shuffle_ps(vTemp1, vTemp2,_MM_SHUFFLE(2,0,2,0));
|
|
|
|
// x.y,y.y,z.y,w.y
|
|
|
|
mResult.r[1] = _mm_shuffle_ps(vTemp1, vTemp2,_MM_SHUFFLE(3,1,3,1));
|
|
|
|
// x.z,y.z,z.z,w.z
|
|
|
|
mResult.r[2] = _mm_shuffle_ps(vTemp3, vTemp4,_MM_SHUFFLE(2,0,2,0));
|
|
|
|
// x.w,y.w,z.w,w.w
|
|
|
|
mResult.r[3] = _mm_shuffle_ps(vTemp3, vTemp4,_MM_SHUFFLE(3,1,3,1));
|
|
|
|
return mResult;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixTranspose
|
|
|
|
(
|
|
|
|
FXMMATRIX M
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
// Original matrix:
|
|
|
|
//
|
|
|
|
// m00m01m02m03
|
|
|
|
// m10m11m12m13
|
|
|
|
// m20m21m22m23
|
|
|
|
// m30m31m32m33
|
|
|
|
|
|
|
|
XMMATRIX P;
|
|
|
|
P.r[0] = XMVectorMergeXY(M.r[0], M.r[2]); // m00m20m01m21
|
|
|
|
P.r[1] = XMVectorMergeXY(M.r[1], M.r[3]); // m10m30m11m31
|
|
|
|
P.r[2] = XMVectorMergeZW(M.r[0], M.r[2]); // m02m22m03m23
|
|
|
|
P.r[3] = XMVectorMergeZW(M.r[1], M.r[3]); // m12m32m13m33
|
|
|
|
|
|
|
|
XMMATRIX MT;
|
|
|
|
MT.r[0] = XMVectorMergeXY(P.r[0], P.r[1]); // m00m10m20m30
|
|
|
|
MT.r[1] = XMVectorMergeZW(P.r[0], P.r[1]); // m01m11m21m31
|
|
|
|
MT.r[2] = XMVectorMergeXY(P.r[2], P.r[3]); // m02m12m22m32
|
|
|
|
MT.r[3] = XMVectorMergeZW(P.r[2], P.r[3]); // m03m13m23m33
|
|
|
|
return MT;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float32x4x2_t P0 = vzipq_f32( M.r[0], M.r[2] );
|
|
|
|
float32x4x2_t P1 = vzipq_f32( M.r[1], M.r[3] );
|
|
|
|
|
|
|
|
float32x4x2_t T0 = vzipq_f32( P0.val[0], P1.val[0] );
|
|
|
|
float32x4x2_t T1 = vzipq_f32( P0.val[1], P1.val[1] );
|
|
|
|
|
|
|
|
XMMATRIX mResult;
|
|
|
|
mResult.r[0] = T0.val[0];
|
|
|
|
mResult.r[1] = T0.val[1];
|
|
|
|
mResult.r[2] = T1.val[0];
|
|
|
|
mResult.r[3] = T1.val[1];
|
|
|
|
return mResult;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
// x.x,x.y,y.x,y.y
|
|
|
|
XMVECTOR vTemp1 = _mm_shuffle_ps(M.r[0],M.r[1],_MM_SHUFFLE(1,0,1,0));
|
|
|
|
// x.z,x.w,y.z,y.w
|
|
|
|
XMVECTOR vTemp3 = _mm_shuffle_ps(M.r[0],M.r[1],_MM_SHUFFLE(3,2,3,2));
|
|
|
|
// z.x,z.y,w.x,w.y
|
|
|
|
XMVECTOR vTemp2 = _mm_shuffle_ps(M.r[2],M.r[3],_MM_SHUFFLE(1,0,1,0));
|
|
|
|
// z.z,z.w,w.z,w.w
|
|
|
|
XMVECTOR vTemp4 = _mm_shuffle_ps(M.r[2],M.r[3],_MM_SHUFFLE(3,2,3,2));
|
|
|
|
XMMATRIX mResult;
|
|
|
|
|
|
|
|
// x.x,y.x,z.x,w.x
|
|
|
|
mResult.r[0] = _mm_shuffle_ps(vTemp1, vTemp2,_MM_SHUFFLE(2,0,2,0));
|
|
|
|
// x.y,y.y,z.y,w.y
|
|
|
|
mResult.r[1] = _mm_shuffle_ps(vTemp1, vTemp2,_MM_SHUFFLE(3,1,3,1));
|
|
|
|
// x.z,y.z,z.z,w.z
|
|
|
|
mResult.r[2] = _mm_shuffle_ps(vTemp3, vTemp4,_MM_SHUFFLE(2,0,2,0));
|
|
|
|
// x.w,y.w,z.w,w.w
|
|
|
|
mResult.r[3] = _mm_shuffle_ps(vTemp3, vTemp4,_MM_SHUFFLE(3,1,3,1));
|
|
|
|
return mResult;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// Return the inverse and the determinant of a 4x4 matrix
|
|
|
|
_Use_decl_annotations_
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixInverse
|
|
|
|
(
|
|
|
|
XMVECTOR* pDeterminant,
|
|
|
|
FXMMATRIX M
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
|
|
|
|
XMMATRIX MT = XMMatrixTranspose(M);
|
|
|
|
|
|
|
|
XMVECTOR V0[4], V1[4];
|
|
|
|
V0[0] = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(MT.r[2]);
|
|
|
|
V1[0] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W>(MT.r[3]);
|
|
|
|
V0[1] = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(MT.r[0]);
|
|
|
|
V1[1] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W>(MT.r[1]);
|
|
|
|
V0[2] = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_0Z, XM_PERMUTE_1X, XM_PERMUTE_1Z>(MT.r[2], MT.r[0]);
|
|
|
|
V1[2] = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_1Y, XM_PERMUTE_1W>(MT.r[3], MT.r[1]);
|
|
|
|
|
|
|
|
XMVECTOR D0 = XMVectorMultiply(V0[0], V1[0]);
|
|
|
|
XMVECTOR D1 = XMVectorMultiply(V0[1], V1[1]);
|
|
|
|
XMVECTOR D2 = XMVectorMultiply(V0[2], V1[2]);
|
|
|
|
|
|
|
|
V0[0] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W>(MT.r[2]);
|
|
|
|
V1[0] = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(MT.r[3]);
|
|
|
|
V0[1] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W>(MT.r[0]);
|
|
|
|
V1[1] = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(MT.r[1]);
|
|
|
|
V0[2] = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_1Y, XM_PERMUTE_1W>(MT.r[2], MT.r[0]);
|
|
|
|
V1[2] = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_0Z, XM_PERMUTE_1X, XM_PERMUTE_1Z>(MT.r[3], MT.r[1]);
|
|
|
|
|
|
|
|
D0 = XMVectorNegativeMultiplySubtract(V0[0], V1[0], D0);
|
|
|
|
D1 = XMVectorNegativeMultiplySubtract(V0[1], V1[1], D1);
|
|
|
|
D2 = XMVectorNegativeMultiplySubtract(V0[2], V1[2], D2);
|
|
|
|
|
|
|
|
V0[0] = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_Y>(MT.r[1]);
|
|
|
|
V1[0] = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_0X>(D0, D2);
|
|
|
|
V0[1] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_X>(MT.r[0]);
|
|
|
|
V1[1] = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Y, XM_PERMUTE_0Y, XM_PERMUTE_0Z>(D0, D2);
|
|
|
|
V0[2] = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_Y>(MT.r[3]);
|
|
|
|
V1[2] = XMVectorPermute<XM_PERMUTE_1W, XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_0X>(D1, D2);
|
|
|
|
V0[3] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_X>(MT.r[2]);
|
|
|
|
V1[3] = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1W, XM_PERMUTE_0Y, XM_PERMUTE_0Z>(D1, D2);
|
|
|
|
|
|
|
|
XMVECTOR C0 = XMVectorMultiply(V0[0], V1[0]);
|
|
|
|
XMVECTOR C2 = XMVectorMultiply(V0[1], V1[1]);
|
|
|
|
XMVECTOR C4 = XMVectorMultiply(V0[2], V1[2]);
|
|
|
|
XMVECTOR C6 = XMVectorMultiply(V0[3], V1[3]);
|
|
|
|
|
|
|
|
V0[0] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Y, XM_SWIZZLE_Z>(MT.r[1]);
|
|
|
|
V1[0] = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_1X>(D0, D2);
|
|
|
|
V0[1] = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Y>(MT.r[0]);
|
|
|
|
V1[1] = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_0X>(D0, D2);
|
|
|
|
V0[2] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Y, XM_SWIZZLE_Z>(MT.r[3]);
|
|
|
|
V1[2] = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_1Z>(D1, D2);
|
|
|
|
V0[3] = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Y>(MT.r[2]);
|
|
|
|
V1[3] = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_1Z, XM_PERMUTE_0X>(D1, D2);
|
|
|
|
|
|
|
|
C0 = XMVectorNegativeMultiplySubtract(V0[0], V1[0], C0);
|
|
|
|
C2 = XMVectorNegativeMultiplySubtract(V0[1], V1[1], C2);
|
|
|
|
C4 = XMVectorNegativeMultiplySubtract(V0[2], V1[2], C4);
|
|
|
|
C6 = XMVectorNegativeMultiplySubtract(V0[3], V1[3], C6);
|
|
|
|
|
|
|
|
V0[0] = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_X>(MT.r[1]);
|
|
|
|
V1[0] = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_1Y, XM_PERMUTE_1X, XM_PERMUTE_0Z>(D0, D2);
|
|
|
|
V0[1] = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Z>(MT.r[0]);
|
|
|
|
V1[1] = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_1X>(D0, D2);
|
|
|
|
V0[2] = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_X>(MT.r[3]);
|
|
|
|
V1[2] = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_1W, XM_PERMUTE_1Z, XM_PERMUTE_0Z>(D1, D2);
|
|
|
|
V0[3] = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Z>(MT.r[2]);
|
|
|
|
V1[3] = XMVectorPermute<XM_PERMUTE_1W, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_1Z>(D1, D2);
|
|
|
|
|
|
|
|
XMVECTOR C1 = XMVectorNegativeMultiplySubtract(V0[0], V1[0], C0);
|
|
|
|
C0 = XMVectorMultiplyAdd(V0[0], V1[0], C0);
|
|
|
|
XMVECTOR C3 = XMVectorMultiplyAdd(V0[1], V1[1], C2);
|
|
|
|
C2 = XMVectorNegativeMultiplySubtract(V0[1], V1[1], C2);
|
|
|
|
XMVECTOR C5 = XMVectorNegativeMultiplySubtract(V0[2], V1[2], C4);
|
|
|
|
C4 = XMVectorMultiplyAdd(V0[2], V1[2], C4);
|
|
|
|
XMVECTOR C7 = XMVectorMultiplyAdd(V0[3], V1[3], C6);
|
|
|
|
C6 = XMVectorNegativeMultiplySubtract(V0[3], V1[3], C6);
|
|
|
|
|
|
|
|
XMMATRIX R;
|
|
|
|
R.r[0] = XMVectorSelect(C0, C1, g_XMSelect0101.v);
|
|
|
|
R.r[1] = XMVectorSelect(C2, C3, g_XMSelect0101.v);
|
|
|
|
R.r[2] = XMVectorSelect(C4, C5, g_XMSelect0101.v);
|
|
|
|
R.r[3] = XMVectorSelect(C6, C7, g_XMSelect0101.v);
|
|
|
|
|
|
|
|
XMVECTOR Determinant = XMVector4Dot(R.r[0], MT.r[0]);
|
|
|
|
|
|
|
|
if (pDeterminant != nullptr)
|
|
|
|
*pDeterminant = Determinant;
|
|
|
|
|
|
|
|
XMVECTOR Reciprocal = XMVectorReciprocal(Determinant);
|
|
|
|
|
|
|
|
XMMATRIX Result;
|
|
|
|
Result.r[0] = XMVectorMultiply(R.r[0], Reciprocal);
|
|
|
|
Result.r[1] = XMVectorMultiply(R.r[1], Reciprocal);
|
|
|
|
Result.r[2] = XMVectorMultiply(R.r[2], Reciprocal);
|
|
|
|
Result.r[3] = XMVectorMultiply(R.r[3], Reciprocal);
|
|
|
|
return Result;
|
|
|
|
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX MT = XMMatrixTranspose(M);
|
|
|
|
XMVECTOR V00 = XM_PERMUTE_PS(MT.r[2],_MM_SHUFFLE(1,1,0,0));
|
|
|
|
XMVECTOR V10 = XM_PERMUTE_PS(MT.r[3],_MM_SHUFFLE(3,2,3,2));
|
|
|
|
XMVECTOR V01 = XM_PERMUTE_PS(MT.r[0],_MM_SHUFFLE(1,1,0,0));
|
|
|
|
XMVECTOR V11 = XM_PERMUTE_PS(MT.r[1],_MM_SHUFFLE(3,2,3,2));
|
|
|
|
XMVECTOR V02 = _mm_shuffle_ps(MT.r[2], MT.r[0],_MM_SHUFFLE(2,0,2,0));
|
|
|
|
XMVECTOR V12 = _mm_shuffle_ps(MT.r[3], MT.r[1],_MM_SHUFFLE(3,1,3,1));
|
|
|
|
|
|
|
|
XMVECTOR D0 = _mm_mul_ps(V00,V10);
|
|
|
|
XMVECTOR D1 = _mm_mul_ps(V01,V11);
|
|
|
|
XMVECTOR D2 = _mm_mul_ps(V02,V12);
|
|
|
|
|
|
|
|
V00 = XM_PERMUTE_PS(MT.r[2],_MM_SHUFFLE(3,2,3,2));
|
|
|
|
V10 = XM_PERMUTE_PS(MT.r[3],_MM_SHUFFLE(1,1,0,0));
|
|
|
|
V01 = XM_PERMUTE_PS(MT.r[0],_MM_SHUFFLE(3,2,3,2));
|
|
|
|
V11 = XM_PERMUTE_PS(MT.r[1],_MM_SHUFFLE(1,1,0,0));
|
|
|
|
V02 = _mm_shuffle_ps(MT.r[2],MT.r[0],_MM_SHUFFLE(3,1,3,1));
|
|
|
|
V12 = _mm_shuffle_ps(MT.r[3],MT.r[1],_MM_SHUFFLE(2,0,2,0));
|
|
|
|
|
|
|
|
V00 = _mm_mul_ps(V00,V10);
|
|
|
|
V01 = _mm_mul_ps(V01,V11);
|
|
|
|
V02 = _mm_mul_ps(V02,V12);
|
|
|
|
D0 = _mm_sub_ps(D0,V00);
|
|
|
|
D1 = _mm_sub_ps(D1,V01);
|
|
|
|
D2 = _mm_sub_ps(D2,V02);
|
|
|
|
// V11 = D0Y,D0W,D2Y,D2Y
|
|
|
|
V11 = _mm_shuffle_ps(D0,D2,_MM_SHUFFLE(1,1,3,1));
|
|
|
|
V00 = XM_PERMUTE_PS(MT.r[1], _MM_SHUFFLE(1,0,2,1));
|
|
|
|
V10 = _mm_shuffle_ps(V11,D0,_MM_SHUFFLE(0,3,0,2));
|
|
|
|
V01 = XM_PERMUTE_PS(MT.r[0], _MM_SHUFFLE(0,1,0,2));
|
|
|
|
V11 = _mm_shuffle_ps(V11,D0,_MM_SHUFFLE(2,1,2,1));
|
|
|
|
// V13 = D1Y,D1W,D2W,D2W
|
|
|
|
XMVECTOR V13 = _mm_shuffle_ps(D1,D2,_MM_SHUFFLE(3,3,3,1));
|
|
|
|
V02 = XM_PERMUTE_PS(MT.r[3], _MM_SHUFFLE(1,0,2,1));
|
|
|
|
V12 = _mm_shuffle_ps(V13,D1,_MM_SHUFFLE(0,3,0,2));
|
|
|
|
XMVECTOR V03 = XM_PERMUTE_PS(MT.r[2],_MM_SHUFFLE(0,1,0,2));
|
|
|
|
V13 = _mm_shuffle_ps(V13,D1,_MM_SHUFFLE(2,1,2,1));
|
|
|
|
|
|
|
|
XMVECTOR C0 = _mm_mul_ps(V00,V10);
|
|
|
|
XMVECTOR C2 = _mm_mul_ps(V01,V11);
|
|
|
|
XMVECTOR C4 = _mm_mul_ps(V02,V12);
|
|
|
|
XMVECTOR C6 = _mm_mul_ps(V03,V13);
|
|
|
|
|
|
|
|
// V11 = D0X,D0Y,D2X,D2X
|
|
|
|
V11 = _mm_shuffle_ps(D0,D2,_MM_SHUFFLE(0,0,1,0));
|
|
|
|
V00 = XM_PERMUTE_PS(MT.r[1], _MM_SHUFFLE(2,1,3,2));
|
|
|
|
V10 = _mm_shuffle_ps(D0,V11,_MM_SHUFFLE(2,1,0,3));
|
|
|
|
V01 = XM_PERMUTE_PS(MT.r[0], _MM_SHUFFLE(1,3,2,3));
|
|
|
|
V11 = _mm_shuffle_ps(D0,V11,_MM_SHUFFLE(0,2,1,2));
|
|
|
|
// V13 = D1X,D1Y,D2Z,D2Z
|
|
|
|
V13 = _mm_shuffle_ps(D1,D2,_MM_SHUFFLE(2,2,1,0));
|
|
|
|
V02 = XM_PERMUTE_PS(MT.r[3], _MM_SHUFFLE(2,1,3,2));
|
|
|
|
V12 = _mm_shuffle_ps(D1,V13,_MM_SHUFFLE(2,1,0,3));
|
|
|
|
V03 = XM_PERMUTE_PS(MT.r[2],_MM_SHUFFLE(1,3,2,3));
|
|
|
|
V13 = _mm_shuffle_ps(D1,V13,_MM_SHUFFLE(0,2,1,2));
|
|
|
|
|
|
|
|
V00 = _mm_mul_ps(V00,V10);
|
|
|
|
V01 = _mm_mul_ps(V01,V11);
|
|
|
|
V02 = _mm_mul_ps(V02,V12);
|
|
|
|
V03 = _mm_mul_ps(V03,V13);
|
|
|
|
C0 = _mm_sub_ps(C0,V00);
|
|
|
|
C2 = _mm_sub_ps(C2,V01);
|
|
|
|
C4 = _mm_sub_ps(C4,V02);
|
|
|
|
C6 = _mm_sub_ps(C6,V03);
|
|
|
|
|
|
|
|
V00 = XM_PERMUTE_PS(MT.r[1],_MM_SHUFFLE(0,3,0,3));
|
|
|
|
// V10 = D0Z,D0Z,D2X,D2Y
|
|
|
|
V10 = _mm_shuffle_ps(D0,D2,_MM_SHUFFLE(1,0,2,2));
|
|
|
|
V10 = XM_PERMUTE_PS(V10,_MM_SHUFFLE(0,2,3,0));
|
|
|
|
V01 = XM_PERMUTE_PS(MT.r[0],_MM_SHUFFLE(2,0,3,1));
|
|
|
|
// V11 = D0X,D0W,D2X,D2Y
|
|
|
|
V11 = _mm_shuffle_ps(D0,D2,_MM_SHUFFLE(1,0,3,0));
|
|
|
|
V11 = XM_PERMUTE_PS(V11,_MM_SHUFFLE(2,1,0,3));
|
|
|
|
V02 = XM_PERMUTE_PS(MT.r[3],_MM_SHUFFLE(0,3,0,3));
|
|
|
|
// V12 = D1Z,D1Z,D2Z,D2W
|
|
|
|
V12 = _mm_shuffle_ps(D1,D2,_MM_SHUFFLE(3,2,2,2));
|
|
|
|
V12 = XM_PERMUTE_PS(V12,_MM_SHUFFLE(0,2,3,0));
|
|
|
|
V03 = XM_PERMUTE_PS(MT.r[2],_MM_SHUFFLE(2,0,3,1));
|
|
|
|
// V13 = D1X,D1W,D2Z,D2W
|
|
|
|
V13 = _mm_shuffle_ps(D1,D2,_MM_SHUFFLE(3,2,3,0));
|
|
|
|
V13 = XM_PERMUTE_PS(V13,_MM_SHUFFLE(2,1,0,3));
|
|
|
|
|
|
|
|
V00 = _mm_mul_ps(V00,V10);
|
|
|
|
V01 = _mm_mul_ps(V01,V11);
|
|
|
|
V02 = _mm_mul_ps(V02,V12);
|
|
|
|
V03 = _mm_mul_ps(V03,V13);
|
|
|
|
XMVECTOR C1 = _mm_sub_ps(C0,V00);
|
|
|
|
C0 = _mm_add_ps(C0,V00);
|
|
|
|
XMVECTOR C3 = _mm_add_ps(C2,V01);
|
|
|
|
C2 = _mm_sub_ps(C2,V01);
|
|
|
|
XMVECTOR C5 = _mm_sub_ps(C4,V02);
|
|
|
|
C4 = _mm_add_ps(C4,V02);
|
|
|
|
XMVECTOR C7 = _mm_add_ps(C6,V03);
|
|
|
|
C6 = _mm_sub_ps(C6,V03);
|
|
|
|
|
|
|
|
C0 = _mm_shuffle_ps(C0,C1,_MM_SHUFFLE(3,1,2,0));
|
|
|
|
C2 = _mm_shuffle_ps(C2,C3,_MM_SHUFFLE(3,1,2,0));
|
|
|
|
C4 = _mm_shuffle_ps(C4,C5,_MM_SHUFFLE(3,1,2,0));
|
|
|
|
C6 = _mm_shuffle_ps(C6,C7,_MM_SHUFFLE(3,1,2,0));
|
|
|
|
C0 = XM_PERMUTE_PS(C0,_MM_SHUFFLE(3,1,2,0));
|
|
|
|
C2 = XM_PERMUTE_PS(C2,_MM_SHUFFLE(3,1,2,0));
|
|
|
|
C4 = XM_PERMUTE_PS(C4,_MM_SHUFFLE(3,1,2,0));
|
|
|
|
C6 = XM_PERMUTE_PS(C6,_MM_SHUFFLE(3,1,2,0));
|
|
|
|
// Get the determinate
|
|
|
|
XMVECTOR vTemp = XMVector4Dot(C0,MT.r[0]);
|
|
|
|
if (pDeterminant != nullptr)
|
|
|
|
*pDeterminant = vTemp;
|
|
|
|
vTemp = _mm_div_ps(g_XMOne,vTemp);
|
|
|
|
XMMATRIX mResult;
|
|
|
|
mResult.r[0] = _mm_mul_ps(C0,vTemp);
|
|
|
|
mResult.r[1] = _mm_mul_ps(C2,vTemp);
|
|
|
|
mResult.r[2] = _mm_mul_ps(C4,vTemp);
|
|
|
|
mResult.r[3] = _mm_mul_ps(C6,vTemp);
|
|
|
|
return mResult;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMVECTOR XM_CALLCONV XMMatrixDeterminant
|
|
|
|
(
|
|
|
|
FXMMATRIX M
|
|
|
|
)
|
|
|
|
{
|
|
|
|
static const XMVECTORF32 Sign = {1.0f, -1.0f, 1.0f, -1.0f};
|
|
|
|
|
|
|
|
XMVECTOR V0 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_X>(M.r[2]);
|
|
|
|
XMVECTOR V1 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(M.r[3]);
|
|
|
|
XMVECTOR V2 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_X>(M.r[2]);
|
|
|
|
XMVECTOR V3 = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_Z>(M.r[3]);
|
|
|
|
XMVECTOR V4 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(M.r[2]);
|
|
|
|
XMVECTOR V5 = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_Z>(M.r[3]);
|
|
|
|
|
|
|
|
XMVECTOR P0 = XMVectorMultiply(V0, V1);
|
|
|
|
XMVECTOR P1 = XMVectorMultiply(V2, V3);
|
|
|
|
XMVECTOR P2 = XMVectorMultiply(V4, V5);
|
|
|
|
|
|
|
|
V0 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(M.r[2]);
|
|
|
|
V1 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_X>(M.r[3]);
|
|
|
|
V2 = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_Z>(M.r[2]);
|
|
|
|
V3 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_X>(M.r[3]);
|
|
|
|
V4 = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_Z>(M.r[2]);
|
|
|
|
V5 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(M.r[3]);
|
|
|
|
|
|
|
|
P0 = XMVectorNegativeMultiplySubtract(V0, V1, P0);
|
|
|
|
P1 = XMVectorNegativeMultiplySubtract(V2, V3, P1);
|
|
|
|
P2 = XMVectorNegativeMultiplySubtract(V4, V5, P2);
|
|
|
|
|
|
|
|
V0 = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_Z>(M.r[1]);
|
|
|
|
V1 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(M.r[1]);
|
|
|
|
V2 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_X>(M.r[1]);
|
|
|
|
|
|
|
|
XMVECTOR S = XMVectorMultiply(M.r[0], Sign.v);
|
|
|
|
XMVECTOR R = XMVectorMultiply(V0, P0);
|
|
|
|
R = XMVectorNegativeMultiplySubtract(V1, P1, R);
|
|
|
|
R = XMVectorMultiplyAdd(V2, P2, R);
|
|
|
|
|
|
|
|
return XMVector4Dot(S, R);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define XM3RANKDECOMPOSE(a, b, c, x, y, z) \
|
|
|
|
if((x) < (y)) \
|
|
|
|
{ \
|
|
|
|
if((y) < (z)) \
|
|
|
|
{ \
|
|
|
|
(a) = 2; \
|
|
|
|
(b) = 1; \
|
|
|
|
(c) = 0; \
|
|
|
|
} \
|
|
|
|
else \
|
|
|
|
{ \
|
|
|
|
(a) = 1; \
|
|
|
|
\
|
|
|
|
if((x) < (z)) \
|
|
|
|
{ \
|
|
|
|
(b) = 2; \
|
|
|
|
(c) = 0; \
|
|
|
|
} \
|
|
|
|
else \
|
|
|
|
{ \
|
|
|
|
(b) = 0; \
|
|
|
|
(c) = 2; \
|
|
|
|
} \
|
|
|
|
} \
|
|
|
|
} \
|
|
|
|
else \
|
|
|
|
{ \
|
|
|
|
if((x) < (z)) \
|
|
|
|
{ \
|
|
|
|
(a) = 2; \
|
|
|
|
(b) = 0; \
|
|
|
|
(c) = 1; \
|
|
|
|
} \
|
|
|
|
else \
|
|
|
|
{ \
|
|
|
|
(a) = 0; \
|
|
|
|
\
|
|
|
|
if((y) < (z)) \
|
|
|
|
{ \
|
|
|
|
(b) = 2; \
|
|
|
|
(c) = 1; \
|
|
|
|
} \
|
|
|
|
else \
|
|
|
|
{ \
|
|
|
|
(b) = 1; \
|
|
|
|
(c) = 2; \
|
|
|
|
} \
|
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define XM3_DECOMP_EPSILON 0.0001f
|
|
|
|
|
|
|
|
_Use_decl_annotations_
|
|
|
|
inline bool XM_CALLCONV XMMatrixDecompose
|
|
|
|
(
|
|
|
|
XMVECTOR *outScale,
|
|
|
|
XMVECTOR *outRotQuat,
|
|
|
|
XMVECTOR *outTrans,
|
|
|
|
FXMMATRIX M
|
|
|
|
)
|
|
|
|
{
|
|
|
|
static const XMVECTOR *pvCanonicalBasis[3] = {
|
|
|
|
&g_XMIdentityR0.v,
|
|
|
|
&g_XMIdentityR1.v,
|
|
|
|
&g_XMIdentityR2.v
|
|
|
|
};
|
|
|
|
|
|
|
|
assert( outScale != nullptr );
|
|
|
|
assert( outRotQuat != nullptr );
|
|
|
|
assert( outTrans != nullptr );
|
|
|
|
|
|
|
|
// Get the translation
|
|
|
|
outTrans[0] = M.r[3];
|
|
|
|
|
|
|
|
XMVECTOR *ppvBasis[3];
|
|
|
|
XMMATRIX matTemp;
|
|
|
|
ppvBasis[0] = &matTemp.r[0];
|
|
|
|
ppvBasis[1] = &matTemp.r[1];
|
|
|
|
ppvBasis[2] = &matTemp.r[2];
|
|
|
|
|
|
|
|
matTemp.r[0] = M.r[0];
|
|
|
|
matTemp.r[1] = M.r[1];
|
|
|
|
matTemp.r[2] = M.r[2];
|
|
|
|
matTemp.r[3] = g_XMIdentityR3.v;
|
|
|
|
|
|
|
|
float *pfScales = (float *)outScale;
|
|
|
|
|
|
|
|
size_t a, b, c;
|
|
|
|
XMVectorGetXPtr(&pfScales[0],XMVector3Length(ppvBasis[0][0]));
|
|
|
|
XMVectorGetXPtr(&pfScales[1],XMVector3Length(ppvBasis[1][0]));
|
|
|
|
XMVectorGetXPtr(&pfScales[2],XMVector3Length(ppvBasis[2][0]));
|
|
|
|
pfScales[3] = 0.f;
|
|
|
|
|
|
|
|
XM3RANKDECOMPOSE(a, b, c, pfScales[0], pfScales[1], pfScales[2])
|
|
|
|
|
|
|
|
if(pfScales[a] < XM3_DECOMP_EPSILON)
|
|
|
|
{
|
|
|
|
ppvBasis[a][0] = pvCanonicalBasis[a][0];
|
|
|
|
}
|
|
|
|
ppvBasis[a][0] = XMVector3Normalize(ppvBasis[a][0]);
|
|
|
|
|
|
|
|
if(pfScales[b] < XM3_DECOMP_EPSILON)
|
|
|
|
{
|
|
|
|
size_t aa, bb, cc;
|
|
|
|
float fAbsX, fAbsY, fAbsZ;
|
|
|
|
|
|
|
|
fAbsX = fabsf(XMVectorGetX(ppvBasis[a][0]));
|
|
|
|
fAbsY = fabsf(XMVectorGetY(ppvBasis[a][0]));
|
|
|
|
fAbsZ = fabsf(XMVectorGetZ(ppvBasis[a][0]));
|
|
|
|
|
|
|
|
XM3RANKDECOMPOSE(aa, bb, cc, fAbsX, fAbsY, fAbsZ)
|
|
|
|
|
|
|
|
ppvBasis[b][0] = XMVector3Cross(ppvBasis[a][0],pvCanonicalBasis[cc][0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
ppvBasis[b][0] = XMVector3Normalize(ppvBasis[b][0]);
|
|
|
|
|
|
|
|
if(pfScales[c] < XM3_DECOMP_EPSILON)
|
|
|
|
{
|
|
|
|
ppvBasis[c][0] = XMVector3Cross(ppvBasis[a][0],ppvBasis[b][0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
ppvBasis[c][0] = XMVector3Normalize(ppvBasis[c][0]);
|
|
|
|
|
|
|
|
float fDet = XMVectorGetX(XMMatrixDeterminant(matTemp));
|
|
|
|
|
|
|
|
// use Kramer's rule to check for handedness of coordinate system
|
|
|
|
if(fDet < 0.0f)
|
|
|
|
{
|
|
|
|
// switch coordinate system by negating the scale and inverting the basis vector on the x-axis
|
|
|
|
pfScales[a] = -pfScales[a];
|
|
|
|
ppvBasis[a][0] = XMVectorNegate(ppvBasis[a][0]);
|
|
|
|
|
|
|
|
fDet = -fDet;
|
|
|
|
}
|
|
|
|
|
|
|
|
fDet -= 1.0f;
|
|
|
|
fDet *= fDet;
|
|
|
|
|
|
|
|
if(XM3_DECOMP_EPSILON < fDet)
|
|
|
|
{
|
|
|
|
// Non-SRT matrix encountered
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// generate the quaternion from the matrix
|
|
|
|
outRotQuat[0] = XMQuaternionRotationMatrix(matTemp);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef XM3_DECOMP_EPSILON
|
|
|
|
#undef XM3RANKDECOMPOSE
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// Transformation operations
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixIdentity()
|
|
|
|
{
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = g_XMIdentityR0.v;
|
|
|
|
M.r[1] = g_XMIdentityR1.v;
|
|
|
|
M.r[2] = g_XMIdentityR2.v;
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixSet
|
|
|
|
(
|
|
|
|
float m00, float m01, float m02, float m03,
|
|
|
|
float m10, float m11, float m12, float m13,
|
|
|
|
float m20, float m21, float m22, float m23,
|
|
|
|
float m30, float m31, float m32, float m33
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMMATRIX M;
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
M.m[0][0] = m00; M.m[0][1] = m01; M.m[0][2] = m02; M.m[0][3] = m03;
|
|
|
|
M.m[1][0] = m10; M.m[1][1] = m11; M.m[1][2] = m12; M.m[1][3] = m13;
|
|
|
|
M.m[2][0] = m20; M.m[2][1] = m21; M.m[2][2] = m22; M.m[2][3] = m23;
|
|
|
|
M.m[3][0] = m30; M.m[3][1] = m31; M.m[3][2] = m32; M.m[3][3] = m33;
|
|
|
|
#else
|
|
|
|
M.r[0] = XMVectorSet(m00, m01, m02, m03);
|
|
|
|
M.r[1] = XMVectorSet(m10, m11, m12, m13);
|
|
|
|
M.r[2] = XMVectorSet(m20, m21, m22, m23);
|
|
|
|
M.r[3] = XMVectorSet(m30, m31, m32, m33);
|
|
|
|
#endif
|
|
|
|
return M;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixTranslation
|
|
|
|
(
|
|
|
|
float OffsetX,
|
|
|
|
float OffsetY,
|
|
|
|
float OffsetZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = 1.0f;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = 1.0f;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = 1.0f;
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = OffsetX;
|
|
|
|
M.m[3][1] = OffsetY;
|
|
|
|
M.m[3][2] = OffsetZ;
|
|
|
|
M.m[3][3] = 1.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = g_XMIdentityR0.v;
|
|
|
|
M.r[1] = g_XMIdentityR1.v;
|
|
|
|
M.r[2] = g_XMIdentityR2.v;
|
|
|
|
M.r[3] = XMVectorSet(OffsetX, OffsetY, OffsetZ, 1.f );
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixTranslationFromVector
|
|
|
|
(
|
|
|
|
FXMVECTOR Offset
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = 1.0f;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = 1.0f;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = 1.0f;
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = Offset.vector4_f32[0];
|
|
|
|
M.m[3][1] = Offset.vector4_f32[1];
|
|
|
|
M.m[3][2] = Offset.vector4_f32[2];
|
|
|
|
M.m[3][3] = 1.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = g_XMIdentityR0.v;
|
|
|
|
M.r[1] = g_XMIdentityR1.v;
|
|
|
|
M.r[2] = g_XMIdentityR2.v;
|
|
|
|
M.r[3] = XMVectorSelect( g_XMIdentityR3.v, Offset, g_XMSelect1110.v );
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixScaling
|
|
|
|
(
|
|
|
|
float ScaleX,
|
|
|
|
float ScaleY,
|
|
|
|
float ScaleZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = ScaleX;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = ScaleY;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = ScaleZ;
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = 0.0f;
|
|
|
|
M.m[3][3] = 1.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( ScaleX, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( ScaleY, Zero, 1 );
|
|
|
|
M.r[2] = vsetq_lane_f32( ScaleZ, Zero, 2 );
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = _mm_set_ps( 0, 0, 0, ScaleX );
|
|
|
|
M.r[1] = _mm_set_ps( 0, 0, ScaleY, 0 );
|
|
|
|
M.r[2] = _mm_set_ps( 0, ScaleZ, 0, 0 );
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixScalingFromVector
|
|
|
|
(
|
|
|
|
FXMVECTOR Scale
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = Scale.vector4_f32[0];
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = Scale.vector4_f32[1];
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = Scale.vector4_f32[2];
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = 0.0f;
|
|
|
|
M.m[3][3] = 1.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vandq_u32(Scale,g_XMMaskX);
|
|
|
|
M.r[1] = vandq_u32(Scale,g_XMMaskY);
|
|
|
|
M.r[2] = vandq_u32(Scale,g_XMMaskZ);
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = _mm_and_ps(Scale,g_XMMaskX);
|
|
|
|
M.r[1] = _mm_and_ps(Scale,g_XMMaskY);
|
|
|
|
M.r[2] = _mm_and_ps(Scale,g_XMMaskZ);
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixRotationX
|
|
|
|
(
|
|
|
|
float Angle
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float fSinAngle;
|
|
|
|
float fCosAngle;
|
|
|
|
XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = 1.0f;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = fCosAngle;
|
|
|
|
M.m[1][2] = fSinAngle;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = -fSinAngle;
|
|
|
|
M.m[2][2] = fCosAngle;
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = 0.0f;
|
|
|
|
M.m[3][3] = 1.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float fSinAngle;
|
|
|
|
float fCosAngle;
|
|
|
|
XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
|
|
|
|
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
|
|
|
|
XMVECTOR T1 = vsetq_lane_f32( fCosAngle, Zero, 1 );
|
|
|
|
T1 = vsetq_lane_f32( fSinAngle, T1, 2 );
|
|
|
|
|
|
|
|
XMVECTOR T2 = vsetq_lane_f32( -fSinAngle, Zero, 1 );
|
|
|
|
T2 = vsetq_lane_f32( fCosAngle, T2, 2 );
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = g_XMIdentityR0.v;
|
|
|
|
M.r[1] = T1;
|
|
|
|
M.r[2] = T2;
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
float SinAngle;
|
|
|
|
float CosAngle;
|
|
|
|
XMScalarSinCos(&SinAngle, &CosAngle, Angle);
|
|
|
|
|
|
|
|
XMVECTOR vSin = _mm_set_ss(SinAngle);
|
|
|
|
XMVECTOR vCos = _mm_set_ss(CosAngle);
|
|
|
|
// x = 0,y = cos,z = sin, w = 0
|
|
|
|
vCos = _mm_shuffle_ps(vCos,vSin,_MM_SHUFFLE(3,0,0,3));
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = g_XMIdentityR0;
|
|
|
|
M.r[1] = vCos;
|
|
|
|
// x = 0,y = sin,z = cos, w = 0
|
|
|
|
vCos = XM_PERMUTE_PS(vCos,_MM_SHUFFLE(3,1,2,0));
|
|
|
|
// x = 0,y = -sin,z = cos, w = 0
|
|
|
|
vCos = _mm_mul_ps(vCos,g_XMNegateY);
|
|
|
|
M.r[2] = vCos;
|
|
|
|
M.r[3] = g_XMIdentityR3;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixRotationY
|
|
|
|
(
|
|
|
|
float Angle
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float fSinAngle;
|
|
|
|
float fCosAngle;
|
|
|
|
XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = fCosAngle;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = -fSinAngle;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = 1.0f;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = fSinAngle;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = fCosAngle;
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = 0.0f;
|
|
|
|
M.m[3][3] = 1.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float fSinAngle;
|
|
|
|
float fCosAngle;
|
|
|
|
XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
|
|
|
|
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
|
|
|
|
XMVECTOR T0 = vsetq_lane_f32( fCosAngle, Zero, 0 );
|
|
|
|
T0 = vsetq_lane_f32( -fSinAngle, T0, 2 );
|
|
|
|
|
|
|
|
XMVECTOR T2 = vsetq_lane_f32( fSinAngle, Zero, 0 );
|
|
|
|
T2 = vsetq_lane_f32( fCosAngle, T2, 2 );
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = T0;
|
|
|
|
M.r[1] = g_XMIdentityR1.v;
|
|
|
|
M.r[2] = T2;
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
float SinAngle;
|
|
|
|
float CosAngle;
|
|
|
|
XMScalarSinCos(&SinAngle, &CosAngle, Angle);
|
|
|
|
|
|
|
|
XMVECTOR vSin = _mm_set_ss(SinAngle);
|
|
|
|
XMVECTOR vCos = _mm_set_ss(CosAngle);
|
|
|
|
// x = sin,y = 0,z = cos, w = 0
|
|
|
|
vSin = _mm_shuffle_ps(vSin,vCos,_MM_SHUFFLE(3,0,3,0));
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[2] = vSin;
|
|
|
|
M.r[1] = g_XMIdentityR1;
|
|
|
|
// x = cos,y = 0,z = sin, w = 0
|
|
|
|
vSin = XM_PERMUTE_PS(vSin,_MM_SHUFFLE(3,0,1,2));
|
|
|
|
// x = cos,y = 0,z = -sin, w = 0
|
|
|
|
vSin = _mm_mul_ps(vSin,g_XMNegateZ);
|
|
|
|
M.r[0] = vSin;
|
|
|
|
M.r[3] = g_XMIdentityR3;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixRotationZ
|
|
|
|
(
|
|
|
|
float Angle
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float fSinAngle;
|
|
|
|
float fCosAngle;
|
|
|
|
XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = fCosAngle;
|
|
|
|
M.m[0][1] = fSinAngle;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = -fSinAngle;
|
|
|
|
M.m[1][1] = fCosAngle;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = 1.0f;
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = 0.0f;
|
|
|
|
M.m[3][3] = 1.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float fSinAngle;
|
|
|
|
float fCosAngle;
|
|
|
|
XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
|
|
|
|
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
|
|
|
|
XMVECTOR T0 = vsetq_lane_f32( fCosAngle, Zero, 0 );
|
|
|
|
T0 = vsetq_lane_f32( fSinAngle, T0, 1 );
|
|
|
|
|
|
|
|
XMVECTOR T1 = vsetq_lane_f32( -fSinAngle, Zero, 0 );
|
|
|
|
T1 = vsetq_lane_f32( fCosAngle, T1, 1 );
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = T0;
|
|
|
|
M.r[1] = T1;
|
|
|
|
M.r[2] = g_XMIdentityR2.v;
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
float SinAngle;
|
|
|
|
float CosAngle;
|
|
|
|
XMScalarSinCos(&SinAngle, &CosAngle, Angle);
|
|
|
|
|
|
|
|
XMVECTOR vSin = _mm_set_ss(SinAngle);
|
|
|
|
XMVECTOR vCos = _mm_set_ss(CosAngle);
|
|
|
|
// x = cos,y = sin,z = 0, w = 0
|
|
|
|
vCos = _mm_unpacklo_ps(vCos,vSin);
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vCos;
|
|
|
|
// x = sin,y = cos,z = 0, w = 0
|
|
|
|
vCos = XM_PERMUTE_PS(vCos,_MM_SHUFFLE(3,2,0,1));
|
|
|
|
// x = cos,y = -sin,z = 0, w = 0
|
|
|
|
vCos = _mm_mul_ps(vCos,g_XMNegateX);
|
|
|
|
M.r[1] = vCos;
|
|
|
|
M.r[2] = g_XMIdentityR2;
|
|
|
|
M.r[3] = g_XMIdentityR3;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixRotationRollPitchYaw
|
|
|
|
(
|
|
|
|
float Pitch,
|
|
|
|
float Yaw,
|
|
|
|
float Roll
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMVECTOR Angles = XMVectorSet(Pitch, Yaw, Roll, 0.0f);
|
|
|
|
return XMMatrixRotationRollPitchYawFromVector(Angles);
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixRotationRollPitchYawFromVector
|
|
|
|
(
|
|
|
|
FXMVECTOR Angles // <Pitch, Yaw, Roll, undefined>
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMVECTOR Q = XMQuaternionRotationRollPitchYawFromVector(Angles);
|
|
|
|
return XMMatrixRotationQuaternion(Q);
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixRotationNormal
|
|
|
|
(
|
|
|
|
FXMVECTOR NormalAxis,
|
|
|
|
float Angle
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
|
|
|
|
float fSinAngle;
|
|
|
|
float fCosAngle;
|
|
|
|
XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
|
|
|
|
|
|
|
|
XMVECTOR A = XMVectorSet(fSinAngle, fCosAngle, 1.0f - fCosAngle, 0.0f);
|
|
|
|
|
|
|
|
XMVECTOR C2 = XMVectorSplatZ(A);
|
|
|
|
XMVECTOR C1 = XMVectorSplatY(A);
|
|
|
|
XMVECTOR C0 = XMVectorSplatX(A);
|
|
|
|
|
|
|
|
XMVECTOR N0 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_W>(NormalAxis);
|
|
|
|
XMVECTOR N1 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_W>(NormalAxis);
|
|
|
|
|
|
|
|
XMVECTOR V0 = XMVectorMultiply(C2, N0);
|
|
|
|
V0 = XMVectorMultiply(V0, N1);
|
|
|
|
|
|
|
|
XMVECTOR R0 = XMVectorMultiply(C2, NormalAxis);
|
|
|
|
R0 = XMVectorMultiplyAdd(R0, NormalAxis, C1);
|
|
|
|
|
|
|
|
XMVECTOR R1 = XMVectorMultiplyAdd(C0, NormalAxis, V0);
|
|
|
|
XMVECTOR R2 = XMVectorNegativeMultiplySubtract(C0, NormalAxis, V0);
|
|
|
|
|
|
|
|
V0 = XMVectorSelect(A, R0, g_XMSelect1110.v);
|
|
|
|
XMVECTOR V1 = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_1Y, XM_PERMUTE_1Z, XM_PERMUTE_0X>(R1, R2);
|
|
|
|
XMVECTOR V2 = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_0Y, XM_PERMUTE_1X>(R1, R2);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0W>(V0, V1);
|
|
|
|
M.r[1] = XMVectorPermute<XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_1W, XM_PERMUTE_0W>(V0, V1);
|
|
|
|
M.r[2] = XMVectorPermute<XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0Z, XM_PERMUTE_0W>(V0, V2);
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
float fSinAngle;
|
|
|
|
float fCosAngle;
|
|
|
|
XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
|
|
|
|
|
|
|
|
XMVECTOR C2 = _mm_set_ps1(1.0f - fCosAngle);
|
|
|
|
XMVECTOR C1 = _mm_set_ps1(fCosAngle);
|
|
|
|
XMVECTOR C0 = _mm_set_ps1(fSinAngle);
|
|
|
|
|
|
|
|
XMVECTOR N0 = XM_PERMUTE_PS(NormalAxis,_MM_SHUFFLE(3,0,2,1));
|
|
|
|
XMVECTOR N1 = XM_PERMUTE_PS(NormalAxis,_MM_SHUFFLE(3,1,0,2));
|
|
|
|
|
|
|
|
XMVECTOR V0 = _mm_mul_ps(C2, N0);
|
|
|
|
V0 = _mm_mul_ps(V0, N1);
|
|
|
|
|
|
|
|
XMVECTOR R0 = _mm_mul_ps(C2, NormalAxis);
|
|
|
|
R0 = _mm_mul_ps(R0, NormalAxis);
|
|
|
|
R0 = _mm_add_ps(R0, C1);
|
|
|
|
|
|
|
|
XMVECTOR R1 = _mm_mul_ps(C0, NormalAxis);
|
|
|
|
R1 = _mm_add_ps(R1, V0);
|
|
|
|
XMVECTOR R2 = _mm_mul_ps(C0, NormalAxis);
|
|
|
|
R2 = _mm_sub_ps(V0,R2);
|
|
|
|
|
|
|
|
V0 = _mm_and_ps(R0,g_XMMask3);
|
|
|
|
XMVECTOR V1 = _mm_shuffle_ps(R1,R2,_MM_SHUFFLE(2,1,2,0));
|
|
|
|
V1 = XM_PERMUTE_PS(V1,_MM_SHUFFLE(0,3,2,1));
|
|
|
|
XMVECTOR V2 = _mm_shuffle_ps(R1,R2,_MM_SHUFFLE(0,0,1,1));
|
|
|
|
V2 = XM_PERMUTE_PS(V2,_MM_SHUFFLE(2,0,2,0));
|
|
|
|
|
|
|
|
R2 = _mm_shuffle_ps(V0,V1,_MM_SHUFFLE(1,0,3,0));
|
|
|
|
R2 = XM_PERMUTE_PS(R2,_MM_SHUFFLE(1,3,2,0));
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = R2;
|
|
|
|
|
|
|
|
R2 = _mm_shuffle_ps(V0,V1,_MM_SHUFFLE(3,2,3,1));
|
|
|
|
R2 = XM_PERMUTE_PS(R2,_MM_SHUFFLE(1,3,0,2));
|
|
|
|
M.r[1] = R2;
|
|
|
|
|
|
|
|
V2 = _mm_shuffle_ps(V2,V0,_MM_SHUFFLE(3,2,1,0));
|
|
|
|
M.r[2] = V2;
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixRotationAxis
|
|
|
|
(
|
|
|
|
FXMVECTOR Axis,
|
|
|
|
float Angle
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(!XMVector3Equal(Axis, XMVectorZero()));
|
|
|
|
assert(!XMVector3IsInfinite(Axis));
|
|
|
|
|
|
|
|
XMVECTOR Normal = XMVector3Normalize(Axis);
|
|
|
|
return XMMatrixRotationNormal(Normal, Angle);
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixRotationQuaternion
|
|
|
|
(
|
|
|
|
FXMVECTOR Quaternion
|
|
|
|
)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
|
|
|
|
static const XMVECTORF32 Constant1110 = {1.0f, 1.0f, 1.0f, 0.0f};
|
|
|
|
|
|
|
|
XMVECTOR Q0 = XMVectorAdd(Quaternion, Quaternion);
|
|
|
|
XMVECTOR Q1 = XMVectorMultiply(Quaternion, Q0);
|
|
|
|
|
|
|
|
XMVECTOR V0 = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_1W>(Q1, Constant1110.v);
|
|
|
|
XMVECTOR V1 = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_1W>(Q1, Constant1110.v);
|
|
|
|
XMVECTOR R0 = XMVectorSubtract(Constant1110, V0);
|
|
|
|
R0 = XMVectorSubtract(R0, V1);
|
|
|
|
|
|
|
|
V0 = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_W>(Quaternion);
|
|
|
|
V1 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_W>(Q0);
|
|
|
|
V0 = XMVectorMultiply(V0, V1);
|
|
|
|
|
|
|
|
V1 = XMVectorSplatW(Quaternion);
|
|
|
|
XMVECTOR V2 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_W>(Q0);
|
|
|
|
V1 = XMVectorMultiply(V1, V2);
|
|
|
|
|
|
|
|
XMVECTOR R1 = XMVectorAdd(V0, V1);
|
|
|
|
XMVECTOR R2 = XMVectorSubtract(V0, V1);
|
|
|
|
|
|
|
|
V0 = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0Z>(R1, R2);
|
|
|
|
V1 = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_1Z, XM_PERMUTE_0X, XM_PERMUTE_1Z>(R1, R2);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0W>(R0, V0);
|
|
|
|
M.r[1] = XMVectorPermute<XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_1W, XM_PERMUTE_0W>(R0, V0);
|
|
|
|
M.r[2] = XMVectorPermute<XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0Z, XM_PERMUTE_0W>(R0, V1);
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
static const XMVECTORF32 Constant1110 = {1.0f, 1.0f, 1.0f, 0.0f};
|
|
|
|
|
|
|
|
XMVECTOR Q0 = _mm_add_ps(Quaternion,Quaternion);
|
|
|
|
XMVECTOR Q1 = _mm_mul_ps(Quaternion,Q0);
|
|
|
|
|
|
|
|
XMVECTOR V0 = XM_PERMUTE_PS(Q1,_MM_SHUFFLE(3,0,0,1));
|
|
|
|
V0 = _mm_and_ps(V0,g_XMMask3);
|
|
|
|
XMVECTOR V1 = XM_PERMUTE_PS(Q1,_MM_SHUFFLE(3,1,2,2));
|
|
|
|
V1 = _mm_and_ps(V1,g_XMMask3);
|
|
|
|
XMVECTOR R0 = _mm_sub_ps(Constant1110,V0);
|
|
|
|
R0 = _mm_sub_ps(R0, V1);
|
|
|
|
|
|
|
|
V0 = XM_PERMUTE_PS(Quaternion,_MM_SHUFFLE(3,1,0,0));
|
|
|
|
V1 = XM_PERMUTE_PS(Q0,_MM_SHUFFLE(3,2,1,2));
|
|
|
|
V0 = _mm_mul_ps(V0, V1);
|
|
|
|
|
|
|
|
V1 = XM_PERMUTE_PS(Quaternion,_MM_SHUFFLE(3,3,3,3));
|
|
|
|
XMVECTOR V2 = XM_PERMUTE_PS(Q0,_MM_SHUFFLE(3,0,2,1));
|
|
|
|
V1 = _mm_mul_ps(V1, V2);
|
|
|
|
|
|
|
|
XMVECTOR R1 = _mm_add_ps(V0, V1);
|
|
|
|
XMVECTOR R2 = _mm_sub_ps(V0, V1);
|
|
|
|
|
|
|
|
V0 = _mm_shuffle_ps(R1,R2,_MM_SHUFFLE(1,0,2,1));
|
|
|
|
V0 = XM_PERMUTE_PS(V0,_MM_SHUFFLE(1,3,2,0));
|
|
|
|
V1 = _mm_shuffle_ps(R1,R2,_MM_SHUFFLE(2,2,0,0));
|
|
|
|
V1 = XM_PERMUTE_PS(V1,_MM_SHUFFLE(2,0,2,0));
|
|
|
|
|
|
|
|
Q1 = _mm_shuffle_ps(R0,V0,_MM_SHUFFLE(1,0,3,0));
|
|
|
|
Q1 = XM_PERMUTE_PS(Q1,_MM_SHUFFLE(1,3,2,0));
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = Q1;
|
|
|
|
|
|
|
|
Q1 = _mm_shuffle_ps(R0,V0,_MM_SHUFFLE(3,2,3,1));
|
|
|
|
Q1 = XM_PERMUTE_PS(Q1,_MM_SHUFFLE(1,3,0,2));
|
|
|
|
M.r[1] = Q1;
|
|
|
|
|
|
|
|
Q1 = _mm_shuffle_ps(V1,R0,_MM_SHUFFLE(3,2,1,0));
|
|
|
|
M.r[2] = Q1;
|
|
|
|
M.r[3] = g_XMIdentityR3;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixTransformation2D
|
|
|
|
(
|
|
|
|
FXMVECTOR ScalingOrigin,
|
|
|
|
float ScalingOrientation,
|
|
|
|
FXMVECTOR Scaling,
|
|
|
|
FXMVECTOR RotationOrigin,
|
|
|
|
float Rotation,
|
|
|
|
GXMVECTOR Translation
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// M = Inverse(MScalingOrigin) * Transpose(MScalingOrientation) * MScaling * MScalingOrientation *
|
|
|
|
// MScalingOrigin * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation;
|
|
|
|
|
|
|
|
XMVECTOR VScalingOrigin = XMVectorSelect(g_XMSelect1100.v, ScalingOrigin, g_XMSelect1100.v);
|
|
|
|
XMVECTOR NegScalingOrigin = XMVectorNegate(VScalingOrigin);
|
|
|
|
|
|
|
|
XMMATRIX MScalingOriginI = XMMatrixTranslationFromVector(NegScalingOrigin);
|
|
|
|
XMMATRIX MScalingOrientation = XMMatrixRotationZ(ScalingOrientation);
|
|
|
|
XMMATRIX MScalingOrientationT = XMMatrixTranspose(MScalingOrientation);
|
|
|
|
XMVECTOR VScaling = XMVectorSelect(g_XMOne.v, Scaling, g_XMSelect1100.v);
|
|
|
|
XMMATRIX MScaling = XMMatrixScalingFromVector(VScaling);
|
|
|
|
XMVECTOR VRotationOrigin = XMVectorSelect(g_XMSelect1100.v, RotationOrigin, g_XMSelect1100.v);
|
|
|
|
XMMATRIX MRotation = XMMatrixRotationZ(Rotation);
|
|
|
|
XMVECTOR VTranslation = XMVectorSelect(g_XMSelect1100.v, Translation,g_XMSelect1100.v);
|
|
|
|
|
|
|
|
XMMATRIX M = XMMatrixMultiply(MScalingOriginI, MScalingOrientationT);
|
|
|
|
M = XMMatrixMultiply(M, MScaling);
|
|
|
|
M = XMMatrixMultiply(M, MScalingOrientation);
|
|
|
|
M.r[3] = XMVectorAdd(M.r[3], VScalingOrigin);
|
|
|
|
M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin);
|
|
|
|
M = XMMatrixMultiply(M, MRotation);
|
|
|
|
M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin);
|
|
|
|
M.r[3] = XMVectorAdd(M.r[3], VTranslation);
|
|
|
|
|
|
|
|
return M;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixTransformation
|
|
|
|
(
|
|
|
|
FXMVECTOR ScalingOrigin,
|
|
|
|
FXMVECTOR ScalingOrientationQuaternion,
|
|
|
|
FXMVECTOR Scaling,
|
|
|
|
GXMVECTOR RotationOrigin,
|
|
|
|
HXMVECTOR RotationQuaternion,
|
|
|
|
HXMVECTOR Translation
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// M = Inverse(MScalingOrigin) * Transpose(MScalingOrientation) * MScaling * MScalingOrientation *
|
|
|
|
// MScalingOrigin * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation;
|
|
|
|
|
|
|
|
XMVECTOR VScalingOrigin = XMVectorSelect(g_XMSelect1110.v, ScalingOrigin, g_XMSelect1110.v);
|
|
|
|
XMVECTOR NegScalingOrigin = XMVectorNegate(ScalingOrigin);
|
|
|
|
|
|
|
|
XMMATRIX MScalingOriginI = XMMatrixTranslationFromVector(NegScalingOrigin);
|
|
|
|
XMMATRIX MScalingOrientation = XMMatrixRotationQuaternion(ScalingOrientationQuaternion);
|
|
|
|
XMMATRIX MScalingOrientationT = XMMatrixTranspose(MScalingOrientation);
|
|
|
|
XMMATRIX MScaling = XMMatrixScalingFromVector(Scaling);
|
|
|
|
XMVECTOR VRotationOrigin = XMVectorSelect(g_XMSelect1110.v, RotationOrigin, g_XMSelect1110.v);
|
|
|
|
XMMATRIX MRotation = XMMatrixRotationQuaternion(RotationQuaternion);
|
|
|
|
XMVECTOR VTranslation = XMVectorSelect(g_XMSelect1110.v, Translation, g_XMSelect1110.v);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M = XMMatrixMultiply(MScalingOriginI, MScalingOrientationT);
|
|
|
|
M = XMMatrixMultiply(M, MScaling);
|
|
|
|
M = XMMatrixMultiply(M, MScalingOrientation);
|
|
|
|
M.r[3] = XMVectorAdd(M.r[3], VScalingOrigin);
|
|
|
|
M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin);
|
|
|
|
M = XMMatrixMultiply(M, MRotation);
|
|
|
|
M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin);
|
|
|
|
M.r[3] = XMVectorAdd(M.r[3], VTranslation);
|
|
|
|
return M;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixAffineTransformation2D
|
|
|
|
(
|
|
|
|
FXMVECTOR Scaling,
|
|
|
|
FXMVECTOR RotationOrigin,
|
|
|
|
float Rotation,
|
|
|
|
FXMVECTOR Translation
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// M = MScaling * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation;
|
|
|
|
|
|
|
|
XMVECTOR VScaling = XMVectorSelect(g_XMOne.v, Scaling, g_XMSelect1100.v);
|
|
|
|
XMMATRIX MScaling = XMMatrixScalingFromVector(VScaling);
|
|
|
|
XMVECTOR VRotationOrigin = XMVectorSelect(g_XMSelect1100.v, RotationOrigin, g_XMSelect1100.v);
|
|
|
|
XMMATRIX MRotation = XMMatrixRotationZ(Rotation);
|
|
|
|
XMVECTOR VTranslation = XMVectorSelect(g_XMSelect1100.v, Translation,g_XMSelect1100.v);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M = MScaling;
|
|
|
|
M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin);
|
|
|
|
M = XMMatrixMultiply(M, MRotation);
|
|
|
|
M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin);
|
|
|
|
M.r[3] = XMVectorAdd(M.r[3], VTranslation);
|
|
|
|
return M;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixAffineTransformation
|
|
|
|
(
|
|
|
|
FXMVECTOR Scaling,
|
|
|
|
FXMVECTOR RotationOrigin,
|
|
|
|
FXMVECTOR RotationQuaternion,
|
|
|
|
GXMVECTOR Translation
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// M = MScaling * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation;
|
|
|
|
|
|
|
|
XMMATRIX MScaling = XMMatrixScalingFromVector(Scaling);
|
|
|
|
XMVECTOR VRotationOrigin = XMVectorSelect(g_XMSelect1110.v, RotationOrigin,g_XMSelect1110.v);
|
|
|
|
XMMATRIX MRotation = XMMatrixRotationQuaternion(RotationQuaternion);
|
|
|
|
XMVECTOR VTranslation = XMVectorSelect(g_XMSelect1110.v, Translation,g_XMSelect1110.v);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M = MScaling;
|
|
|
|
M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin);
|
|
|
|
M = XMMatrixMultiply(M, MRotation);
|
|
|
|
M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin);
|
|
|
|
M.r[3] = XMVectorAdd(M.r[3], VTranslation);
|
|
|
|
return M;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixReflect
|
|
|
|
(
|
|
|
|
FXMVECTOR ReflectionPlane
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(!XMVector3Equal(ReflectionPlane, XMVectorZero()));
|
|
|
|
assert(!XMPlaneIsInfinite(ReflectionPlane));
|
|
|
|
|
|
|
|
static const XMVECTORF32 NegativeTwo = {-2.0f, -2.0f, -2.0f, 0.0f};
|
|
|
|
|
|
|
|
XMVECTOR P = XMPlaneNormalize(ReflectionPlane);
|
|
|
|
XMVECTOR S = XMVectorMultiply(P, NegativeTwo);
|
|
|
|
|
|
|
|
XMVECTOR A = XMVectorSplatX(P);
|
|
|
|
XMVECTOR B = XMVectorSplatY(P);
|
|
|
|
XMVECTOR C = XMVectorSplatZ(P);
|
|
|
|
XMVECTOR D = XMVectorSplatW(P);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = XMVectorMultiplyAdd(A, S, g_XMIdentityR0.v);
|
|
|
|
M.r[1] = XMVectorMultiplyAdd(B, S, g_XMIdentityR1.v);
|
|
|
|
M.r[2] = XMVectorMultiplyAdd(C, S, g_XMIdentityR2.v);
|
|
|
|
M.r[3] = XMVectorMultiplyAdd(D, S, g_XMIdentityR3.v);
|
|
|
|
return M;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixShadow
|
|
|
|
(
|
|
|
|
FXMVECTOR ShadowPlane,
|
|
|
|
FXMVECTOR LightPosition
|
|
|
|
)
|
|
|
|
{
|
|
|
|
static const XMVECTORU32 Select0001 = {XM_SELECT_0, XM_SELECT_0, XM_SELECT_0, XM_SELECT_1};
|
|
|
|
|
|
|
|
assert(!XMVector3Equal(ShadowPlane, XMVectorZero()));
|
|
|
|
assert(!XMPlaneIsInfinite(ShadowPlane));
|
|
|
|
|
|
|
|
XMVECTOR P = XMPlaneNormalize(ShadowPlane);
|
|
|
|
XMVECTOR Dot = XMPlaneDot(P, LightPosition);
|
|
|
|
P = XMVectorNegate(P);
|
|
|
|
XMVECTOR D = XMVectorSplatW(P);
|
|
|
|
XMVECTOR C = XMVectorSplatZ(P);
|
|
|
|
XMVECTOR B = XMVectorSplatY(P);
|
|
|
|
XMVECTOR A = XMVectorSplatX(P);
|
|
|
|
Dot = XMVectorSelect(Select0001.v, Dot, Select0001.v);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[3] = XMVectorMultiplyAdd(D, LightPosition, Dot);
|
|
|
|
Dot = XMVectorRotateLeft(Dot, 1);
|
|
|
|
M.r[2] = XMVectorMultiplyAdd(C, LightPosition, Dot);
|
|
|
|
Dot = XMVectorRotateLeft(Dot, 1);
|
|
|
|
M.r[1] = XMVectorMultiplyAdd(B, LightPosition, Dot);
|
|
|
|
Dot = XMVectorRotateLeft(Dot, 1);
|
|
|
|
M.r[0] = XMVectorMultiplyAdd(A, LightPosition, Dot);
|
|
|
|
return M;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// View and projection initialization operations
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixLookAtLH
|
|
|
|
(
|
|
|
|
FXMVECTOR EyePosition,
|
|
|
|
FXMVECTOR FocusPosition,
|
|
|
|
FXMVECTOR UpDirection
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMVECTOR EyeDirection = XMVectorSubtract(FocusPosition, EyePosition);
|
|
|
|
return XMMatrixLookToLH(EyePosition, EyeDirection, UpDirection);
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixLookAtRH
|
|
|
|
(
|
|
|
|
FXMVECTOR EyePosition,
|
|
|
|
FXMVECTOR FocusPosition,
|
|
|
|
FXMVECTOR UpDirection
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMVECTOR NegEyeDirection = XMVectorSubtract(EyePosition, FocusPosition);
|
|
|
|
return XMMatrixLookToLH(EyePosition, NegEyeDirection, UpDirection);
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixLookToLH
|
|
|
|
(
|
|
|
|
FXMVECTOR EyePosition,
|
|
|
|
FXMVECTOR EyeDirection,
|
|
|
|
FXMVECTOR UpDirection
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(!XMVector3Equal(EyeDirection, XMVectorZero()));
|
|
|
|
assert(!XMVector3IsInfinite(EyeDirection));
|
|
|
|
assert(!XMVector3Equal(UpDirection, XMVectorZero()));
|
|
|
|
assert(!XMVector3IsInfinite(UpDirection));
|
|
|
|
|
|
|
|
XMVECTOR R2 = XMVector3Normalize(EyeDirection);
|
|
|
|
|
|
|
|
XMVECTOR R0 = XMVector3Cross(UpDirection, R2);
|
|
|
|
R0 = XMVector3Normalize(R0);
|
|
|
|
|
|
|
|
XMVECTOR R1 = XMVector3Cross(R2, R0);
|
|
|
|
|
|
|
|
XMVECTOR NegEyePosition = XMVectorNegate(EyePosition);
|
|
|
|
|
|
|
|
XMVECTOR D0 = XMVector3Dot(R0, NegEyePosition);
|
|
|
|
XMVECTOR D1 = XMVector3Dot(R1, NegEyePosition);
|
|
|
|
XMVECTOR D2 = XMVector3Dot(R2, NegEyePosition);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = XMVectorSelect(D0, R0, g_XMSelect1110.v);
|
|
|
|
M.r[1] = XMVectorSelect(D1, R1, g_XMSelect1110.v);
|
|
|
|
M.r[2] = XMVectorSelect(D2, R2, g_XMSelect1110.v);
|
|
|
|
M.r[3] = g_XMIdentityR3.v;
|
|
|
|
|
|
|
|
M = XMMatrixTranspose(M);
|
|
|
|
|
|
|
|
return M;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixLookToRH
|
|
|
|
(
|
|
|
|
FXMVECTOR EyePosition,
|
|
|
|
FXMVECTOR EyeDirection,
|
|
|
|
FXMVECTOR UpDirection
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMVECTOR NegEyeDirection = XMVectorNegate(EyeDirection);
|
|
|
|
return XMMatrixLookToLH(EyePosition, NegEyeDirection, UpDirection);
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
#pragma prefast(push)
|
|
|
|
#pragma prefast(disable:28931, "PREfast noise: Esp:1266")
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveLH
|
|
|
|
(
|
|
|
|
float ViewWidth,
|
|
|
|
float ViewHeight,
|
|
|
|
float NearZ,
|
|
|
|
float FarZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(NearZ > 0.f && FarZ > 0.f);
|
|
|
|
assert(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
|
|
|
|
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float TwoNearZ = NearZ + NearZ;
|
|
|
|
float fRange = FarZ / (FarZ - NearZ);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = TwoNearZ / ViewWidth;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = TwoNearZ / ViewHeight;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = fRange;
|
|
|
|
M.m[2][3] = 1.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = -fRange * NearZ;
|
|
|
|
M.m[3][3] = 0.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float TwoNearZ = NearZ + NearZ;
|
|
|
|
float fRange = FarZ / (FarZ - NearZ);
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( TwoNearZ / ViewWidth, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( TwoNearZ / ViewHeight, Zero, 1 );
|
|
|
|
M.r[2] = vsetq_lane_f32( fRange, g_XMIdentityR3.v, 2 );
|
|
|
|
M.r[3] = vsetq_lane_f32( -fRange * NearZ, Zero, 2 );
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
float TwoNearZ = NearZ + NearZ;
|
|
|
|
float fRange = FarZ / (FarZ - NearZ);
|
|
|
|
// Note: This is recorded on the stack
|
|
|
|
XMVECTOR rMem = {
|
|
|
|
TwoNearZ / ViewWidth,
|
|
|
|
TwoNearZ / ViewHeight,
|
|
|
|
fRange,
|
|
|
|
-fRange * NearZ
|
|
|
|
};
|
|
|
|
// Copy from memory to SSE register
|
|
|
|
XMVECTOR vValues = rMem;
|
|
|
|
XMVECTOR vTemp = _mm_setzero_ps();
|
|
|
|
// Copy x only
|
|
|
|
vTemp = _mm_move_ss(vTemp,vValues);
|
|
|
|
// TwoNearZ / ViewWidth,0,0,0
|
|
|
|
M.r[0] = vTemp;
|
|
|
|
// 0,TwoNearZ / ViewHeight,0,0
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskY);
|
|
|
|
M.r[1] = vTemp;
|
|
|
|
// x=fRange,y=-fRange * NearZ,0,1.0f
|
|
|
|
vValues = _mm_shuffle_ps(vValues,g_XMIdentityR3,_MM_SHUFFLE(3,2,3,2));
|
|
|
|
// 0,0,fRange,1.0f
|
|
|
|
vTemp = _mm_setzero_ps();
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,0,0,0));
|
|
|
|
M.r[2] = vTemp;
|
|
|
|
// 0,0,-fRange * NearZ,0
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,1,0,0));
|
|
|
|
M.r[3] = vTemp;
|
|
|
|
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveRH
|
|
|
|
(
|
|
|
|
float ViewWidth,
|
|
|
|
float ViewHeight,
|
|
|
|
float NearZ,
|
|
|
|
float FarZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(NearZ > 0.f && FarZ > 0.f);
|
|
|
|
assert(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
|
|
|
|
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float TwoNearZ = NearZ + NearZ;
|
|
|
|
float fRange = FarZ / (NearZ - FarZ);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = TwoNearZ / ViewWidth;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = TwoNearZ / ViewHeight;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = fRange;
|
|
|
|
M.m[2][3] = -1.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = fRange * NearZ;
|
|
|
|
M.m[3][3] = 0.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float TwoNearZ = NearZ + NearZ;
|
|
|
|
float fRange = FarZ / (NearZ - FarZ);
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( TwoNearZ / ViewWidth, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( TwoNearZ / ViewHeight, Zero, 1 );
|
|
|
|
M.r[2] = vsetq_lane_f32( fRange, g_XMNegIdentityR3.v, 2 );
|
|
|
|
M.r[3] = vsetq_lane_f32( fRange * NearZ, Zero, 2 );
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
float TwoNearZ = NearZ + NearZ;
|
|
|
|
float fRange = FarZ / (NearZ-FarZ);
|
|
|
|
// Note: This is recorded on the stack
|
|
|
|
XMVECTOR rMem = {
|
|
|
|
TwoNearZ / ViewWidth,
|
|
|
|
TwoNearZ / ViewHeight,
|
|
|
|
fRange,
|
|
|
|
fRange * NearZ
|
|
|
|
};
|
|
|
|
// Copy from memory to SSE register
|
|
|
|
XMVECTOR vValues = rMem;
|
|
|
|
XMVECTOR vTemp = _mm_setzero_ps();
|
|
|
|
// Copy x only
|
|
|
|
vTemp = _mm_move_ss(vTemp,vValues);
|
|
|
|
// TwoNearZ / ViewWidth,0,0,0
|
|
|
|
M.r[0] = vTemp;
|
|
|
|
// 0,TwoNearZ / ViewHeight,0,0
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskY);
|
|
|
|
M.r[1] = vTemp;
|
|
|
|
// x=fRange,y=-fRange * NearZ,0,-1.0f
|
|
|
|
vValues = _mm_shuffle_ps(vValues,g_XMNegIdentityR3,_MM_SHUFFLE(3,2,3,2));
|
|
|
|
// 0,0,fRange,-1.0f
|
|
|
|
vTemp = _mm_setzero_ps();
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,0,0,0));
|
|
|
|
M.r[2] = vTemp;
|
|
|
|
// 0,0,-fRange * NearZ,0
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,1,0,0));
|
|
|
|
M.r[3] = vTemp;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveFovLH
|
|
|
|
(
|
|
|
|
float FovAngleY,
|
|
|
|
float AspectRatio,
|
|
|
|
float NearZ,
|
|
|
|
float FarZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(NearZ > 0.f && FarZ > 0.f);
|
|
|
|
assert(!XMScalarNearEqual(FovAngleY, 0.0f, 0.00001f * 2.0f));
|
|
|
|
assert(!XMScalarNearEqual(AspectRatio, 0.0f, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
|
|
|
|
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float SinFov;
|
|
|
|
float CosFov;
|
|
|
|
XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
|
|
|
|
|
|
|
|
float Height = CosFov / SinFov;
|
|
|
|
float Width = Height / AspectRatio;
|
|
|
|
float fRange = FarZ / (FarZ-NearZ);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = Width;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = Height;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = fRange;
|
|
|
|
M.m[2][3] = 1.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = -fRange * NearZ;
|
|
|
|
M.m[3][3] = 0.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float SinFov;
|
|
|
|
float CosFov;
|
|
|
|
XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
|
|
|
|
|
|
|
|
float fRange = FarZ / (FarZ-NearZ);
|
|
|
|
float Height = CosFov / SinFov;
|
|
|
|
float Width = Height / AspectRatio;
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( Width, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( Height, Zero, 1 );
|
|
|
|
M.r[2] = vsetq_lane_f32( fRange, g_XMIdentityR3.v, 2 );
|
|
|
|
M.r[3] = vsetq_lane_f32( -fRange * NearZ, Zero, 2 );
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
float SinFov;
|
|
|
|
float CosFov;
|
|
|
|
XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
|
|
|
|
|
|
|
|
float fRange = FarZ / (FarZ-NearZ);
|
|
|
|
// Note: This is recorded on the stack
|
|
|
|
float Height = CosFov / SinFov;
|
|
|
|
XMVECTOR rMem = {
|
|
|
|
Height / AspectRatio,
|
|
|
|
Height,
|
|
|
|
fRange,
|
|
|
|
-fRange * NearZ
|
|
|
|
};
|
|
|
|
// Copy from memory to SSE register
|
|
|
|
XMVECTOR vValues = rMem;
|
|
|
|
XMVECTOR vTemp = _mm_setzero_ps();
|
|
|
|
// Copy x only
|
|
|
|
vTemp = _mm_move_ss(vTemp,vValues);
|
|
|
|
// CosFov / SinFov,0,0,0
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vTemp;
|
|
|
|
// 0,Height / AspectRatio,0,0
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskY);
|
|
|
|
M.r[1] = vTemp;
|
|
|
|
// x=fRange,y=-fRange * NearZ,0,1.0f
|
|
|
|
vTemp = _mm_setzero_ps();
|
|
|
|
vValues = _mm_shuffle_ps(vValues,g_XMIdentityR3,_MM_SHUFFLE(3,2,3,2));
|
|
|
|
// 0,0,fRange,1.0f
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,0,0,0));
|
|
|
|
M.r[2] = vTemp;
|
|
|
|
// 0,0,-fRange * NearZ,0.0f
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,1,0,0));
|
|
|
|
M.r[3] = vTemp;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveFovRH
|
|
|
|
(
|
|
|
|
float FovAngleY,
|
|
|
|
float AspectRatio,
|
|
|
|
float NearZ,
|
|
|
|
float FarZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(NearZ > 0.f && FarZ > 0.f);
|
|
|
|
assert(!XMScalarNearEqual(FovAngleY, 0.0f, 0.00001f * 2.0f));
|
|
|
|
assert(!XMScalarNearEqual(AspectRatio, 0.0f, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
|
|
|
|
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float SinFov;
|
|
|
|
float CosFov;
|
|
|
|
XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
|
|
|
|
|
|
|
|
float Height = CosFov / SinFov;
|
|
|
|
float Width = Height / AspectRatio;
|
|
|
|
float fRange = FarZ / (NearZ-FarZ);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = Width;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = Height;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = fRange;
|
|
|
|
M.m[2][3] = -1.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = fRange * NearZ;
|
|
|
|
M.m[3][3] = 0.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float SinFov;
|
|
|
|
float CosFov;
|
|
|
|
XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
|
|
|
|
float fRange = FarZ / (NearZ-FarZ);
|
|
|
|
float Height = CosFov / SinFov;
|
|
|
|
float Width = Height / AspectRatio;
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( Width, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( Height, Zero, 1 );
|
|
|
|
M.r[2] = vsetq_lane_f32( fRange, g_XMNegIdentityR3.v, 2 );
|
|
|
|
M.r[3] = vsetq_lane_f32( fRange * NearZ, Zero, 2 );
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
float SinFov;
|
|
|
|
float CosFov;
|
|
|
|
XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
|
|
|
|
float fRange = FarZ / (NearZ-FarZ);
|
|
|
|
// Note: This is recorded on the stack
|
|
|
|
float Height = CosFov / SinFov;
|
|
|
|
XMVECTOR rMem = {
|
|
|
|
Height / AspectRatio,
|
|
|
|
Height,
|
|
|
|
fRange,
|
|
|
|
fRange * NearZ
|
|
|
|
};
|
|
|
|
// Copy from memory to SSE register
|
|
|
|
XMVECTOR vValues = rMem;
|
|
|
|
XMVECTOR vTemp = _mm_setzero_ps();
|
|
|
|
// Copy x only
|
|
|
|
vTemp = _mm_move_ss(vTemp,vValues);
|
|
|
|
// CosFov / SinFov,0,0,0
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vTemp;
|
|
|
|
// 0,Height / AspectRatio,0,0
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskY);
|
|
|
|
M.r[1] = vTemp;
|
|
|
|
// x=fRange,y=-fRange * NearZ,0,-1.0f
|
|
|
|
vTemp = _mm_setzero_ps();
|
|
|
|
vValues = _mm_shuffle_ps(vValues,g_XMNegIdentityR3,_MM_SHUFFLE(3,2,3,2));
|
|
|
|
// 0,0,fRange,-1.0f
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,0,0,0));
|
|
|
|
M.r[2] = vTemp;
|
|
|
|
// 0,0,fRange * NearZ,0.0f
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,1,0,0));
|
|
|
|
M.r[3] = vTemp;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveOffCenterLH
|
|
|
|
(
|
|
|
|
float ViewLeft,
|
|
|
|
float ViewRight,
|
|
|
|
float ViewBottom,
|
|
|
|
float ViewTop,
|
|
|
|
float NearZ,
|
|
|
|
float FarZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(NearZ > 0.f && FarZ > 0.f);
|
|
|
|
assert(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
|
|
|
|
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float TwoNearZ = NearZ + NearZ;
|
|
|
|
float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = FarZ / (FarZ-NearZ);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = TwoNearZ * ReciprocalWidth;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = TwoNearZ * ReciprocalHeight;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = -(ViewLeft + ViewRight) * ReciprocalWidth;
|
|
|
|
M.m[2][1] = -(ViewTop + ViewBottom) * ReciprocalHeight;
|
|
|
|
M.m[2][2] = fRange;
|
|
|
|
M.m[2][3] = 1.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = -fRange * NearZ;
|
|
|
|
M.m[3][3] = 0.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float TwoNearZ = NearZ + NearZ;
|
|
|
|
float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = FarZ / (FarZ-NearZ);
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( TwoNearZ * ReciprocalWidth, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( TwoNearZ * ReciprocalHeight, Zero, 1 );
|
|
|
|
M.r[2] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth,
|
|
|
|
-(ViewTop + ViewBottom) * ReciprocalHeight,
|
|
|
|
fRange,
|
|
|
|
1.0f);
|
|
|
|
M.r[3] = vsetq_lane_f32( -fRange * NearZ, Zero, 2 );
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
float TwoNearZ = NearZ+NearZ;
|
|
|
|
float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = FarZ / (FarZ-NearZ);
|
|
|
|
// Note: This is recorded on the stack
|
|
|
|
XMVECTOR rMem = {
|
|
|
|
TwoNearZ*ReciprocalWidth,
|
|
|
|
TwoNearZ*ReciprocalHeight,
|
|
|
|
-fRange * NearZ,
|
|
|
|
0
|
|
|
|
};
|
|
|
|
// Copy from memory to SSE register
|
|
|
|
XMVECTOR vValues = rMem;
|
|
|
|
XMVECTOR vTemp = _mm_setzero_ps();
|
|
|
|
// Copy x only
|
|
|
|
vTemp = _mm_move_ss(vTemp,vValues);
|
|
|
|
// TwoNearZ*ReciprocalWidth,0,0,0
|
|
|
|
M.r[0] = vTemp;
|
|
|
|
// 0,TwoNearZ*ReciprocalHeight,0,0
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskY);
|
|
|
|
M.r[1] = vTemp;
|
|
|
|
// 0,0,fRange,1.0f
|
|
|
|
M.r[2] = XMVectorSet( -(ViewLeft + ViewRight) * ReciprocalWidth,
|
|
|
|
-(ViewTop + ViewBottom) * ReciprocalHeight,
|
|
|
|
fRange,
|
|
|
|
1.0f );
|
|
|
|
// 0,0,-fRange * NearZ,0.0f
|
|
|
|
vValues = _mm_and_ps(vValues,g_XMMaskZ);
|
|
|
|
M.r[3] = vValues;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveOffCenterRH
|
|
|
|
(
|
|
|
|
float ViewLeft,
|
|
|
|
float ViewRight,
|
|
|
|
float ViewBottom,
|
|
|
|
float ViewTop,
|
|
|
|
float NearZ,
|
|
|
|
float FarZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(NearZ > 0.f && FarZ > 0.f);
|
|
|
|
assert(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
|
|
|
|
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float TwoNearZ = NearZ + NearZ;
|
|
|
|
float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = FarZ / (NearZ-FarZ);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = TwoNearZ * ReciprocalWidth;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = TwoNearZ * ReciprocalHeight;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = (ViewLeft + ViewRight) * ReciprocalWidth;
|
|
|
|
M.m[2][1] = (ViewTop + ViewBottom) * ReciprocalHeight;
|
|
|
|
M.m[2][2] = fRange;
|
|
|
|
M.m[2][3] = -1.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = fRange * NearZ;
|
|
|
|
M.m[3][3] = 0.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float TwoNearZ = NearZ + NearZ;
|
|
|
|
float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = FarZ / (NearZ-FarZ);
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( TwoNearZ * ReciprocalWidth, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( TwoNearZ * ReciprocalHeight, Zero, 1 );
|
|
|
|
M.r[2] = XMVectorSet((ViewLeft + ViewRight) * ReciprocalWidth,
|
|
|
|
(ViewTop + ViewBottom) * ReciprocalHeight,
|
|
|
|
fRange,
|
|
|
|
-1.0f);
|
|
|
|
M.r[3] = vsetq_lane_f32( fRange * NearZ, Zero, 2 );
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
float TwoNearZ = NearZ+NearZ;
|
|
|
|
float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = FarZ / (NearZ-FarZ);
|
|
|
|
// Note: This is recorded on the stack
|
|
|
|
XMVECTOR rMem = {
|
|
|
|
TwoNearZ*ReciprocalWidth,
|
|
|
|
TwoNearZ*ReciprocalHeight,
|
|
|
|
fRange * NearZ,
|
|
|
|
0
|
|
|
|
};
|
|
|
|
// Copy from memory to SSE register
|
|
|
|
XMVECTOR vValues = rMem;
|
|
|
|
XMVECTOR vTemp = _mm_setzero_ps();
|
|
|
|
// Copy x only
|
|
|
|
vTemp = _mm_move_ss(vTemp,vValues);
|
|
|
|
// TwoNearZ*ReciprocalWidth,0,0,0
|
|
|
|
M.r[0] = vTemp;
|
|
|
|
// 0,TwoNearZ*ReciprocalHeight,0,0
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskY);
|
|
|
|
M.r[1] = vTemp;
|
|
|
|
// 0,0,fRange,1.0f
|
|
|
|
M.r[2] = XMVectorSet( (ViewLeft + ViewRight) * ReciprocalWidth,
|
|
|
|
(ViewTop + ViewBottom) * ReciprocalHeight,
|
|
|
|
fRange,
|
|
|
|
-1.0f );
|
|
|
|
// 0,0,-fRange * NearZ,0.0f
|
|
|
|
vValues = _mm_and_ps(vValues,g_XMMaskZ);
|
|
|
|
M.r[3] = vValues;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixOrthographicLH
|
|
|
|
(
|
|
|
|
float ViewWidth,
|
|
|
|
float ViewHeight,
|
|
|
|
float NearZ,
|
|
|
|
float FarZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
|
|
|
|
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float fRange = 1.0f / (FarZ-NearZ);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = 2.0f / ViewWidth;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = 2.0f / ViewHeight;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = fRange;
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = -fRange * NearZ;
|
|
|
|
M.m[3][3] = 1.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float fRange = 1.0f / (FarZ-NearZ);
|
|
|
|
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( 2.0f / ViewWidth, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( 2.0f / ViewHeight, Zero, 1 );
|
|
|
|
M.r[2] = vsetq_lane_f32( fRange, Zero, 2 );
|
|
|
|
M.r[3] = vsetq_lane_f32( -fRange * NearZ, g_XMIdentityR3.v, 2 );
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
float fRange = 1.0f / (FarZ-NearZ);
|
|
|
|
// Note: This is recorded on the stack
|
|
|
|
XMVECTOR rMem = {
|
|
|
|
2.0f / ViewWidth,
|
|
|
|
2.0f / ViewHeight,
|
|
|
|
fRange,
|
|
|
|
-fRange * NearZ
|
|
|
|
};
|
|
|
|
// Copy from memory to SSE register
|
|
|
|
XMVECTOR vValues = rMem;
|
|
|
|
XMVECTOR vTemp = _mm_setzero_ps();
|
|
|
|
// Copy x only
|
|
|
|
vTemp = _mm_move_ss(vTemp,vValues);
|
|
|
|
// 2.0f / ViewWidth,0,0,0
|
|
|
|
M.r[0] = vTemp;
|
|
|
|
// 0,2.0f / ViewHeight,0,0
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskY);
|
|
|
|
M.r[1] = vTemp;
|
|
|
|
// x=fRange,y=-fRange * NearZ,0,1.0f
|
|
|
|
vTemp = _mm_setzero_ps();
|
|
|
|
vValues = _mm_shuffle_ps(vValues,g_XMIdentityR3,_MM_SHUFFLE(3,2,3,2));
|
|
|
|
// 0,0,fRange,0.0f
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,0,0,0));
|
|
|
|
M.r[2] = vTemp;
|
|
|
|
// 0,0,-fRange * NearZ,1.0f
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,1,0,0));
|
|
|
|
M.r[3] = vTemp;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixOrthographicRH
|
|
|
|
(
|
|
|
|
float ViewWidth,
|
|
|
|
float ViewHeight,
|
|
|
|
float NearZ,
|
|
|
|
float FarZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
|
|
|
|
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float fRange = 1.0f / (NearZ-FarZ);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = 2.0f / ViewWidth;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = 2.0f / ViewHeight;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = fRange;
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = 0.0f;
|
|
|
|
M.m[3][1] = 0.0f;
|
|
|
|
M.m[3][2] = fRange * NearZ;
|
|
|
|
M.m[3][3] = 1.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float fRange = 1.0f / (NearZ-FarZ);
|
|
|
|
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( 2.0f / ViewWidth, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( 2.0f / ViewHeight, Zero, 1 );
|
|
|
|
M.r[2] = vsetq_lane_f32( fRange, Zero, 2 );
|
|
|
|
M.r[3] = vsetq_lane_f32( fRange * NearZ, g_XMIdentityR3.v, 2 );
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
float fRange = 1.0f / (NearZ-FarZ);
|
|
|
|
// Note: This is recorded on the stack
|
|
|
|
XMVECTOR rMem = {
|
|
|
|
2.0f / ViewWidth,
|
|
|
|
2.0f / ViewHeight,
|
|
|
|
fRange,
|
|
|
|
fRange * NearZ
|
|
|
|
};
|
|
|
|
// Copy from memory to SSE register
|
|
|
|
XMVECTOR vValues = rMem;
|
|
|
|
XMVECTOR vTemp = _mm_setzero_ps();
|
|
|
|
// Copy x only
|
|
|
|
vTemp = _mm_move_ss(vTemp,vValues);
|
|
|
|
// 2.0f / ViewWidth,0,0,0
|
|
|
|
M.r[0] = vTemp;
|
|
|
|
// 0,2.0f / ViewHeight,0,0
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskY);
|
|
|
|
M.r[1] = vTemp;
|
|
|
|
// x=fRange,y=fRange * NearZ,0,1.0f
|
|
|
|
vTemp = _mm_setzero_ps();
|
|
|
|
vValues = _mm_shuffle_ps(vValues,g_XMIdentityR3,_MM_SHUFFLE(3,2,3,2));
|
|
|
|
// 0,0,fRange,0.0f
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,0,0,0));
|
|
|
|
M.r[2] = vTemp;
|
|
|
|
// 0,0,fRange * NearZ,1.0f
|
|
|
|
vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,1,0,0));
|
|
|
|
M.r[3] = vTemp;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixOrthographicOffCenterLH
|
|
|
|
(
|
|
|
|
float ViewLeft,
|
|
|
|
float ViewRight,
|
|
|
|
float ViewBottom,
|
|
|
|
float ViewTop,
|
|
|
|
float NearZ,
|
|
|
|
float FarZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
|
|
|
|
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = 1.0f / (FarZ-NearZ);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = ReciprocalWidth + ReciprocalWidth;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = ReciprocalHeight + ReciprocalHeight;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = fRange;
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[3][0] = -(ViewLeft + ViewRight) * ReciprocalWidth;
|
|
|
|
M.m[3][1] = -(ViewTop + ViewBottom) * ReciprocalHeight;
|
|
|
|
M.m[3][2] = -fRange * NearZ;
|
|
|
|
M.m[3][3] = 1.0f;
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = 1.0f / (FarZ-NearZ);
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( ReciprocalWidth + ReciprocalWidth, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( ReciprocalHeight + ReciprocalHeight, Zero, 1 );
|
|
|
|
M.r[2] = vsetq_lane_f32( fRange, Zero, 2 );
|
|
|
|
M.r[3] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth,
|
|
|
|
-(ViewTop + ViewBottom) * ReciprocalHeight,
|
|
|
|
-fRange * NearZ,
|
|
|
|
1.0f);
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
float fReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float fReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = 1.0f / (FarZ-NearZ);
|
|
|
|
// Note: This is recorded on the stack
|
|
|
|
XMVECTOR rMem = {
|
|
|
|
fReciprocalWidth,
|
|
|
|
fReciprocalHeight,
|
|
|
|
fRange,
|
|
|
|
1.0f
|
|
|
|
};
|
|
|
|
XMVECTOR rMem2 = {
|
|
|
|
-(ViewLeft + ViewRight),
|
|
|
|
-(ViewTop + ViewBottom),
|
|
|
|
-NearZ,
|
|
|
|
1.0f
|
|
|
|
};
|
|
|
|
// Copy from memory to SSE register
|
|
|
|
XMVECTOR vValues = rMem;
|
|
|
|
XMVECTOR vTemp = _mm_setzero_ps();
|
|
|
|
// Copy x only
|
|
|
|
vTemp = _mm_move_ss(vTemp,vValues);
|
|
|
|
// fReciprocalWidth*2,0,0,0
|
|
|
|
vTemp = _mm_add_ss(vTemp,vTemp);
|
|
|
|
M.r[0] = vTemp;
|
|
|
|
// 0,fReciprocalHeight*2,0,0
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskY);
|
|
|
|
vTemp = _mm_add_ps(vTemp,vTemp);
|
|
|
|
M.r[1] = vTemp;
|
|
|
|
// 0,0,fRange,0.0f
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskZ);
|
|
|
|
M.r[2] = vTemp;
|
|
|
|
// -(ViewLeft + ViewRight)*fReciprocalWidth,-(ViewTop + ViewBottom)*fReciprocalHeight,fRange*-NearZ,1.0f
|
|
|
|
vValues = _mm_mul_ps(vValues,rMem2);
|
|
|
|
M.r[3] = vValues;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMatrixOrthographicOffCenterRH
|
|
|
|
(
|
|
|
|
float ViewLeft,
|
|
|
|
float ViewRight,
|
|
|
|
float ViewBottom,
|
|
|
|
float ViewTop,
|
|
|
|
float NearZ,
|
|
|
|
float FarZ
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f));
|
|
|
|
assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
|
|
|
|
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
|
|
|
|
float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = 1.0f / (NearZ-FarZ);
|
|
|
|
|
|
|
|
XMMATRIX M;
|
|
|
|
M.m[0][0] = ReciprocalWidth + ReciprocalWidth;
|
|
|
|
M.m[0][1] = 0.0f;
|
|
|
|
M.m[0][2] = 0.0f;
|
|
|
|
M.m[0][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[1][0] = 0.0f;
|
|
|
|
M.m[1][1] = ReciprocalHeight + ReciprocalHeight;
|
|
|
|
M.m[1][2] = 0.0f;
|
|
|
|
M.m[1][3] = 0.0f;
|
|
|
|
|
|
|
|
M.m[2][0] = 0.0f;
|
|
|
|
M.m[2][1] = 0.0f;
|
|
|
|
M.m[2][2] = fRange;
|
|
|
|
M.m[2][3] = 0.0f;
|
|
|
|
|
|
|
|
M.r[3] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth,
|
|
|
|
-(ViewTop + ViewBottom) * ReciprocalHeight,
|
|
|
|
fRange * NearZ,
|
|
|
|
1.0f);
|
|
|
|
return M;
|
|
|
|
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = 1.0f / (NearZ-FarZ);
|
|
|
|
const XMVECTOR Zero = vdupq_n_f32(0);
|
|
|
|
XMMATRIX M;
|
|
|
|
M.r[0] = vsetq_lane_f32( ReciprocalWidth + ReciprocalWidth, Zero, 0 );
|
|
|
|
M.r[1] = vsetq_lane_f32( ReciprocalHeight + ReciprocalHeight, Zero, 1 );
|
|
|
|
M.r[2] = vsetq_lane_f32( fRange, Zero, 2 );
|
|
|
|
M.r[3] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth,
|
|
|
|
-(ViewTop + ViewBottom) * ReciprocalHeight,
|
|
|
|
fRange * NearZ,
|
|
|
|
1.0f);
|
|
|
|
return M;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
XMMATRIX M;
|
|
|
|
float fReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
|
|
|
|
float fReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
|
|
|
|
float fRange = 1.0f / (NearZ-FarZ);
|
|
|
|
// Note: This is recorded on the stack
|
|
|
|
XMVECTOR rMem = {
|
|
|
|
fReciprocalWidth,
|
|
|
|
fReciprocalHeight,
|
|
|
|
fRange,
|
|
|
|
1.0f
|
|
|
|
};
|
|
|
|
XMVECTOR rMem2 = {
|
|
|
|
-(ViewLeft + ViewRight),
|
|
|
|
-(ViewTop + ViewBottom),
|
|
|
|
NearZ,
|
|
|
|
1.0f
|
|
|
|
};
|
|
|
|
// Copy from memory to SSE register
|
|
|
|
XMVECTOR vValues = rMem;
|
|
|
|
XMVECTOR vTemp = _mm_setzero_ps();
|
|
|
|
// Copy x only
|
|
|
|
vTemp = _mm_move_ss(vTemp,vValues);
|
|
|
|
// fReciprocalWidth*2,0,0,0
|
|
|
|
vTemp = _mm_add_ss(vTemp,vTemp);
|
|
|
|
M.r[0] = vTemp;
|
|
|
|
// 0,fReciprocalHeight*2,0,0
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskY);
|
|
|
|
vTemp = _mm_add_ps(vTemp,vTemp);
|
|
|
|
M.r[1] = vTemp;
|
|
|
|
// 0,0,fRange,0.0f
|
|
|
|
vTemp = vValues;
|
|
|
|
vTemp = _mm_and_ps(vTemp,g_XMMaskZ);
|
|
|
|
M.r[2] = vTemp;
|
|
|
|
// -(ViewLeft + ViewRight)*fReciprocalWidth,-(ViewTop + ViewBottom)*fReciprocalHeight,fRange*-NearZ,1.0f
|
|
|
|
vValues = _mm_mul_ps(vValues,rMem2);
|
|
|
|
M.r[3] = vValues;
|
|
|
|
return M;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#pragma prefast(pop)
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
*
|
|
|
|
* XMMATRIX operators and methods
|
|
|
|
*
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX::XMMATRIX
|
|
|
|
(
|
|
|
|
float m00, float m01, float m02, float m03,
|
|
|
|
float m10, float m11, float m12, float m13,
|
|
|
|
float m20, float m21, float m22, float m23,
|
|
|
|
float m30, float m31, float m32, float m33
|
|
|
|
)
|
|
|
|
{
|
|
|
|
r[0] = XMVectorSet(m00, m01, m02, m03);
|
|
|
|
r[1] = XMVectorSet(m10, m11, m12, m13);
|
|
|
|
r[2] = XMVectorSet(m20, m21, m22, m23);
|
|
|
|
r[3] = XMVectorSet(m30, m31, m32, m33);
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
_Use_decl_annotations_
|
|
|
|
inline XMMATRIX::XMMATRIX
|
|
|
|
(
|
|
|
|
const float* pArray
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert( pArray != nullptr );
|
|
|
|
r[0] = XMLoadFloat4((const XMFLOAT4*)pArray);
|
|
|
|
r[1] = XMLoadFloat4((const XMFLOAT4*)(pArray + 4));
|
|
|
|
r[2] = XMLoadFloat4((const XMFLOAT4*)(pArray + 8));
|
|
|
|
r[3] = XMLoadFloat4((const XMFLOAT4*)(pArray + 12));
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XMMATRIX::operator- () const
|
|
|
|
{
|
|
|
|
XMMATRIX R;
|
|
|
|
R.r[0] = XMVectorNegate( r[0] );
|
|
|
|
R.r[1] = XMVectorNegate( r[1] );
|
|
|
|
R.r[2] = XMVectorNegate( r[2] );
|
|
|
|
R.r[3] = XMVectorNegate( r[3] );
|
|
|
|
return R;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX& XM_CALLCONV XMMATRIX::operator+= (FXMMATRIX M)
|
|
|
|
{
|
|
|
|
r[0] = XMVectorAdd( r[0], M.r[0] );
|
|
|
|
r[1] = XMVectorAdd( r[1], M.r[1] );
|
|
|
|
r[2] = XMVectorAdd( r[2], M.r[2] );
|
|
|
|
r[3] = XMVectorAdd( r[3], M.r[3] );
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX& XM_CALLCONV XMMATRIX::operator-= (FXMMATRIX M)
|
|
|
|
{
|
|
|
|
r[0] = XMVectorSubtract( r[0], M.r[0] );
|
|
|
|
r[1] = XMVectorSubtract( r[1], M.r[1] );
|
|
|
|
r[2] = XMVectorSubtract( r[2], M.r[2] );
|
|
|
|
r[3] = XMVectorSubtract( r[3], M.r[3] );
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX& XM_CALLCONV XMMATRIX::operator*=(FXMMATRIX M)
|
|
|
|
{
|
|
|
|
*this = XMMatrixMultiply( *this, M );
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX& XMMATRIX::operator*= (float S)
|
|
|
|
{
|
|
|
|
r[0] = XMVectorScale( r[0], S );
|
|
|
|
r[1] = XMVectorScale( r[1], S );
|
|
|
|
r[2] = XMVectorScale( r[2], S );
|
|
|
|
r[3] = XMVectorScale( r[3], S );
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX& XMMATRIX::operator/= (float S)
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
XMVECTOR vS = XMVectorReplicate( S );
|
|
|
|
r[0] = XMVectorDivide( r[0], vS );
|
|
|
|
r[1] = XMVectorDivide( r[1], vS );
|
|
|
|
r[2] = XMVectorDivide( r[2], vS );
|
|
|
|
r[3] = XMVectorDivide( r[3], vS );
|
|
|
|
return *this;
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
// 2 iterations of Newton-Raphson refinement of reciprocal
|
|
|
|
float32x2_t vS = vdup_n_f32( S );
|
|
|
|
float32x2_t R0 = vrecpe_f32( vS );
|
|
|
|
float32x2_t S0 = vrecps_f32( R0, vS );
|
|
|
|
R0 = vmul_f32( S0, R0 );
|
|
|
|
S0 = vrecps_f32( R0, vS );
|
|
|
|
R0 = vmul_f32( S0, R0 );
|
|
|
|
float32x4_t Reciprocal = vcombine_u32(R0, R0);
|
|
|
|
r[0] = vmulq_f32( r[0], Reciprocal );
|
|
|
|
r[1] = vmulq_f32( r[1], Reciprocal );
|
|
|
|
r[2] = vmulq_f32( r[2], Reciprocal );
|
|
|
|
r[3] = vmulq_f32( r[3], Reciprocal );
|
|
|
|
return *this;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
__m128 vS = _mm_set_ps1( S );
|
|
|
|
r[0] = _mm_div_ps( r[0], vS );
|
|
|
|
r[1] = _mm_div_ps( r[1], vS );
|
|
|
|
r[2] = _mm_div_ps( r[2], vS );
|
|
|
|
r[3] = _mm_div_ps( r[3], vS );
|
|
|
|
return *this;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMATRIX::operator+ (FXMMATRIX M) const
|
|
|
|
{
|
|
|
|
XMMATRIX R;
|
|
|
|
R.r[0] = XMVectorAdd( r[0], M.r[0] );
|
|
|
|
R.r[1] = XMVectorAdd( r[1], M.r[1] );
|
|
|
|
R.r[2] = XMVectorAdd( r[2], M.r[2] );
|
|
|
|
R.r[3] = XMVectorAdd( r[3], M.r[3] );
|
|
|
|
return R;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMATRIX::operator- (FXMMATRIX M) const
|
|
|
|
{
|
|
|
|
XMMATRIX R;
|
|
|
|
R.r[0] = XMVectorSubtract( r[0], M.r[0] );
|
|
|
|
R.r[1] = XMVectorSubtract( r[1], M.r[1] );
|
|
|
|
R.r[2] = XMVectorSubtract( r[2], M.r[2] );
|
|
|
|
R.r[3] = XMVectorSubtract( r[3], M.r[3] );
|
|
|
|
return R;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV XMMATRIX::operator*(FXMMATRIX M) const
|
|
|
|
{
|
|
|
|
return XMMatrixMultiply(*this, M);
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XMMATRIX::operator* (float S) const
|
|
|
|
{
|
|
|
|
XMMATRIX R;
|
|
|
|
R.r[0] = XMVectorScale( r[0], S );
|
|
|
|
R.r[1] = XMVectorScale( r[1], S );
|
|
|
|
R.r[2] = XMVectorScale( r[2], S );
|
|
|
|
R.r[3] = XMVectorScale( r[3], S );
|
|
|
|
return R;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XMMATRIX::operator/ (float S) const
|
|
|
|
{
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
XMVECTOR vS = XMVectorReplicate( S );
|
|
|
|
XMMATRIX R;
|
|
|
|
R.r[0] = XMVectorDivide( r[0], vS );
|
|
|
|
R.r[1] = XMVectorDivide( r[1], vS );
|
|
|
|
R.r[2] = XMVectorDivide( r[2], vS );
|
|
|
|
R.r[3] = XMVectorDivide( r[3], vS );
|
|
|
|
return R;
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
// 2 iterations of Newton-Raphson refinement of reciprocal
|
|
|
|
float32x2_t vS = vdup_n_f32( S );
|
|
|
|
float32x2_t R0 = vrecpe_f32( vS );
|
|
|
|
float32x2_t S0 = vrecps_f32( R0, vS );
|
|
|
|
R0 = vmul_f32( S0, R0 );
|
|
|
|
S0 = vrecps_f32( R0, vS );
|
|
|
|
R0 = vmul_f32( S0, R0 );
|
|
|
|
float32x4_t Reciprocal = vcombine_u32(R0, R0);
|
|
|
|
XMMATRIX R;
|
|
|
|
R.r[0] = vmulq_f32( r[0], Reciprocal );
|
|
|
|
R.r[1] = vmulq_f32( r[1], Reciprocal );
|
|
|
|
R.r[2] = vmulq_f32( r[2], Reciprocal );
|
|
|
|
R.r[3] = vmulq_f32( r[3], Reciprocal );
|
|
|
|
return R;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
|
|
__m128 vS = _mm_set_ps1( S );
|
|
|
|
XMMATRIX R;
|
|
|
|
R.r[0] = _mm_div_ps( r[0], vS );
|
|
|
|
R.r[1] = _mm_div_ps( r[1], vS );
|
|
|
|
R.r[2] = _mm_div_ps( r[2], vS );
|
|
|
|
R.r[3] = _mm_div_ps( r[3], vS );
|
|
|
|
return R;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMMATRIX XM_CALLCONV operator*
|
|
|
|
(
|
|
|
|
float S,
|
|
|
|
FXMMATRIX M
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMMATRIX R;
|
|
|
|
R.r[0] = XMVectorScale( M.r[0], S );
|
|
|
|
R.r[1] = XMVectorScale( M.r[1], S );
|
|
|
|
R.r[2] = XMVectorScale( M.r[2], S );
|
|
|
|
R.r[3] = XMVectorScale( M.r[3], S );
|
|
|
|
return R;
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
*
|
|
|
|
* XMFLOAT3X3 operators
|
|
|
|
*
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
_Use_decl_annotations_
|
|
|
|
inline XMFLOAT3X3::XMFLOAT3X3
|
|
|
|
(
|
|
|
|
const float* pArray
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert( pArray != nullptr );
|
|
|
|
for (size_t Row = 0; Row < 3; Row++)
|
|
|
|
{
|
|
|
|
for (size_t Column = 0; Column < 3; Column++)
|
|
|
|
{
|
|
|
|
m[Row][Column] = pArray[Row * 3 + Column];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMFLOAT3X3& XMFLOAT3X3::operator=
|
|
|
|
(
|
|
|
|
const XMFLOAT3X3& Float3x3
|
|
|
|
)
|
|
|
|
{
|
|
|
|
_11 = Float3x3._11;
|
|
|
|
_12 = Float3x3._12;
|
|
|
|
_13 = Float3x3._13;
|
|
|
|
_21 = Float3x3._21;
|
|
|
|
_22 = Float3x3._22;
|
|
|
|
_23 = Float3x3._23;
|
|
|
|
_31 = Float3x3._31;
|
|
|
|
_32 = Float3x3._32;
|
|
|
|
_33 = Float3x3._33;
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
*
|
|
|
|
* XMFLOAT4X3 operators
|
|
|
|
*
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
_Use_decl_annotations_
|
|
|
|
inline XMFLOAT4X3::XMFLOAT4X3
|
|
|
|
(
|
|
|
|
const float* pArray
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert( pArray != nullptr );
|
|
|
|
|
|
|
|
m[0][0] = pArray[0];
|
|
|
|
m[0][1] = pArray[1];
|
|
|
|
m[0][2] = pArray[2];
|
|
|
|
|
|
|
|
m[1][0] = pArray[3];
|
|
|
|
m[1][1] = pArray[4];
|
|
|
|
m[1][2] = pArray[5];
|
|
|
|
|
|
|
|
m[2][0] = pArray[6];
|
|
|
|
m[2][1] = pArray[7];
|
|
|
|
m[2][2] = pArray[8];
|
|
|
|
|
|
|
|
m[3][0] = pArray[9];
|
|
|
|
m[3][1] = pArray[10];
|
|
|
|
m[3][2] = pArray[11];
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMFLOAT4X3& XMFLOAT4X3::operator=
|
|
|
|
(
|
|
|
|
const XMFLOAT4X3& Float4x3
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMVECTOR V1 = XMLoadFloat4((const XMFLOAT4*)&Float4x3._11);
|
|
|
|
XMVECTOR V2 = XMLoadFloat4((const XMFLOAT4*)&Float4x3._22);
|
|
|
|
XMVECTOR V3 = XMLoadFloat4((const XMFLOAT4*)&Float4x3._33);
|
|
|
|
|
|
|
|
XMStoreFloat4((XMFLOAT4*)&_11, V1);
|
|
|
|
XMStoreFloat4((XMFLOAT4*)&_22, V2);
|
|
|
|
XMStoreFloat4((XMFLOAT4*)&_33, V3);
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMFLOAT4X3A& XMFLOAT4X3A::operator=
|
|
|
|
(
|
|
|
|
const XMFLOAT4X3A& Float4x3
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMVECTOR V1 = XMLoadFloat4A((const XMFLOAT4A*)&Float4x3._11);
|
|
|
|
XMVECTOR V2 = XMLoadFloat4A((const XMFLOAT4A*)&Float4x3._22);
|
|
|
|
XMVECTOR V3 = XMLoadFloat4A((const XMFLOAT4A*)&Float4x3._33);
|
|
|
|
|
|
|
|
XMStoreFloat4A((XMFLOAT4A*)&_11, V1);
|
|
|
|
XMStoreFloat4A((XMFLOAT4A*)&_22, V2);
|
|
|
|
XMStoreFloat4A((XMFLOAT4A*)&_33, V3);
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
*
|
|
|
|
* XMFLOAT4X4 operators
|
|
|
|
*
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
_Use_decl_annotations_
|
|
|
|
inline XMFLOAT4X4::XMFLOAT4X4
|
|
|
|
(
|
|
|
|
const float* pArray
|
|
|
|
)
|
|
|
|
{
|
|
|
|
assert( pArray != nullptr );
|
|
|
|
|
|
|
|
m[0][0] = pArray[0];
|
|
|
|
m[0][1] = pArray[1];
|
|
|
|
m[0][2] = pArray[2];
|
|
|
|
m[0][3] = pArray[3];
|
|
|
|
|
|
|
|
m[1][0] = pArray[4];
|
|
|
|
m[1][1] = pArray[5];
|
|
|
|
m[1][2] = pArray[6];
|
|
|
|
m[1][3] = pArray[7];
|
|
|
|
|
|
|
|
m[2][0] = pArray[8];
|
|
|
|
m[2][1] = pArray[9];
|
|
|
|
m[2][2] = pArray[10];
|
|
|
|
m[2][3] = pArray[11];
|
|
|
|
|
|
|
|
m[3][0] = pArray[12];
|
|
|
|
m[3][1] = pArray[13];
|
|
|
|
m[3][2] = pArray[14];
|
|
|
|
m[3][3] = pArray[15];
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMFLOAT4X4& XMFLOAT4X4::operator=
|
|
|
|
(
|
|
|
|
const XMFLOAT4X4& Float4x4
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMVECTOR V1 = XMLoadFloat4((const XMFLOAT4*)&Float4x4._11);
|
|
|
|
XMVECTOR V2 = XMLoadFloat4((const XMFLOAT4*)&Float4x4._21);
|
|
|
|
XMVECTOR V3 = XMLoadFloat4((const XMFLOAT4*)&Float4x4._31);
|
|
|
|
XMVECTOR V4 = XMLoadFloat4((const XMFLOAT4*)&Float4x4._41);
|
|
|
|
|
|
|
|
XMStoreFloat4((XMFLOAT4*)&_11, V1);
|
|
|
|
XMStoreFloat4((XMFLOAT4*)&_21, V2);
|
|
|
|
XMStoreFloat4((XMFLOAT4*)&_31, V3);
|
|
|
|
XMStoreFloat4((XMFLOAT4*)&_41, V4);
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline XMFLOAT4X4A& XMFLOAT4X4A::operator=
|
|
|
|
(
|
|
|
|
const XMFLOAT4X4A& Float4x4
|
|
|
|
)
|
|
|
|
{
|
|
|
|
XMVECTOR V1 = XMLoadFloat4A((const XMFLOAT4A*)&Float4x4._11);
|
|
|
|
XMVECTOR V2 = XMLoadFloat4A((const XMFLOAT4A*)&Float4x4._21);
|
|
|
|
XMVECTOR V3 = XMLoadFloat4A((const XMFLOAT4A*)&Float4x4._31);
|
|
|
|
XMVECTOR V4 = XMLoadFloat4A((const XMFLOAT4A*)&Float4x4._41);
|
|
|
|
|
|
|
|
XMStoreFloat4A((XMFLOAT4A*)&_11, V1);
|
|
|
|
XMStoreFloat4A((XMFLOAT4A*)&_21, V2);
|
|
|
|
XMStoreFloat4A((XMFLOAT4A*)&_31, V3);
|
|
|
|
XMStoreFloat4A((XMFLOAT4A*)&_41, V4);
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|