1
0
mirror of https://github.com/microsoft/DirectXMath synced 2024-11-25 13:40:03 +00:00
DirectXMath/Inc/DirectXCollision.inl

4812 lines
193 KiB
Plaintext
Raw Normal View History

2016-08-22 18:43:47 +00:00
//-------------------------------------------------------------------------------------
// DirectXCollision.inl -- C++ Collision Math library
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// http://go.microsoft.com/fwlink/?LinkID=615560
//-------------------------------------------------------------------------------------
#pragma once
XMGLOBALCONST XMVECTORF32 g_BoxOffset[8] =
{
{ -1.0f, -1.0f, 1.0f, 0.0f },
{ 1.0f, -1.0f, 1.0f, 0.0f },
{ 1.0f, 1.0f, 1.0f, 0.0f },
{ -1.0f, 1.0f, 1.0f, 0.0f },
{ -1.0f, -1.0f, -1.0f, 0.0f },
{ 1.0f, -1.0f, -1.0f, 0.0f },
{ 1.0f, 1.0f, -1.0f, 0.0f },
{ -1.0f, 1.0f, -1.0f, 0.0f },
};
XMGLOBALCONST XMVECTORF32 g_RayEpsilon = { 1e-20f, 1e-20f, 1e-20f, 1e-20f };
XMGLOBALCONST XMVECTORF32 g_RayNegEpsilon = { -1e-20f, -1e-20f, -1e-20f, -1e-20f };
XMGLOBALCONST XMVECTORF32 g_FltMin = { -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX };
XMGLOBALCONST XMVECTORF32 g_FltMax = { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX };
namespace Internal
{
//-----------------------------------------------------------------------------
// Return true if any of the elements of a 3 vector are equal to 0xffffffff.
// Slightly more efficient than using XMVector3EqualInt.
//-----------------------------------------------------------------------------
inline bool XMVector3AnyTrue( _In_ FXMVECTOR V )
{
// Duplicate the fourth element from the first element.
XMVECTOR C = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X>(V);
return XMComparisonAnyTrue( XMVector4EqualIntR( C, XMVectorTrueInt() ) );
}
//-----------------------------------------------------------------------------
// Return true if all of the elements of a 3 vector are equal to 0xffffffff.
// Slightly more efficient than using XMVector3EqualInt.
//-----------------------------------------------------------------------------
inline bool XMVector3AllTrue( _In_ FXMVECTOR V )
{
// Duplicate the fourth element from the first element.
XMVECTOR C = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X>( V );
return XMComparisonAllTrue( XMVector4EqualIntR( C, XMVectorTrueInt() ) );
}
#if defined(_PREFAST) || !defined(NDEBUG)
XMGLOBALCONST XMVECTORF32 g_UnitVectorEpsilon = { 1.0e-4f, 1.0e-4f, 1.0e-4f, 1.0e-4f };
XMGLOBALCONST XMVECTORF32 g_UnitQuaternionEpsilon = { 1.0e-4f, 1.0e-4f, 1.0e-4f, 1.0e-4f };
XMGLOBALCONST XMVECTORF32 g_UnitPlaneEpsilon = { 1.0e-4f, 1.0e-4f, 1.0e-4f, 1.0e-4f };
//-----------------------------------------------------------------------------
// Return true if the vector is a unit vector (length == 1).
//-----------------------------------------------------------------------------
inline bool XMVector3IsUnit( _In_ FXMVECTOR V )
{
XMVECTOR Difference = XMVectorSubtract( XMVector3Length( V ), XMVectorSplatOne() );
2016-08-22 18:43:47 +00:00
return XMVector4Less( XMVectorAbs( Difference ), g_UnitVectorEpsilon );
}
//-----------------------------------------------------------------------------
// Return true if the quaterion is a unit quaternion.
//-----------------------------------------------------------------------------
inline bool XMQuaternionIsUnit( _In_ FXMVECTOR Q )
{
XMVECTOR Difference = XMVectorSubtract( XMVector4Length( Q ), XMVectorSplatOne() );
2016-08-22 18:43:47 +00:00
return XMVector4Less( XMVectorAbs( Difference ), g_UnitQuaternionEpsilon );
}
//-----------------------------------------------------------------------------
// Return true if the plane is a unit plane.
//-----------------------------------------------------------------------------
inline bool XMPlaneIsUnit( _In_ FXMVECTOR Plane )
{
XMVECTOR Difference = XMVectorSubtract( XMVector3Length( Plane ), XMVectorSplatOne() );
2016-08-22 18:43:47 +00:00
return XMVector4Less( XMVectorAbs( Difference ), g_UnitPlaneEpsilon );
}
#endif // __PREFAST__ || !NDEBUG
//-----------------------------------------------------------------------------
inline XMVECTOR XMPlaneTransform( _In_ FXMVECTOR Plane, _In_ FXMVECTOR Rotation, _In_ FXMVECTOR Translation )
{
XMVECTOR vNormal = XMVector3Rotate( Plane, Rotation );
XMVECTOR vD = XMVectorSubtract( XMVectorSplatW( Plane ), XMVector3Dot( vNormal, Translation ) );
2016-08-22 18:43:47 +00:00
return XMVectorInsert<0, 0, 0, 0, 1>( vNormal, vD );
}
//-----------------------------------------------------------------------------
// Return the point on the line segement (S1, S2) nearest the point P.
//-----------------------------------------------------------------------------
inline XMVECTOR PointOnLineSegmentNearestPoint( _In_ FXMVECTOR S1, _In_ FXMVECTOR S2, _In_ FXMVECTOR P )
{
XMVECTOR Dir = XMVectorSubtract( S2, S1 );
XMVECTOR Projection = XMVectorSubtract( XMVector3Dot( P, Dir ), XMVector3Dot( S1, Dir ) );
2016-08-22 18:43:47 +00:00
XMVECTOR LengthSq = XMVector3Dot( Dir, Dir );
XMVECTOR t = XMVectorMultiply( Projection, XMVectorReciprocal( LengthSq ) );
XMVECTOR Point = XMVectorMultiplyAdd( t, Dir, S1 );
2016-08-22 18:43:47 +00:00
// t < 0
XMVECTOR SelectS1 = XMVectorLess( Projection, XMVectorZero() );
Point = XMVectorSelect( Point, S1, SelectS1 );
// t > 1
XMVECTOR SelectS2 = XMVectorGreater( Projection, LengthSq );
Point = XMVectorSelect( Point, S2, SelectS2 );
return Point;
}
//-----------------------------------------------------------------------------
// Test if the point (P) on the plane of the triangle is inside the triangle
// (V0, V1, V2).
//-----------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV PointOnPlaneInsideTriangle( _In_ FXMVECTOR P, _In_ FXMVECTOR V0, _In_ FXMVECTOR V1, _In_ GXMVECTOR V2 )
{
// Compute the triangle normal.
XMVECTOR N = XMVector3Cross( XMVectorSubtract( V2, V0 ), XMVectorSubtract( V1, V0 ) );
2016-08-22 18:43:47 +00:00
// Compute the cross products of the vector from the base of each edge to
// the point with each edge vector.
XMVECTOR C0 = XMVector3Cross( XMVectorSubtract( P, V0 ), XMVectorSubtract( V1, V0 ) );
XMVECTOR C1 = XMVector3Cross( XMVectorSubtract( P, V1 ), XMVectorSubtract( V2, V1 ) );
XMVECTOR C2 = XMVector3Cross( XMVectorSubtract( P, V2 ), XMVectorSubtract( V0, V2 ) );
2016-08-22 18:43:47 +00:00
// If the cross product points in the same direction as the normal the the
// point is inside the edge (it is zero if is on the edge).
XMVECTOR Zero = XMVectorZero();
XMVECTOR Inside0 = XMVectorGreaterOrEqual( XMVector3Dot( C0, N ), Zero );
XMVECTOR Inside1 = XMVectorGreaterOrEqual( XMVector3Dot( C1, N ), Zero );
XMVECTOR Inside2 = XMVectorGreaterOrEqual( XMVector3Dot( C2, N ), Zero );
// If the point inside all of the edges it is inside.
return XMVectorAndInt( XMVectorAndInt( Inside0, Inside1 ), Inside2 );
}
//-----------------------------------------------------------------------------
inline bool SolveCubic( _In_ float e, _In_ float f, _In_ float g, _Out_ float* t, _Out_ float* u, _Out_ float* v )
{
float p, q, h, rc, d, theta, costh3, sinth3;
p = f - e * e / 3.0f;
q = g - e * f / 3.0f + e * e * e * 2.0f / 27.0f;
h = q * q / 4.0f + p * p * p / 27.0f;
if( h > 0.0 )
{
*t = *u = *v = 0.f;
return false; // only one real root
}
if( ( h == 0.0 ) && ( q == 0.0 ) ) // all the same root
{
*t = - e / 3;
*u = - e / 3;
*v = - e / 3;
return true;
}
d = sqrtf( q * q / 4.0f - h );
if( d < 0 )
rc = -powf( -d, 1.0f / 3.0f );
else
rc = powf( d, 1.0f / 3.0f );
theta = XMScalarACos( -q / ( 2.0f * d ) );
costh3 = XMScalarCos( theta / 3.0f );
sinth3 = sqrtf( 3.0f ) * XMScalarSin( theta / 3.0f );
*t = 2.0f * rc * costh3 - e / 3.0f;
*u = -rc * ( costh3 + sinth3 ) - e / 3.0f;
*v = -rc * ( costh3 - sinth3 ) - e / 3.0f;
return true;
}
//-----------------------------------------------------------------------------
inline XMVECTOR CalculateEigenVector( _In_ float m11, _In_ float m12, _In_ float m13,
_In_ float m22, _In_ float m23, _In_ float m33, _In_ float e )
{
float fTmp[3];
fTmp[0] = ( float )( m12 * m23 - m13 * ( m22 - e ) );
fTmp[1] = ( float )( m13 * m12 - m23 * ( m11 - e ) );
fTmp[2] = ( float )( ( m11 - e ) * ( m22 - e ) - m12 * m12 );
XMVECTOR vTmp = XMLoadFloat3( reinterpret_cast<const XMFLOAT3*>(fTmp) );
2016-08-22 18:43:47 +00:00
if( XMVector3Equal( vTmp, XMVectorZero() ) ) // planar or linear
{
float f1, f2, f3;
// we only have one equation - find a valid one
if( ( m11 - e != 0.0 ) || ( m12 != 0.0 ) || ( m13 != 0.0 ) )
{
f1 = m11 - e; f2 = m12; f3 = m13;
}
else if( ( m12 != 0.0 ) || ( m22 - e != 0.0 ) || ( m23 != 0.0 ) )
{
f1 = m12; f2 = m22 - e; f3 = m23;
}
else if( ( m13 != 0.0 ) || ( m23 != 0.0 ) || ( m33 - e != 0.0 ) )
{
f1 = m13; f2 = m23; f3 = m33 - e;
}
else
{
// error, we'll just make something up - we have NO context
f1 = 1.0; f2 = 0.0; f3 = 0.0;
}
if( f1 == 0.0 )
vTmp = XMVectorSetX( vTmp, 0.0f );
else
vTmp = XMVectorSetX( vTmp, 1.0f );
if( f2 == 0.0 )
vTmp = XMVectorSetY( vTmp, 0.0f );
else
vTmp = XMVectorSetY( vTmp, 1.0f );
if( f3 == 0.0 )
{
vTmp = XMVectorSetZ( vTmp, 0.0f );
// recalculate y to make equation work
if( m12 != 0.0 )
vTmp = XMVectorSetY( vTmp, ( float )( -f1 / f2 ) );
}
else
{
vTmp = XMVectorSetZ( vTmp, ( float )( ( f2 - f1 ) / f3 ) );
}
}
if( XMVectorGetX( XMVector3LengthSq( vTmp ) ) > 1e-5f )
{
return XMVector3Normalize( vTmp );
}
else
{
// Multiply by a value large enough to make the vector non-zero.
vTmp = XMVectorScale( vTmp, 1e5f );
2016-08-22 18:43:47 +00:00
return XMVector3Normalize( vTmp );
}
}
//-----------------------------------------------------------------------------
inline bool CalculateEigenVectors( _In_ float m11, _In_ float m12, _In_ float m13,
_In_ float m22, _In_ float m23, _In_ float m33,
_In_ float e1, _In_ float e2, _In_ float e3,
_Out_ XMVECTOR* pV1, _Out_ XMVECTOR* pV2, _Out_ XMVECTOR* pV3 )
{
*pV1 = DirectX::Internal::CalculateEigenVector( m11, m12, m13, m22, m23, m33, e1 );
*pV2 = DirectX::Internal::CalculateEigenVector( m11, m12, m13, m22, m23, m33, e2 );
*pV3 = DirectX::Internal::CalculateEigenVector( m11, m12, m13, m22, m23, m33, e3 );
bool v1z = false;
bool v2z = false;
bool v3z = false;
XMVECTOR Zero = XMVectorZero();
if ( XMVector3Equal( *pV1, Zero ) )
v1z = true;
if ( XMVector3Equal( *pV2, Zero ) )
v2z = true;
if ( XMVector3Equal( *pV3, Zero ))
v3z = true;
bool e12 = ( fabsf( XMVectorGetX( XMVector3Dot( *pV1, *pV2 ) ) ) > 0.1f ); // check for non-orthogonal vectors
bool e13 = ( fabsf( XMVectorGetX( XMVector3Dot( *pV1, *pV3 ) ) ) > 0.1f );
bool e23 = ( fabsf( XMVectorGetX( XMVector3Dot( *pV2, *pV3 ) ) ) > 0.1f );
if( ( v1z && v2z && v3z ) || ( e12 && e13 && e23 ) ||
( e12 && v3z ) || ( e13 && v2z ) || ( e23 && v1z ) ) // all eigenvectors are 0- any basis set
{
*pV1 = g_XMIdentityR0.v;
*pV2 = g_XMIdentityR1.v;
*pV3 = g_XMIdentityR2.v;
return true;
}
if( v1z && v2z )
{
XMVECTOR vTmp = XMVector3Cross( g_XMIdentityR1, *pV3 );
if( XMVectorGetX( XMVector3LengthSq( vTmp ) ) < 1e-5f )
{
vTmp = XMVector3Cross( g_XMIdentityR0, *pV3 );
}
*pV1 = XMVector3Normalize( vTmp );
*pV2 = XMVector3Cross( *pV3, *pV1 );
return true;
}
if( v3z && v1z )
{
XMVECTOR vTmp = XMVector3Cross( g_XMIdentityR1, *pV2 );
if( XMVectorGetX( XMVector3LengthSq( vTmp ) ) < 1e-5f )
{
vTmp = XMVector3Cross( g_XMIdentityR0, *pV2 );
}
*pV3 = XMVector3Normalize( vTmp );
*pV1 = XMVector3Cross( *pV2, *pV3 );
return true;
}
if( v2z && v3z )
{
XMVECTOR vTmp = XMVector3Cross( g_XMIdentityR1, *pV1 );
if( XMVectorGetX( XMVector3LengthSq( vTmp ) ) < 1e-5f )
{
vTmp = XMVector3Cross( g_XMIdentityR0, *pV1 );
}
*pV2 = XMVector3Normalize( vTmp );
*pV3 = XMVector3Cross( *pV1, *pV2 );
return true;
}
if( ( v1z ) || e12 )
{
*pV1 = XMVector3Cross( *pV2, *pV3 );
return true;
}
if( ( v2z ) || e23 )
{
*pV2 = XMVector3Cross( *pV3, *pV1 );
return true;
}
if( ( v3z ) || e13 )
{
*pV3 = XMVector3Cross( *pV1, *pV2 );
return true;
}
return true;
}
//-----------------------------------------------------------------------------
inline bool CalculateEigenVectorsFromCovarianceMatrix( _In_ float Cxx, _In_ float Cyy, _In_ float Czz,
_In_ float Cxy, _In_ float Cxz, _In_ float Cyz,
_Out_ XMVECTOR* pV1, _Out_ XMVECTOR* pV2, _Out_ XMVECTOR* pV3 )
{
// Calculate the eigenvalues by solving a cubic equation.
float e = -( Cxx + Cyy + Czz );
float f = Cxx * Cyy + Cyy * Czz + Czz * Cxx - Cxy * Cxy - Cxz * Cxz - Cyz * Cyz;
float g = Cxy * Cxy * Czz + Cxz * Cxz * Cyy + Cyz * Cyz * Cxx - Cxy * Cyz * Cxz * 2.0f - Cxx * Cyy * Czz;
float ev1, ev2, ev3;
if( !DirectX::Internal::SolveCubic( e, f, g, &ev1, &ev2, &ev3 ) )
{
// set them to arbitrary orthonormal basis set
*pV1 = g_XMIdentityR0.v;
*pV2 = g_XMIdentityR1.v;
*pV3 = g_XMIdentityR2.v;
return false;
}
return DirectX::Internal::CalculateEigenVectors( Cxx, Cxy, Cxz, Cyy, Cyz, Czz, ev1, ev2, ev3, pV1, pV2, pV3 );
}
//-----------------------------------------------------------------------------
inline void XM_CALLCONV FastIntersectTrianglePlane( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2, GXMVECTOR Plane,
XMVECTOR& Outside, XMVECTOR& Inside )
{
// Plane0
XMVECTOR Dist0 = XMVector4Dot( V0, Plane );
XMVECTOR Dist1 = XMVector4Dot( V1, Plane );
XMVECTOR Dist2 = XMVector4Dot( V2, Plane );
XMVECTOR MinDist = XMVectorMin( Dist0, Dist1 );
MinDist = XMVectorMin( MinDist, Dist2 );
XMVECTOR MaxDist = XMVectorMax( Dist0, Dist1 );
MaxDist = XMVectorMax( MaxDist, Dist2 );
XMVECTOR Zero = XMVectorZero();
// Outside the plane?
Outside = XMVectorGreater( MinDist, Zero );
// Fully inside the plane?
Inside = XMVectorLess( MaxDist, Zero );
}
//-----------------------------------------------------------------------------
inline void FastIntersectSpherePlane( _In_ FXMVECTOR Center, _In_ FXMVECTOR Radius, _In_ FXMVECTOR Plane,
_Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside )
{
XMVECTOR Dist = XMVector4Dot( Center, Plane );
// Outside the plane?
Outside = XMVectorGreater( Dist, Radius );
// Fully inside the plane?
Inside = XMVectorLess( Dist, XMVectorNegate( Radius ) );
2016-08-22 18:43:47 +00:00
}
//-----------------------------------------------------------------------------
inline void FastIntersectAxisAlignedBoxPlane( _In_ FXMVECTOR Center, _In_ FXMVECTOR Extents, _In_ FXMVECTOR Plane,
_Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside )
{
// Compute the distance to the center of the box.
XMVECTOR Dist = XMVector4Dot( Center, Plane );
// Project the axes of the box onto the normal of the plane. Half the
// length of the projection (sometime called the "radius") is equal to
// h(u) * abs(n dot b(u))) + h(v) * abs(n dot b(v)) + h(w) * abs(n dot b(w))
// where h(i) are extents of the box, n is the plane normal, and b(i) are the
// axes of the box. In this case b(i) = [(1,0,0), (0,1,0), (0,0,1)].
XMVECTOR Radius = XMVector3Dot( Extents, XMVectorAbs( Plane ) );
// Outside the plane?
Outside = XMVectorGreater( Dist, Radius );
// Fully inside the plane?
Inside = XMVectorLess( Dist, XMVectorNegate( Radius ) );
2016-08-22 18:43:47 +00:00
}
//-----------------------------------------------------------------------------
inline void XM_CALLCONV FastIntersectOrientedBoxPlane( _In_ FXMVECTOR Center, _In_ FXMVECTOR Extents, _In_ FXMVECTOR Axis0, _In_ GXMVECTOR Axis1,
_In_ HXMVECTOR Axis2, _In_ HXMVECTOR Plane, _Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside )
{
// Compute the distance to the center of the box.
XMVECTOR Dist = XMVector4Dot( Center, Plane );
// Project the axes of the box onto the normal of the plane. Half the
// length of the projection (sometime called the "radius") is equal to
// h(u) * abs(n dot b(u))) + h(v) * abs(n dot b(v)) + h(w) * abs(n dot b(w))
// where h(i) are extents of the box, n is the plane normal, and b(i) are the
// axes of the box.
XMVECTOR Radius = XMVector3Dot( Plane, Axis0 );
Radius = XMVectorInsert<0, 0, 1, 0, 0>( Radius, XMVector3Dot( Plane, Axis1 ) );
Radius = XMVectorInsert<0, 0, 0, 1, 0>( Radius, XMVector3Dot( Plane, Axis2 ) );
Radius = XMVector3Dot( Extents, XMVectorAbs( Radius ) );
// Outside the plane?
Outside = XMVectorGreater( Dist, Radius );
// Fully inside the plane?
Inside = XMVectorLess( Dist, XMVectorNegate( Radius ) );
2016-08-22 18:43:47 +00:00
}
//-----------------------------------------------------------------------------
inline void XM_CALLCONV FastIntersectFrustumPlane( _In_ FXMVECTOR Point0, _In_ FXMVECTOR Point1, _In_ FXMVECTOR Point2, _In_ GXMVECTOR Point3,
_In_ HXMVECTOR Point4, _In_ HXMVECTOR Point5, _In_ CXMVECTOR Point6, _In_ CXMVECTOR Point7,
_In_ CXMVECTOR Plane, _Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside )
{
// Find the min/max projection of the frustum onto the plane normal.
XMVECTOR Min, Max, Dist;
Min = Max = XMVector3Dot( Plane, Point0 );
Dist = XMVector3Dot( Plane, Point1 );
Min = XMVectorMin( Min, Dist );
Max = XMVectorMax( Max, Dist );
Dist = XMVector3Dot( Plane, Point2 );
Min = XMVectorMin( Min, Dist );
Max = XMVectorMax( Max, Dist );
Dist = XMVector3Dot( Plane, Point3 );
Min = XMVectorMin( Min, Dist );
Max = XMVectorMax( Max, Dist );
Dist = XMVector3Dot( Plane, Point4 );
Min = XMVectorMin( Min, Dist );
Max = XMVectorMax( Max, Dist );
Dist = XMVector3Dot( Plane, Point5 );
Min = XMVectorMin( Min, Dist );
Max = XMVectorMax( Max, Dist );
Dist = XMVector3Dot( Plane, Point6 );
Min = XMVectorMin( Min, Dist );
Max = XMVectorMax( Max, Dist );
Dist = XMVector3Dot( Plane, Point7 );
Min = XMVectorMin( Min, Dist );
Max = XMVectorMax( Max, Dist );
XMVECTOR PlaneDist = XMVectorNegate( XMVectorSplatW( Plane ) );
2016-08-22 18:43:47 +00:00
// Outside the plane?
Outside = XMVectorGreater( Min, PlaneDist );
// Fully inside the plane?
Inside = XMVectorLess( Max, PlaneDist );
}
}; // namespace Internal
/****************************************************************************
*
* BoundingSphere
*
****************************************************************************/
//-----------------------------------------------------------------------------
// Transform a sphere by an angle preserving transform.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV BoundingSphere::Transform( BoundingSphere& Out, FXMMATRIX M ) const
{
// Load the center of the sphere.
XMVECTOR vCenter = XMLoadFloat3( &Center );
// Transform the center of the sphere.
XMVECTOR C = XMVector3Transform( vCenter, M );
XMVECTOR dX = XMVector3Dot( M.r[0], M.r[0] );
XMVECTOR dY = XMVector3Dot( M.r[1], M.r[1] );
XMVECTOR dZ = XMVector3Dot( M.r[2], M.r[2] );
XMVECTOR d = XMVectorMax( dX, XMVectorMax( dY, dZ ) );
// Store the center sphere.
XMStoreFloat3( &Out.Center, C );
// Scale the radius of the pshere.
float Scale = sqrtf( XMVectorGetX(d) );
Out.Radius = Radius * Scale;
}
_Use_decl_annotations_
inline void XM_CALLCONV BoundingSphere::Transform( BoundingSphere& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation ) const
{
// Load the center of the sphere.
XMVECTOR vCenter = XMLoadFloat3( &Center );
// Transform the center of the sphere.
vCenter = XMVectorAdd( XMVector3Rotate( XMVectorScale( vCenter, Scale ), Rotation ), Translation );
2016-08-22 18:43:47 +00:00
// Store the center sphere.
XMStoreFloat3( &Out.Center, vCenter );
// Scale the radius of the pshere.
Out.Radius = Radius * Scale;
}
//-----------------------------------------------------------------------------
// Point in sphere test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingSphere::Contains( FXMVECTOR Point ) const
{
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vRadius = XMVectorReplicatePtr( &Radius );
XMVECTOR DistanceSquared = XMVector3LengthSq( XMVectorSubtract( Point, vCenter ) );
2016-08-22 18:43:47 +00:00
XMVECTOR RadiusSquared = XMVectorMultiply( vRadius, vRadius );
return XMVector3LessOrEqual( DistanceSquared, RadiusSquared ) ? CONTAINS : DISJOINT;
}
//-----------------------------------------------------------------------------
// Triangle in sphere test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingSphere::Contains( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2 ) const
{
if ( !Intersects(V0,V1,V2) )
return DISJOINT;
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vRadius = XMVectorReplicatePtr( &Radius );
XMVECTOR RadiusSquared = XMVectorMultiply( vRadius, vRadius );
XMVECTOR DistanceSquared = XMVector3LengthSq( XMVectorSubtract( V0, vCenter ) );
2016-08-22 18:43:47 +00:00
XMVECTOR Inside = XMVectorLessOrEqual(DistanceSquared, RadiusSquared);
DistanceSquared = XMVector3LengthSq( XMVectorSubtract( V1, vCenter ) );
2016-08-22 18:43:47 +00:00
Inside = XMVectorAndInt( Inside, XMVectorLessOrEqual(DistanceSquared, RadiusSquared) );
DistanceSquared = XMVector3LengthSq( XMVectorSubtract( V2, vCenter ) );
2016-08-22 18:43:47 +00:00
Inside = XMVectorAndInt( Inside, XMVectorLessOrEqual(DistanceSquared, RadiusSquared) );
return ( XMVector3EqualInt( Inside, XMVectorTrueInt() ) ) ? CONTAINS : INTERSECTS;
}
//-----------------------------------------------------------------------------
// Sphere in sphere test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingSphere::Contains( const BoundingSphere& sh ) const
{
XMVECTOR Center1 = XMLoadFloat3( &Center );
float r1 = Radius;
XMVECTOR Center2 = XMLoadFloat3( &sh.Center );
float r2 = sh.Radius;
XMVECTOR V = XMVectorSubtract( Center2, Center1 );
XMVECTOR Dist = XMVector3Length( V );
float d = XMVectorGetX( Dist );
return (r1 + r2 >= d) ? ((r1 - r2 >= d) ? CONTAINS : INTERSECTS) : DISJOINT;
}
//-----------------------------------------------------------------------------
// Axis-aligned box in sphere test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingSphere::Contains( const BoundingBox& box ) const
{
if ( !box.Intersects(*this) )
return DISJOINT;
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vRadius = XMVectorReplicatePtr( &Radius );
XMVECTOR RadiusSq = XMVectorMultiply( vRadius, vRadius );
2016-08-22 18:43:47 +00:00
XMVECTOR boxCenter = XMLoadFloat3( &box.Center );
XMVECTOR boxExtents = XMLoadFloat3( &box.Extents );
XMVECTOR InsideAll = XMVectorTrueInt();
XMVECTOR offset = XMVectorSubtract( boxCenter, vCenter );
2016-08-22 18:43:47 +00:00
for( size_t i = 0; i < BoundingBox::CORNER_COUNT; ++i )
{
XMVECTOR C = XMVectorMultiplyAdd( boxExtents, g_BoxOffset[i], offset );
XMVECTOR d = XMVector3LengthSq( C );
InsideAll = XMVectorAndInt( InsideAll, XMVectorLessOrEqual( d, RadiusSq ) );
}
return ( XMVector3EqualInt( InsideAll, XMVectorTrueInt() ) ) ? CONTAINS : INTERSECTS;
}
//-----------------------------------------------------------------------------
// Oriented box in sphere test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingSphere::Contains( const BoundingOrientedBox& box ) const
{
if ( !box.Intersects(*this) )
return DISJOINT;
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vRadius = XMVectorReplicatePtr( &Radius );
XMVECTOR RadiusSq = XMVectorMultiply( vRadius, vRadius );
2016-08-22 18:43:47 +00:00
XMVECTOR boxCenter = XMLoadFloat3( &box.Center );
XMVECTOR boxExtents = XMLoadFloat3( &box.Extents );
XMVECTOR boxOrientation = XMLoadFloat4( &box.Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( boxOrientation ) );
XMVECTOR InsideAll = XMVectorTrueInt();
for( size_t i = 0; i < BoundingOrientedBox::CORNER_COUNT; ++i )
{
XMVECTOR C = XMVectorAdd( XMVector3Rotate( XMVectorMultiply( boxExtents, g_BoxOffset[i] ), boxOrientation ), boxCenter );
2016-08-22 18:43:47 +00:00
XMVECTOR d = XMVector3LengthSq( XMVectorSubtract( vCenter, C ) );
InsideAll = XMVectorAndInt( InsideAll, XMVectorLessOrEqual( d, RadiusSq ) );
}
return ( XMVector3EqualInt( InsideAll, XMVectorTrueInt() ) ) ? CONTAINS : INTERSECTS;
}
//-----------------------------------------------------------------------------
// Frustum in sphere test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingSphere::Contains( const BoundingFrustum& fr ) const
{
if ( !fr.Intersects(*this) )
return DISJOINT;
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vRadius = XMVectorReplicatePtr( &Radius );
XMVECTOR RadiusSq = XMVectorMultiply( vRadius, vRadius );
2016-08-22 18:43:47 +00:00
XMVECTOR vOrigin = XMLoadFloat3( &fr.Origin );
XMVECTOR vOrientation = XMLoadFloat4( &fr.Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Build the corners of the frustum.
XMVECTOR vRightTop = XMVectorSet( fr.RightSlope, fr.TopSlope, 1.0f, 0.0f );
XMVECTOR vRightBottom = XMVectorSet( fr.RightSlope, fr.BottomSlope, 1.0f, 0.0f );
XMVECTOR vLeftTop = XMVectorSet( fr.LeftSlope, fr.TopSlope, 1.0f, 0.0f );
XMVECTOR vLeftBottom = XMVectorSet( fr.LeftSlope, fr.BottomSlope, 1.0f, 0.0f );
XMVECTOR vNear = XMVectorReplicatePtr( &fr.Near );
XMVECTOR vFar = XMVectorReplicatePtr( &fr.Far );
XMVECTOR Corners[BoundingFrustum::CORNER_COUNT];
Corners[0] = XMVectorMultiply( vRightTop, vNear );
Corners[1] = XMVectorMultiply( vRightBottom, vNear );
Corners[2] = XMVectorMultiply( vLeftTop, vNear );
Corners[3] = XMVectorMultiply( vLeftBottom, vNear );
Corners[4] = XMVectorMultiply( vRightTop, vFar );
Corners[5] = XMVectorMultiply( vRightBottom, vFar );
Corners[6] = XMVectorMultiply( vLeftTop, vFar );
Corners[7] = XMVectorMultiply( vLeftBottom, vFar );
2016-08-22 18:43:47 +00:00
XMVECTOR InsideAll = XMVectorTrueInt();
for( size_t i = 0; i < BoundingFrustum::CORNER_COUNT; ++i )
{
XMVECTOR C = XMVectorAdd( XMVector3Rotate( Corners[i], vOrientation ), vOrigin );
2016-08-22 18:43:47 +00:00
XMVECTOR d = XMVector3LengthSq( XMVectorSubtract( vCenter, C ) );
InsideAll = XMVectorAndInt( InsideAll, XMVectorLessOrEqual( d, RadiusSq ) );
}
return ( XMVector3EqualInt( InsideAll, XMVectorTrueInt() ) ) ? CONTAINS : INTERSECTS;
}
//-----------------------------------------------------------------------------
// Sphere vs. sphere test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingSphere::Intersects( const BoundingSphere& sh ) const
{
// Load A.
XMVECTOR vCenterA = XMLoadFloat3( &Center );
XMVECTOR vRadiusA = XMVectorReplicatePtr( &Radius );
// Load B.
XMVECTOR vCenterB = XMLoadFloat3( &sh.Center );
XMVECTOR vRadiusB = XMVectorReplicatePtr( &sh.Radius );
// Distance squared between centers.
XMVECTOR Delta = XMVectorSubtract( vCenterB, vCenterA );
2016-08-22 18:43:47 +00:00
XMVECTOR DistanceSquared = XMVector3LengthSq( Delta );
// Sum of the radii squared.
XMVECTOR RadiusSquared = XMVectorAdd( vRadiusA, vRadiusB );
RadiusSquared = XMVectorMultiply( RadiusSquared, RadiusSquared );
return XMVector3LessOrEqual( DistanceSquared, RadiusSquared );
}
//-----------------------------------------------------------------------------
// Box vs. sphere test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingSphere::Intersects( const BoundingBox& box ) const
{
return box.Intersects( *this );
}
_Use_decl_annotations_
inline bool BoundingSphere::Intersects( const BoundingOrientedBox& box ) const
{
return box.Intersects( *this );
}
//-----------------------------------------------------------------------------
// Frustum vs. sphere test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingSphere::Intersects( const BoundingFrustum& fr ) const
{
return fr.Intersects( *this );
}
//-----------------------------------------------------------------------------
// Triangle vs sphere test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool XM_CALLCONV BoundingSphere::Intersects( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2 ) const
{
// Load the sphere.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vRadius = XMVectorReplicatePtr( &Radius );
// Compute the plane of the triangle (has to be normalized).
XMVECTOR N = XMVector3Normalize( XMVector3Cross( XMVectorSubtract( V1, V0 ), XMVectorSubtract( V2, V0 ) ) );
2016-08-22 18:43:47 +00:00
// Assert that the triangle is not degenerate.
assert( !XMVector3Equal( N, XMVectorZero() ) );
// Find the nearest feature on the triangle to the sphere.
XMVECTOR Dist = XMVector3Dot( XMVectorSubtract( vCenter, V0 ), N );
2016-08-22 18:43:47 +00:00
// If the center of the sphere is farther from the plane of the triangle than
// the radius of the sphere, then there cannot be an intersection.
XMVECTOR NoIntersection = XMVectorLess( Dist, XMVectorNegate( vRadius ) );
2016-08-22 18:43:47 +00:00
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( Dist, vRadius ) );
// Project the center of the sphere onto the plane of the triangle.
XMVECTOR Point = XMVectorNegativeMultiplySubtract( N, Dist, vCenter );
2016-08-22 18:43:47 +00:00
// Is it inside all the edges? If so we intersect because the distance
// to the plane is less than the radius.
XMVECTOR Intersection = DirectX::Internal::PointOnPlaneInsideTriangle( Point, V0, V1, V2 );
// Find the nearest point on each edge.
XMVECTOR RadiusSq = XMVectorMultiply( vRadius, vRadius );
2016-08-22 18:43:47 +00:00
// Edge 0,1
Point = DirectX::Internal::PointOnLineSegmentNearestPoint( V0, V1, vCenter );
// If the distance to the center of the sphere to the point is less than
// the radius of the sphere then it must intersect.
Intersection = XMVectorOrInt( Intersection, XMVectorLessOrEqual( XMVector3LengthSq( XMVectorSubtract( vCenter, Point ) ), RadiusSq ) );
2016-08-22 18:43:47 +00:00
// Edge 1,2
Point = DirectX::Internal::PointOnLineSegmentNearestPoint( V1, V2, vCenter );
// If the distance to the center of the sphere to the point is less than
// the radius of the sphere then it must intersect.
Intersection = XMVectorOrInt( Intersection, XMVectorLessOrEqual( XMVector3LengthSq( XMVectorSubtract( vCenter, Point ) ), RadiusSq ) );
2016-08-22 18:43:47 +00:00
// Edge 2,0
Point = DirectX::Internal::PointOnLineSegmentNearestPoint( V2, V0, vCenter );
// If the distance to the center of the sphere to the point is less than
// the radius of the sphere then it must intersect.
Intersection = XMVectorOrInt( Intersection, XMVectorLessOrEqual( XMVector3LengthSq( XMVectorSubtract( vCenter, Point ) ), RadiusSq ) );
2016-08-22 18:43:47 +00:00
return XMVector4EqualInt( XMVectorAndCInt( Intersection, NoIntersection ), XMVectorTrueInt() );
}
//-----------------------------------------------------------------------------
// Sphere-plane intersection
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline PlaneIntersectionType XM_CALLCONV BoundingSphere::Intersects( FXMVECTOR Plane ) const
{
assert( DirectX::Internal::XMPlaneIsUnit( Plane ) );
// Load the sphere.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vRadius = XMVectorReplicatePtr( &Radius );
// Set w of the center to one so we can dot4 with a plane.
vCenter = XMVectorInsert<0, 0, 0, 0, 1>( vCenter, XMVectorSplatOne() );
XMVECTOR Outside, Inside;
DirectX::Internal::FastIntersectSpherePlane( vCenter, vRadius, Plane, Outside, Inside );
// If the sphere is outside any plane it is outside.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return FRONT;
// If the sphere is inside all planes it is inside.
if ( XMVector4EqualInt( Inside, XMVectorTrueInt() ) )
return BACK;
// The sphere is not inside all planes or outside a plane it intersects.
return INTERSECTING;
}
//-----------------------------------------------------------------------------
// Compute the intersection of a ray (Origin, Direction) with a sphere.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool XM_CALLCONV BoundingSphere::Intersects( FXMVECTOR Origin, FXMVECTOR Direction, float& Dist ) const
{
assert( DirectX::Internal::XMVector3IsUnit( Direction ) );
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vRadius = XMVectorReplicatePtr( &Radius );
// l is the vector from the ray origin to the center of the sphere.
XMVECTOR l = XMVectorSubtract( vCenter, Origin );
2016-08-22 18:43:47 +00:00
// s is the projection of the l onto the ray direction.
XMVECTOR s = XMVector3Dot( l, Direction );
XMVECTOR l2 = XMVector3Dot( l, l );
XMVECTOR r2 = XMVectorMultiply( vRadius, vRadius );
2016-08-22 18:43:47 +00:00
// m2 is squared distance from the center of the sphere to the projection.
XMVECTOR m2 = XMVectorNegativeMultiplySubtract( s, s, l2 );
2016-08-22 18:43:47 +00:00
XMVECTOR NoIntersection;
// If the ray origin is outside the sphere and the center of the sphere is
// behind the ray origin there is no intersection.
NoIntersection = XMVectorAndInt( XMVectorLess( s, XMVectorZero() ), XMVectorGreater( l2, r2 ) );
// If the squared distance from the center of the sphere to the projection
// is greater than the radius squared the ray will miss the sphere.
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( m2, r2 ) );
// The ray hits the sphere, compute the nearest intersection point.
XMVECTOR q = XMVectorSqrt( XMVectorSubtract( r2, m2 ) );
XMVECTOR t1 = XMVectorSubtract( s, q );
XMVECTOR t2 = XMVectorAdd( s, q );
2016-08-22 18:43:47 +00:00
XMVECTOR OriginInside = XMVectorLessOrEqual( l2, r2 );
XMVECTOR t = XMVectorSelect( t1, t2, OriginInside );
if( XMVector4NotEqualInt( NoIntersection, XMVectorTrueInt() ) )
{
// Store the x-component to *pDist.
XMStoreFloat( &Dist, t );
return true;
}
Dist = 0.f;
return false;
}
//-----------------------------------------------------------------------------
// Test a sphere vs 6 planes (typically forming a frustum).
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingSphere::ContainedBy( FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
GXMVECTOR Plane3, HXMVECTOR Plane4, HXMVECTOR Plane5 ) const
{
// Load the sphere.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vRadius = XMVectorReplicatePtr( &Radius );
// Set w of the center to one so we can dot4 with a plane.
vCenter = XMVectorInsert<0, 0, 0, 0, 1>( vCenter, XMVectorSplatOne() );
XMVECTOR Outside, Inside;
// Test against each plane.
DirectX::Internal::FastIntersectSpherePlane( vCenter, vRadius, Plane0, Outside, Inside );
XMVECTOR AnyOutside = Outside;
XMVECTOR AllInside = Inside;
DirectX::Internal::FastIntersectSpherePlane( vCenter, vRadius, Plane1, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectSpherePlane( vCenter, vRadius, Plane2, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectSpherePlane( vCenter, vRadius, Plane3, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectSpherePlane( vCenter, vRadius, Plane4, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectSpherePlane( vCenter, vRadius, Plane5, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
// If the sphere is outside any plane it is outside.
if ( XMVector4EqualInt( AnyOutside, XMVectorTrueInt() ) )
return DISJOINT;
// If the sphere is inside all planes it is inside.
if ( XMVector4EqualInt( AllInside, XMVectorTrueInt() ) )
return CONTAINS;
// The sphere is not inside all planes or outside a plane, it may intersect.
return INTERSECTS;
}
//-----------------------------------------------------------------------------
// Creates a bounding sphere that contains two other bounding spheres
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingSphere::CreateMerged( BoundingSphere& Out, const BoundingSphere& S1, const BoundingSphere& S2 )
{
XMVECTOR Center1 = XMLoadFloat3( &S1.Center );
float r1 = S1.Radius;
XMVECTOR Center2 = XMLoadFloat3( &S2.Center );
float r2 = S2.Radius;
XMVECTOR V = XMVectorSubtract( Center2, Center1 );
XMVECTOR Dist = XMVector3Length( V );
float d = XMVectorGetX(Dist);
if ( r1 + r2 >= d )
{
if ( r1 - r2 >= d )
{
Out = S1;
return;
}
else if ( r2 - r1 >= d )
{
Out = S2;
return;
}
}
XMVECTOR N = XMVectorDivide( V, Dist );
float t1 = XMMin( -r1, d-r2 );
float t2 = XMMax( r1, d+r2 );
float t_5 = (t2 - t1) * 0.5f;
XMVECTOR NCenter = XMVectorAdd( Center1, XMVectorMultiply( N, XMVectorReplicate( t_5 + t1 ) ) );
XMStoreFloat3( &Out.Center, NCenter );
Out.Radius = t_5;
}
//-----------------------------------------------------------------------------
// Create sphere enscribing bounding box
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingSphere::CreateFromBoundingBox( BoundingSphere& Out, const BoundingBox& box )
{
Out.Center = box.Center;
XMVECTOR vExtents = XMLoadFloat3( &box.Extents );
Out.Radius = XMVectorGetX( XMVector3Length( vExtents ) );
}
_Use_decl_annotations_
inline void BoundingSphere::CreateFromBoundingBox( BoundingSphere& Out, const BoundingOrientedBox& box )
{
// Bounding box orientation is irrelevant because a sphere is rotationally invariant
Out.Center = box.Center;
XMVECTOR vExtents = XMLoadFloat3( &box.Extents );
Out.Radius = XMVectorGetX( XMVector3Length( vExtents ) );
}
//-----------------------------------------------------------------------------
// Find the approximate smallest enclosing bounding sphere for a set of
// points. Exact computation of the smallest enclosing bounding sphere is
// possible but is slower and requires a more complex algorithm.
// The algorithm is based on Jack Ritter, "An Efficient Bounding Sphere",
// Graphics Gems.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingSphere::CreateFromPoints( BoundingSphere& Out, size_t Count, const XMFLOAT3* pPoints, size_t Stride )
{
assert( Count > 0 );
assert( pPoints );
// Find the points with minimum and maximum x, y, and z
XMVECTOR MinX, MaxX, MinY, MaxY, MinZ, MaxZ;
MinX = MaxX = MinY = MaxY = MinZ = MaxZ = XMLoadFloat3( pPoints );
for( size_t i = 1; i < Count; ++i )
{
XMVECTOR Point = XMLoadFloat3( reinterpret_cast<const XMFLOAT3*>( reinterpret_cast<const uint8_t*>(pPoints) + i * Stride ) );
float px = XMVectorGetX( Point );
float py = XMVectorGetY( Point );
float pz = XMVectorGetZ( Point );
if( px < XMVectorGetX( MinX ) )
MinX = Point;
if( px > XMVectorGetX( MaxX ) )
MaxX = Point;
if( py < XMVectorGetY( MinY ) )
MinY = Point;
if( py > XMVectorGetY( MaxY ) )
MaxY = Point;
if( pz < XMVectorGetZ( MinZ ) )
MinZ = Point;
if( pz > XMVectorGetZ( MaxZ ) )
MaxZ = Point;
}
// Use the min/max pair that are farthest apart to form the initial sphere.
XMVECTOR DeltaX = XMVectorSubtract( MaxX, MinX );
2016-08-22 18:43:47 +00:00
XMVECTOR DistX = XMVector3Length( DeltaX );
XMVECTOR DeltaY = XMVectorSubtract( MaxY, MinY );
2016-08-22 18:43:47 +00:00
XMVECTOR DistY = XMVector3Length( DeltaY );
XMVECTOR DeltaZ = XMVectorSubtract( MaxZ, MinZ );
2016-08-22 18:43:47 +00:00
XMVECTOR DistZ = XMVector3Length( DeltaZ );
XMVECTOR vCenter;
XMVECTOR vRadius;
if( XMVector3Greater( DistX, DistY ) )
{
if( XMVector3Greater( DistX, DistZ ) )
{
// Use min/max x.
vCenter = XMVectorLerp(MaxX,MinX,0.5f);
vRadius = XMVectorScale( DistX, 0.5f );
2016-08-22 18:43:47 +00:00
}
else
{
// Use min/max z.
vCenter = XMVectorLerp(MaxZ,MinZ,0.5f);
vRadius = XMVectorScale( DistZ, 0.5f );
2016-08-22 18:43:47 +00:00
}
}
else // Y >= X
{
if( XMVector3Greater( DistY, DistZ ) )
{
// Use min/max y.
vCenter = XMVectorLerp(MaxY,MinY,0.5f);
vRadius = XMVectorScale( DistY, 0.5f );
2016-08-22 18:43:47 +00:00
}
else
{
// Use min/max z.
vCenter = XMVectorLerp(MaxZ,MinZ,0.5f);
vRadius = XMVectorScale( DistZ, 0.5f );
2016-08-22 18:43:47 +00:00
}
}
// Add any points not inside the sphere.
for( size_t i = 0; i < Count; ++i )
{
XMVECTOR Point = XMLoadFloat3( reinterpret_cast<const XMFLOAT3*>( reinterpret_cast<const uint8_t*>(pPoints) + i * Stride ) );
XMVECTOR Delta = XMVectorSubtract( Point, vCenter );
2016-08-22 18:43:47 +00:00
XMVECTOR Dist = XMVector3Length( Delta );
if( XMVector3Greater( Dist, vRadius ) )
{
// Adjust sphere to include the new point.
vRadius = XMVectorScale( XMVectorAdd( vRadius, Dist ), 0.5f );
vCenter = XMVectorAdd( vCenter, XMVectorMultiply( XMVectorSubtract( XMVectorReplicate(1.0f), XMVectorDivide(vRadius, Dist) ), Delta ) );
2016-08-22 18:43:47 +00:00
}
}
XMStoreFloat3( &Out.Center, vCenter );
XMStoreFloat( &Out.Radius, vRadius );
}
//-----------------------------------------------------------------------------
// Create sphere containing frustum
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingSphere::CreateFromFrustum( BoundingSphere& Out, const BoundingFrustum& fr )
{
XMFLOAT3 Corners[BoundingFrustum::CORNER_COUNT];
fr.GetCorners( Corners );
CreateFromPoints( Out, BoundingFrustum::CORNER_COUNT, Corners, sizeof(XMFLOAT3) );
}
/****************************************************************************
*
* BoundingBox
*
****************************************************************************/
//-----------------------------------------------------------------------------
// Transform an axis aligned box by an angle preserving transform.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV BoundingBox::Transform( BoundingBox& Out, FXMMATRIX M ) const
{
// Load center and extents.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
// Compute and transform the corners and find new min/max bounds.
XMVECTOR Corner = XMVectorMultiplyAdd( vExtents, g_BoxOffset[0], vCenter );
Corner = XMVector3Transform( Corner, M );
XMVECTOR Min, Max;
Min = Max = Corner;
for( size_t i = 1; i < CORNER_COUNT; ++i )
{
Corner = XMVectorMultiplyAdd( vExtents, g_BoxOffset[i], vCenter );
Corner = XMVector3Transform( Corner, M );
Min = XMVectorMin( Min, Corner );
Max = XMVectorMax( Max, Corner );
}
// Store center and extents.
XMStoreFloat3( &Out.Center, XMVectorScale( XMVectorAdd( Min, Max ), 0.5f ) );
XMStoreFloat3( &Out.Extents, XMVectorScale( XMVectorSubtract( Max, Min ), 0.5f ) );
2016-08-22 18:43:47 +00:00
}
_Use_decl_annotations_
inline void XM_CALLCONV BoundingBox::Transform( BoundingBox& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation ) const
{
assert( DirectX::Internal::XMQuaternionIsUnit( Rotation ) );
// Load center and extents.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR VectorScale = XMVectorReplicate( Scale );
// Compute and transform the corners and find new min/max bounds.
XMVECTOR Corner = XMVectorMultiplyAdd( vExtents, g_BoxOffset[0], vCenter );
Corner = XMVectorAdd( XMVector3Rotate( XMVectorMultiply( Corner, VectorScale ), Rotation ), Translation );
2016-08-22 18:43:47 +00:00
XMVECTOR Min, Max;
Min = Max = Corner;
for( size_t i = 1; i < CORNER_COUNT; ++i )
{
Corner = XMVectorMultiplyAdd( vExtents, g_BoxOffset[i], vCenter );
Corner = XMVectorAdd( XMVector3Rotate( XMVectorMultiply( Corner, VectorScale ), Rotation ), Translation );
2016-08-22 18:43:47 +00:00
Min = XMVectorMin( Min, Corner );
Max = XMVectorMax( Max, Corner );
}
// Store center and extents.
XMStoreFloat3( &Out.Center, XMVectorScale( XMVectorAdd( Min, Max ), 0.5f ) );
XMStoreFloat3( &Out.Extents, XMVectorScale( XMVectorSubtract( Max, Min ), 0.5f ) );
2016-08-22 18:43:47 +00:00
}
//-----------------------------------------------------------------------------
// Get the corner points of the box
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingBox::GetCorners( XMFLOAT3* Corners ) const
{
assert( Corners != nullptr );
// Load the box
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
for( size_t i = 0; i < CORNER_COUNT; ++i )
{
XMVECTOR C = XMVectorMultiplyAdd( vExtents, g_BoxOffset[i], vCenter );
XMStoreFloat3( &Corners[i], C );
}
}
//-----------------------------------------------------------------------------
// Point in axis-aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingBox::Contains( FXMVECTOR Point ) const
{
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
return XMVector3InBounds( XMVectorSubtract( Point, vCenter ), vExtents ) ? CONTAINS : DISJOINT;
2016-08-22 18:43:47 +00:00
}
//-----------------------------------------------------------------------------
// Triangle in axis-aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingBox::Contains( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2 ) const
{
if ( !Intersects(V0,V1,V2) )
return DISJOINT;
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR d = XMVectorAbs( XMVectorSubtract( V0, vCenter ) );
2016-08-22 18:43:47 +00:00
XMVECTOR Inside = XMVectorLessOrEqual( d, vExtents );
d = XMVectorAbs( XMVectorSubtract( V1, vCenter ) );
2016-08-22 18:43:47 +00:00
Inside = XMVectorAndInt( Inside, XMVectorLessOrEqual( d, vExtents ) );
d = XMVectorAbs( XMVectorSubtract( V2, vCenter ) );
2016-08-22 18:43:47 +00:00
Inside = XMVectorAndInt( Inside, XMVectorLessOrEqual( d, vExtents ) );
return ( XMVector3EqualInt( Inside, XMVectorTrueInt() ) ) ? CONTAINS : INTERSECTS;
}
//-----------------------------------------------------------------------------
// Sphere in axis-aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingBox::Contains( const BoundingSphere& sh ) const
{
XMVECTOR SphereCenter = XMLoadFloat3( &sh.Center );
XMVECTOR SphereRadius = XMVectorReplicatePtr( &sh.Radius );
XMVECTOR BoxCenter = XMLoadFloat3( &Center );
XMVECTOR BoxExtents = XMLoadFloat3( &Extents );
XMVECTOR BoxMin = XMVectorSubtract( BoxCenter, BoxExtents );
XMVECTOR BoxMax = XMVectorAdd( BoxCenter, BoxExtents );
2016-08-22 18:43:47 +00:00
// Find the distance to the nearest point on the box.
// for each i in (x, y, z)
// if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
// else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
XMVECTOR d = XMVectorZero();
// Compute d for each dimension.
XMVECTOR LessThanMin = XMVectorLess( SphereCenter, BoxMin );
XMVECTOR GreaterThanMax = XMVectorGreater( SphereCenter, BoxMax );
XMVECTOR MinDelta = XMVectorSubtract( SphereCenter, BoxMin );
XMVECTOR MaxDelta = XMVectorSubtract( SphereCenter, BoxMax );
2016-08-22 18:43:47 +00:00
// Choose value for each dimension based on the comparison.
d = XMVectorSelect( d, MinDelta, LessThanMin );
d = XMVectorSelect( d, MaxDelta, GreaterThanMax );
// Use a dot-product to square them and sum them together.
XMVECTOR d2 = XMVector3Dot( d, d );
if ( XMVector3Greater( d2, XMVectorMultiply( SphereRadius, SphereRadius ) ) )
return DISJOINT;
XMVECTOR InsideAll = XMVectorLessOrEqual( XMVectorAdd( BoxMin, SphereRadius ), SphereCenter );
InsideAll = XMVectorAndInt( InsideAll, XMVectorLessOrEqual( SphereCenter, XMVectorSubtract( BoxMax, SphereRadius ) ) );
InsideAll = XMVectorAndInt( InsideAll, XMVectorGreater( XMVectorSubtract( BoxMax, BoxMin ), SphereRadius ) );
2016-08-22 18:43:47 +00:00
return ( XMVector3EqualInt( InsideAll, XMVectorTrueInt() ) ) ? CONTAINS : INTERSECTS;
}
//-----------------------------------------------------------------------------
// Axis-aligned box in axis-aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingBox::Contains( const BoundingBox& box ) const
{
XMVECTOR CenterA = XMLoadFloat3( &Center );
XMVECTOR ExtentsA = XMLoadFloat3( &Extents );
XMVECTOR CenterB = XMLoadFloat3( &box.Center );
XMVECTOR ExtentsB = XMLoadFloat3( &box.Extents );
XMVECTOR MinA = XMVectorSubtract( CenterA, ExtentsA );
XMVECTOR MaxA = XMVectorAdd( CenterA, ExtentsA );
2016-08-22 18:43:47 +00:00
XMVECTOR MinB = XMVectorSubtract( CenterB, ExtentsB );
XMVECTOR MaxB = XMVectorAdd( CenterB, ExtentsB );
2016-08-22 18:43:47 +00:00
// for each i in (x, y, z) if a_min(i) > b_max(i) or b_min(i) > a_max(i) then return false
XMVECTOR Disjoint = XMVectorOrInt( XMVectorGreater( MinA, MaxB ), XMVectorGreater( MinB, MaxA ) );
if ( DirectX::Internal::XMVector3AnyTrue( Disjoint ) )
return DISJOINT;
// for each i in (x, y, z) if a_min(i) <= b_min(i) and b_max(i) <= a_max(i) then A contains B
XMVECTOR Inside = XMVectorAndInt( XMVectorLessOrEqual( MinA, MinB ), XMVectorLessOrEqual( MaxB, MaxA ) );
return DirectX::Internal::XMVector3AllTrue( Inside ) ? CONTAINS : INTERSECTS;
}
//-----------------------------------------------------------------------------
// Oriented box in axis-aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingBox::Contains( const BoundingOrientedBox& box ) const
{
if ( !box.Intersects( *this ) )
return DISJOINT;
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
// Subtract off the AABB center to remove a subtract below
XMVECTOR oCenter = XMVectorSubtract( XMLoadFloat3( &box.Center ), vCenter );
2016-08-22 18:43:47 +00:00
XMVECTOR oExtents = XMLoadFloat3( &box.Extents );
XMVECTOR oOrientation = XMLoadFloat4( &box.Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( oOrientation ) );
XMVECTOR Inside = XMVectorTrueInt();
for( size_t i=0; i < BoundingOrientedBox::CORNER_COUNT; ++i )
{
XMVECTOR C = XMVectorAdd( XMVector3Rotate( XMVectorMultiply( oExtents, g_BoxOffset[i] ), oOrientation ), oCenter );
2016-08-22 18:43:47 +00:00
XMVECTOR d = XMVectorAbs(C);
Inside = XMVectorAndInt( Inside, XMVectorLessOrEqual( d, vExtents ) );
}
return ( XMVector3EqualInt( Inside, XMVectorTrueInt() ) ) ? CONTAINS : INTERSECTS;
}
//-----------------------------------------------------------------------------
// Frustum in axis-aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingBox::Contains( const BoundingFrustum& fr ) const
{
if ( !fr.Intersects( *this ) )
return DISJOINT;
XMFLOAT3 Corners[BoundingFrustum::CORNER_COUNT];
fr.GetCorners( Corners );
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR Inside = XMVectorTrueInt();
for( size_t i=0; i < BoundingFrustum::CORNER_COUNT; ++i )
{
XMVECTOR Point = XMLoadFloat3( &Corners[i] );
XMVECTOR d = XMVectorAbs( XMVectorSubtract( Point, vCenter ) );
2016-08-22 18:43:47 +00:00
Inside = XMVectorAndInt( Inside, XMVectorLessOrEqual( d, vExtents ) );
}
return ( XMVector3EqualInt( Inside, XMVectorTrueInt() ) ) ? CONTAINS : INTERSECTS;
}
//-----------------------------------------------------------------------------
// Sphere vs axis-aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingBox::Intersects( const BoundingSphere& sh ) const
{
XMVECTOR SphereCenter = XMLoadFloat3( &sh.Center );
XMVECTOR SphereRadius = XMVectorReplicatePtr( &sh.Radius );
XMVECTOR BoxCenter = XMLoadFloat3( &Center );
XMVECTOR BoxExtents = XMLoadFloat3( &Extents );
XMVECTOR BoxMin = XMVectorSubtract( BoxCenter, BoxExtents );
XMVECTOR BoxMax = XMVectorAdd( BoxCenter, BoxExtents );
2016-08-22 18:43:47 +00:00
// Find the distance to the nearest point on the box.
// for each i in (x, y, z)
// if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
// else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
XMVECTOR d = XMVectorZero();
// Compute d for each dimension.
XMVECTOR LessThanMin = XMVectorLess( SphereCenter, BoxMin );
XMVECTOR GreaterThanMax = XMVectorGreater( SphereCenter, BoxMax );
XMVECTOR MinDelta = XMVectorSubtract( SphereCenter, BoxMin );
XMVECTOR MaxDelta = XMVectorSubtract( SphereCenter, BoxMax );
2016-08-22 18:43:47 +00:00
// Choose value for each dimension based on the comparison.
d = XMVectorSelect( d, MinDelta, LessThanMin );
d = XMVectorSelect( d, MaxDelta, GreaterThanMax );
// Use a dot-product to square them and sum them together.
XMVECTOR d2 = XMVector3Dot( d, d );
return XMVector3LessOrEqual( d2, XMVectorMultiply( SphereRadius, SphereRadius ) );
}
//-----------------------------------------------------------------------------
// Axis-aligned box vs. axis-aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingBox::Intersects( const BoundingBox& box ) const
{
XMVECTOR CenterA = XMLoadFloat3( &Center );
XMVECTOR ExtentsA = XMLoadFloat3( &Extents );
XMVECTOR CenterB = XMLoadFloat3( &box.Center );
XMVECTOR ExtentsB = XMLoadFloat3( &box.Extents );
XMVECTOR MinA = XMVectorSubtract( CenterA, ExtentsA );
XMVECTOR MaxA = XMVectorAdd( CenterA, ExtentsA );
2016-08-22 18:43:47 +00:00
XMVECTOR MinB = XMVectorSubtract( CenterB, ExtentsB );
XMVECTOR MaxB = XMVectorAdd( CenterB, ExtentsB );
2016-08-22 18:43:47 +00:00
// for each i in (x, y, z) if a_min(i) > b_max(i) or b_min(i) > a_max(i) then return false
XMVECTOR Disjoint = XMVectorOrInt( XMVectorGreater( MinA, MaxB ), XMVectorGreater( MinB, MaxA ) );
return !DirectX::Internal::XMVector3AnyTrue( Disjoint );
}
//-----------------------------------------------------------------------------
// Oriented box vs. axis-aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingBox::Intersects( const BoundingOrientedBox& box ) const
{
return box.Intersects( *this );
}
//-----------------------------------------------------------------------------
// Frustum vs. axis-aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingBox::Intersects( const BoundingFrustum& fr ) const
{
return fr.Intersects( *this );
}
//-----------------------------------------------------------------------------
// Triangle vs. axis aligned box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool XM_CALLCONV BoundingBox::Intersects( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2 ) const
{
XMVECTOR Zero = XMVectorZero();
// Load the box.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR BoxMin = XMVectorSubtract( vCenter, vExtents );
XMVECTOR BoxMax = XMVectorAdd( vCenter, vExtents );
2016-08-22 18:43:47 +00:00
// Test the axes of the box (in effect test the AAB against the minimal AAB
// around the triangle).
XMVECTOR TriMin = XMVectorMin( XMVectorMin( V0, V1 ), V2 );
XMVECTOR TriMax = XMVectorMax( XMVectorMax( V0, V1 ), V2 );
// for each i in (x, y, z) if a_min(i) > b_max(i) or b_min(i) > a_max(i) then disjoint
XMVECTOR Disjoint = XMVectorOrInt( XMVectorGreater( TriMin, BoxMax ), XMVectorGreater( BoxMin, TriMax ) );
if( DirectX::Internal::XMVector3AnyTrue( Disjoint ) )
return false;
// Test the plane of the triangle.
XMVECTOR Normal = XMVector3Cross( XMVectorSubtract( V1, V0 ), XMVectorSubtract( V2, V0 ) );
2016-08-22 18:43:47 +00:00
XMVECTOR Dist = XMVector3Dot( Normal, V0 );
// Assert that the triangle is not degenerate.
assert( !XMVector3Equal( Normal, Zero ) );
// for each i in (x, y, z) if n(i) >= 0 then v_min(i)=b_min(i), v_max(i)=b_max(i)
// else v_min(i)=b_max(i), v_max(i)=b_min(i)
XMVECTOR NormalSelect = XMVectorGreater( Normal, Zero );
XMVECTOR V_Min = XMVectorSelect( BoxMax, BoxMin, NormalSelect );
XMVECTOR V_Max = XMVectorSelect( BoxMin, BoxMax, NormalSelect );
// if n dot v_min + d > 0 || n dot v_max + d < 0 then disjoint
XMVECTOR MinDist = XMVector3Dot( V_Min, Normal );
XMVECTOR MaxDist = XMVector3Dot( V_Max, Normal );
XMVECTOR NoIntersection = XMVectorGreater( MinDist, Dist );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( MaxDist, Dist ) );
// Move the box center to zero to simplify the following tests.
XMVECTOR TV0 = XMVectorSubtract( V0, vCenter );
XMVECTOR TV1 = XMVectorSubtract( V1, vCenter );
XMVECTOR TV2 = XMVectorSubtract( V2, vCenter );
2016-08-22 18:43:47 +00:00
// Test the edge/edge axes (3*3).
XMVECTOR e0 = XMVectorSubtract( TV1, TV0 );
XMVECTOR e1 = XMVectorSubtract( TV2, TV1 );
XMVECTOR e2 = XMVectorSubtract( TV0, TV2 );
2016-08-22 18:43:47 +00:00
// Make w zero.
e0 = XMVectorInsert<0, 0, 0, 0, 1>( e0, Zero );
e1 = XMVectorInsert<0, 0, 0, 0, 1>( e1, Zero );
e2 = XMVectorInsert<0, 0, 0, 0, 1>( e2, Zero );
XMVECTOR Axis;
XMVECTOR p0, p1, p2;
XMVECTOR Min, Max;
XMVECTOR Radius;
// Axis == (1,0,0) x e0 = (0, -e0.z, e0.y)
Axis = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>( e0, XMVectorNegate( e0 ) );
2016-08-22 18:43:47 +00:00
p0 = XMVector3Dot( TV0, Axis );
// p1 = XMVector3Dot( V1, Axis ); // p1 = p0;
p2 = XMVector3Dot( TV2, Axis );
Min = XMVectorMin( p0, p2 );
Max = XMVectorMax( p0, p2 );
Radius = XMVector3Dot( vExtents, XMVectorAbs( Axis ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( Min, Radius ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( Max, XMVectorNegate( Radius ) ) );
2016-08-22 18:43:47 +00:00
// Axis == (1,0,0) x e1 = (0, -e1.z, e1.y)
Axis = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>( e1, XMVectorNegate( e1 ) );
2016-08-22 18:43:47 +00:00
p0 = XMVector3Dot( TV0, Axis );
p1 = XMVector3Dot( TV1, Axis );
// p2 = XMVector3Dot( V2, Axis ); // p2 = p1;
Min = XMVectorMin( p0, p1 );
Max = XMVectorMax( p0, p1 );
Radius = XMVector3Dot( vExtents, XMVectorAbs( Axis ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( Min, Radius ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( Max, XMVectorNegate( Radius ) ) );
2016-08-22 18:43:47 +00:00
// Axis == (1,0,0) x e2 = (0, -e2.z, e2.y)
Axis = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>( e2, XMVectorNegate( e2 ) );
2016-08-22 18:43:47 +00:00
p0 = XMVector3Dot( TV0, Axis );
p1 = XMVector3Dot( TV1, Axis );
// p2 = XMVector3Dot( V2, Axis ); // p2 = p0;
Min = XMVectorMin( p0, p1 );
Max = XMVectorMax( p0, p1 );
Radius = XMVector3Dot( vExtents, XMVectorAbs( Axis ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( Min, Radius ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( Max, XMVectorNegate( Radius ) ) );
2016-08-22 18:43:47 +00:00
// Axis == (0,1,0) x e0 = (e0.z, 0, -e0.x)
Axis = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>( e0, XMVectorNegate( e0 ) );
2016-08-22 18:43:47 +00:00
p0 = XMVector3Dot( TV0, Axis );
// p1 = XMVector3Dot( V1, Axis ); // p1 = p0;
p2 = XMVector3Dot( TV2, Axis );
Min = XMVectorMin( p0, p2 );
Max = XMVectorMax( p0, p2 );
Radius = XMVector3Dot( vExtents, XMVectorAbs( Axis ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( Min, Radius ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( Max, XMVectorNegate( Radius ) ) );
2016-08-22 18:43:47 +00:00
// Axis == (0,1,0) x e1 = (e1.z, 0, -e1.x)
Axis = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>( e1, XMVectorNegate( e1 ) );
2016-08-22 18:43:47 +00:00
p0 = XMVector3Dot( TV0, Axis );
p1 = XMVector3Dot( TV1, Axis );
// p2 = XMVector3Dot( V2, Axis ); // p2 = p1;
Min = XMVectorMin( p0, p1 );
Max = XMVectorMax( p0, p1 );
Radius = XMVector3Dot( vExtents, XMVectorAbs( Axis ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( Min, Radius ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( Max, XMVectorNegate( Radius ) ) );
2016-08-22 18:43:47 +00:00
// Axis == (0,0,1) x e2 = (e2.z, 0, -e2.x)
Axis = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>( e2, XMVectorNegate( e2 ) );
2016-08-22 18:43:47 +00:00
p0 = XMVector3Dot( TV0, Axis );
p1 = XMVector3Dot( TV1, Axis );
// p2 = XMVector3Dot( V2, Axis ); // p2 = p0;
Min = XMVectorMin( p0, p1 );
Max = XMVectorMax( p0, p1 );
Radius = XMVector3Dot( vExtents, XMVectorAbs( Axis ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( Min, Radius ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( Max, XMVectorNegate( Radius ) ) );
2016-08-22 18:43:47 +00:00
// Axis == (0,0,1) x e0 = (-e0.y, e0.x, 0)
Axis = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>( e0, XMVectorNegate( e0 ) );
2016-08-22 18:43:47 +00:00
p0 = XMVector3Dot( TV0, Axis );
// p1 = XMVector3Dot( V1, Axis ); // p1 = p0;
p2 = XMVector3Dot( TV2, Axis );
Min = XMVectorMin( p0, p2 );
Max = XMVectorMax( p0, p2 );
Radius = XMVector3Dot( vExtents, XMVectorAbs( Axis ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( Min, Radius ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( Max, XMVectorNegate( Radius ) ) );
2016-08-22 18:43:47 +00:00
// Axis == (0,0,1) x e1 = (-e1.y, e1.x, 0)
Axis = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>( e1, XMVectorNegate( e1 ) );
2016-08-22 18:43:47 +00:00
p0 = XMVector3Dot( TV0, Axis );
p1 = XMVector3Dot( TV1, Axis );
// p2 = XMVector3Dot( V2, Axis ); // p2 = p1;
Min = XMVectorMin( p0, p1 );
Max = XMVectorMax( p0, p1 );
Radius = XMVector3Dot( vExtents, XMVectorAbs( Axis ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( Min, Radius ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( Max, XMVectorNegate( Radius ) ) );
2016-08-22 18:43:47 +00:00
// Axis == (0,0,1) x e2 = (-e2.y, e2.x, 0)
Axis = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>( e2, XMVectorNegate( e2 ) );
2016-08-22 18:43:47 +00:00
p0 = XMVector3Dot( TV0, Axis );
p1 = XMVector3Dot( TV1, Axis );
// p2 = XMVector3Dot( V2, Axis ); // p2 = p0;
Min = XMVectorMin( p0, p1 );
Max = XMVectorMax( p0, p1 );
Radius = XMVector3Dot( vExtents, XMVectorAbs( Axis ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( Min, Radius ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( Max, XMVectorNegate( Radius ) ) );
2016-08-22 18:43:47 +00:00
return XMVector4NotEqualInt( NoIntersection, XMVectorTrueInt() );
}
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline PlaneIntersectionType XM_CALLCONV BoundingBox::Intersects( FXMVECTOR Plane ) const
{
assert( DirectX::Internal::XMPlaneIsUnit( Plane ) );
// Load the box.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
// Set w of the center to one so we can dot4 with a plane.
vCenter = XMVectorInsert<0, 0, 0, 0, 1>( vCenter, XMVectorSplatOne() );
XMVECTOR Outside, Inside;
DirectX::Internal::FastIntersectAxisAlignedBoxPlane( vCenter, vExtents, Plane, Outside, Inside );
// If the box is outside any plane it is outside.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return FRONT;
// If the box is inside all planes it is inside.
if ( XMVector4EqualInt( Inside, XMVectorTrueInt() ) )
return BACK;
// The box is not inside all planes or outside a plane it intersects.
return INTERSECTING;
}
//-----------------------------------------------------------------------------
// Compute the intersection of a ray (Origin, Direction) with an axis aligned
// box using the slabs method.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool XM_CALLCONV BoundingBox::Intersects( FXMVECTOR Origin, FXMVECTOR Direction, float& Dist ) const
{
assert( DirectX::Internal::XMVector3IsUnit( Direction ) );
// Load the box.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
// Adjust ray origin to be relative to center of the box.
XMVECTOR TOrigin = XMVectorSubtract( vCenter, Origin );
2016-08-22 18:43:47 +00:00
// Compute the dot product againt each axis of the box.
// Since the axii are (1,0,0), (0,1,0), (0,0,1) no computation is necessary.
XMVECTOR AxisDotOrigin = TOrigin;
XMVECTOR AxisDotDirection = Direction;
// if (fabs(AxisDotDirection) <= Epsilon) the ray is nearly parallel to the slab.
XMVECTOR IsParallel = XMVectorLessOrEqual( XMVectorAbs( AxisDotDirection ), g_RayEpsilon );
// Test against all three axii simultaneously.
XMVECTOR InverseAxisDotDirection = XMVectorReciprocal( AxisDotDirection );
XMVECTOR t1 = XMVectorMultiply( XMVectorSubtract( AxisDotOrigin, vExtents ), InverseAxisDotDirection );
XMVECTOR t2 = XMVectorMultiply( XMVectorAdd( AxisDotOrigin, vExtents ), InverseAxisDotDirection );
2016-08-22 18:43:47 +00:00
// Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
// use the results from any directions parallel to the slab.
XMVECTOR t_min = XMVectorSelect( XMVectorMin( t1, t2 ), g_FltMin, IsParallel );
XMVECTOR t_max = XMVectorSelect( XMVectorMax( t1, t2 ), g_FltMax, IsParallel );
// t_min.x = maximum( t_min.x, t_min.y, t_min.z );
// t_max.x = minimum( t_max.x, t_max.y, t_max.z );
t_min = XMVectorMax( t_min, XMVectorSplatY( t_min ) ); // x = max(x,y)
t_min = XMVectorMax( t_min, XMVectorSplatZ( t_min ) ); // x = max(max(x,y),z)
t_max = XMVectorMin( t_max, XMVectorSplatY( t_max ) ); // x = min(x,y)
t_max = XMVectorMin( t_max, XMVectorSplatZ( t_max ) ); // x = min(min(x,y),z)
// if ( t_min > t_max ) return false;
XMVECTOR NoIntersection = XMVectorGreater( XMVectorSplatX( t_min ), XMVectorSplatX( t_max ) );
// if ( t_max < 0.0f ) return false;
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( XMVectorSplatX( t_max ), XMVectorZero() ) );
// if (IsParallel && (-Extents > AxisDotOrigin || Extents < AxisDotOrigin)) return false;
XMVECTOR ParallelOverlap = XMVectorInBounds( AxisDotOrigin, vExtents );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorAndCInt( IsParallel, ParallelOverlap ) );
if( !DirectX::Internal::XMVector3AnyTrue( NoIntersection ) )
{
// Store the x-component to *pDist
XMStoreFloat( &Dist, t_min );
return true;
}
Dist = 0.f;
return false;
}
//-----------------------------------------------------------------------------
// Test an axis alinged box vs 6 planes (typically forming a frustum).
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingBox::ContainedBy( FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
GXMVECTOR Plane3, HXMVECTOR Plane4, HXMVECTOR Plane5 ) const
{
// Load the box.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
// Set w of the center to one so we can dot4 with a plane.
vCenter = XMVectorInsert<0, 0, 0, 0, 1>( vCenter, XMVectorSplatOne() );
XMVECTOR Outside, Inside;
// Test against each plane.
DirectX::Internal::FastIntersectAxisAlignedBoxPlane( vCenter, vExtents, Plane0, Outside, Inside );
XMVECTOR AnyOutside = Outside;
XMVECTOR AllInside = Inside;
DirectX::Internal::FastIntersectAxisAlignedBoxPlane( vCenter, vExtents, Plane1, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectAxisAlignedBoxPlane( vCenter, vExtents, Plane2, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectAxisAlignedBoxPlane( vCenter, vExtents, Plane3, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectAxisAlignedBoxPlane( vCenter, vExtents, Plane4, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectAxisAlignedBoxPlane( vCenter, vExtents, Plane5, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
// If the box is outside any plane it is outside.
if ( XMVector4EqualInt( AnyOutside, XMVectorTrueInt() ) )
return DISJOINT;
// If the box is inside all planes it is inside.
if ( XMVector4EqualInt( AllInside, XMVectorTrueInt() ) )
return CONTAINS;
// The box is not inside all planes or outside a plane, it may intersect.
return INTERSECTS;
}
//-----------------------------------------------------------------------------
// Create axis-aligned box that contains two other bounding boxes
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingBox::CreateMerged( BoundingBox& Out, const BoundingBox& b1, const BoundingBox& b2 )
{
XMVECTOR b1Center = XMLoadFloat3( &b1.Center );
XMVECTOR b1Extents = XMLoadFloat3( &b1.Extents );
XMVECTOR b2Center = XMLoadFloat3( &b2.Center );
XMVECTOR b2Extents = XMLoadFloat3( &b2.Extents );
XMVECTOR Min = XMVectorSubtract( b1Center, b1Extents );
Min = XMVectorMin( Min, XMVectorSubtract( b2Center, b2Extents ) );
XMVECTOR Max = XMVectorAdd( b1Center, b1Extents );
Max = XMVectorMax( Max, XMVectorAdd( b2Center, b2Extents ) );
assert( XMVector3LessOrEqual( Min, Max ) );
XMStoreFloat3( &Out.Center, XMVectorScale( XMVectorAdd( Min, Max ), 0.5f ) );
XMStoreFloat3( &Out.Extents, XMVectorScale( XMVectorSubtract( Max, Min ), 0.5f ) );
2016-08-22 18:43:47 +00:00
}
//-----------------------------------------------------------------------------
// Create axis-aligned box that contains a bounding sphere
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingBox::CreateFromSphere( BoundingBox& Out, const BoundingSphere& sh )
{
XMVECTOR spCenter = XMLoadFloat3( &sh.Center );
XMVECTOR shRadius = XMVectorReplicatePtr( &sh.Radius );
XMVECTOR Min = XMVectorSubtract( spCenter, shRadius );
XMVECTOR Max = XMVectorAdd( spCenter, shRadius );
assert( XMVector3LessOrEqual( Min, Max ) );
XMStoreFloat3( &Out.Center, XMVectorScale( XMVectorAdd( Min, Max ), 0.5f ) );
XMStoreFloat3( &Out.Extents, XMVectorScale( XMVectorSubtract( Max, Min ), 0.5f ) );
2016-08-22 18:43:47 +00:00
}
//-----------------------------------------------------------------------------
// Create axis-aligned box from min/max points
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV BoundingBox::CreateFromPoints( BoundingBox& Out, FXMVECTOR pt1, FXMVECTOR pt2 )
{
XMVECTOR Min = XMVectorMin( pt1, pt2 );
XMVECTOR Max = XMVectorMax( pt1, pt2 );
// Store center and extents.
XMStoreFloat3( &Out.Center, XMVectorScale( XMVectorAdd( Min, Max ), 0.5f ) );
XMStoreFloat3( &Out.Extents, XMVectorScale( XMVectorSubtract( Max, Min ), 0.5f ) );
2016-08-22 18:43:47 +00:00
}
//-----------------------------------------------------------------------------
// Find the minimum axis aligned bounding box containing a set of points.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingBox::CreateFromPoints( BoundingBox& Out, size_t Count, const XMFLOAT3* pPoints, size_t Stride )
{
assert( Count > 0 );
assert( pPoints );
// Find the minimum and maximum x, y, and z
XMVECTOR vMin, vMax;
vMin = vMax = XMLoadFloat3( pPoints );
for( size_t i = 1; i < Count; ++i )
{
XMVECTOR Point = XMLoadFloat3( reinterpret_cast<const XMFLOAT3*>( reinterpret_cast<const uint8_t*>(pPoints) + i * Stride ) );
vMin = XMVectorMin( vMin, Point );
vMax = XMVectorMax( vMax, Point );
}
// Store center and extents.
XMStoreFloat3( &Out.Center, XMVectorScale( XMVectorAdd( vMin, vMax ), 0.5f ) );
XMStoreFloat3( &Out.Extents, XMVectorScale( XMVectorSubtract( vMax, vMin ), 0.5f ) );
2016-08-22 18:43:47 +00:00
}
/****************************************************************************
*
* BoundingOrientedBox
*
****************************************************************************/
//-----------------------------------------------------------------------------
// Transform an oriented box by an angle preserving transform.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV BoundingOrientedBox::Transform( BoundingOrientedBox& Out, FXMMATRIX M ) const
{
// Load the box.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Composite the box rotation and the transform rotation.
XMMATRIX nM;
nM.r[0] = XMVector3Normalize( M.r[0] );
nM.r[1] = XMVector3Normalize( M.r[1] );
nM.r[2] = XMVector3Normalize( M.r[2] );
nM.r[3] = g_XMIdentityR3;
XMVECTOR Rotation = XMQuaternionRotationMatrix( nM );
vOrientation = XMQuaternionMultiply( vOrientation, Rotation );
// Transform the center.
vCenter = XMVector3Transform( vCenter, M );
// Scale the box extents.
XMVECTOR dX = XMVector3Length( M.r[0] );
XMVECTOR dY = XMVector3Length( M.r[1] );
XMVECTOR dZ = XMVector3Length( M.r[2] );
XMVECTOR VectorScale = XMVectorSelect( dY, dX, g_XMSelect1000 );
VectorScale = XMVectorSelect( dZ, VectorScale, g_XMSelect1100 );
vExtents = XMVectorMultiply( vExtents, VectorScale );
2016-08-22 18:43:47 +00:00
// Store the box.
XMStoreFloat3( &Out.Center, vCenter );
XMStoreFloat3( &Out.Extents, vExtents );
XMStoreFloat4( &Out.Orientation, vOrientation );
}
_Use_decl_annotations_
inline void XM_CALLCONV BoundingOrientedBox::Transform( BoundingOrientedBox& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation ) const
{
assert( DirectX::Internal::XMQuaternionIsUnit( Rotation ) );
// Load the box.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Composite the box rotation and the transform rotation.
vOrientation = XMQuaternionMultiply( vOrientation, Rotation );
// Transform the center.
XMVECTOR VectorScale = XMVectorReplicate( Scale );
vCenter = XMVectorAdd( XMVector3Rotate( XMVectorMultiply( vCenter, VectorScale ), Rotation ), Translation );
2016-08-22 18:43:47 +00:00
// Scale the box extents.
vExtents = XMVectorMultiply( vExtents, VectorScale );
2016-08-22 18:43:47 +00:00
// Store the box.
XMStoreFloat3( &Out.Center, vCenter );
XMStoreFloat3( &Out.Extents, vExtents );
XMStoreFloat4( &Out.Orientation, vOrientation );
}
//-----------------------------------------------------------------------------
// Get the corner points of the box
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingOrientedBox::GetCorners( XMFLOAT3* Corners ) const
{
assert( Corners != 0 );
// Load the box
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
for( size_t i = 0; i < CORNER_COUNT; ++i )
{
XMVECTOR C = XMVectorAdd( XMVector3Rotate( XMVectorMultiply( vExtents, g_BoxOffset[i] ), vOrientation ), vCenter );
2016-08-22 18:43:47 +00:00
XMStoreFloat3( &Corners[i], C );
}
}
//-----------------------------------------------------------------------------
// Point in oriented box test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingOrientedBox::Contains( FXMVECTOR Point ) const
{
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
// Transform the point to be local to the box.
XMVECTOR TPoint = XMVector3InverseRotate( XMVectorSubtract( Point, vCenter ), vOrientation );
2016-08-22 18:43:47 +00:00
return XMVector3InBounds( TPoint, vExtents ) ? CONTAINS : DISJOINT;
}
//-----------------------------------------------------------------------------
// Triangle in oriented bounding box
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingOrientedBox::Contains( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2 ) const
{
// Load the box center & orientation.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
// Transform the triangle vertices into the space of the box.
XMVECTOR TV0 = XMVector3InverseRotate( XMVectorSubtract( V0, vCenter ), vOrientation );
XMVECTOR TV1 = XMVector3InverseRotate( XMVectorSubtract( V1, vCenter ), vOrientation );
XMVECTOR TV2 = XMVector3InverseRotate( XMVectorSubtract( V2, vCenter ), vOrientation );
2016-08-22 18:43:47 +00:00
BoundingBox box;
box.Center = XMFLOAT3( 0.0f, 0.0f, 0.0f );
box.Extents = Extents;
// Use the triangle vs axis aligned box intersection routine.
return box.Contains( TV0, TV1, TV2 );
}
//-----------------------------------------------------------------------------
// Sphere in oriented bounding box
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingOrientedBox::Contains( const BoundingSphere& sh ) const
{
XMVECTOR SphereCenter = XMLoadFloat3( &sh.Center );
XMVECTOR SphereRadius = XMVectorReplicatePtr( &sh.Radius );
XMVECTOR BoxCenter = XMLoadFloat3( &Center );
XMVECTOR BoxExtents = XMLoadFloat3( &Extents );
XMVECTOR BoxOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( BoxOrientation ) );
// Transform the center of the sphere to be local to the box.
// BoxMin = -BoxExtents
// BoxMax = +BoxExtents
SphereCenter = XMVector3InverseRotate( XMVectorSubtract( SphereCenter, BoxCenter ), BoxOrientation );
2016-08-22 18:43:47 +00:00
// Find the distance to the nearest point on the box.
// for each i in (x, y, z)
// if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
// else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
XMVECTOR d = XMVectorZero();
// Compute d for each dimension.
XMVECTOR LessThanMin = XMVectorLess( SphereCenter, XMVectorNegate( BoxExtents ) );
2016-08-22 18:43:47 +00:00
XMVECTOR GreaterThanMax = XMVectorGreater( SphereCenter, BoxExtents );
XMVECTOR MinDelta = XMVectorAdd( SphereCenter, BoxExtents );
XMVECTOR MaxDelta = XMVectorSubtract( SphereCenter, BoxExtents );
2016-08-22 18:43:47 +00:00
// Choose value for each dimension based on the comparison.
d = XMVectorSelect( d, MinDelta, LessThanMin );
d = XMVectorSelect( d, MaxDelta, GreaterThanMax );
// Use a dot-product to square them and sum them together.
XMVECTOR d2 = XMVector3Dot( d, d );
XMVECTOR SphereRadiusSq = XMVectorMultiply( SphereRadius, SphereRadius );
if ( XMVector4Greater( d2, SphereRadiusSq ) )
return DISJOINT;
// See if we are completely inside the box
XMVECTOR SMin = XMVectorSubtract( SphereCenter, SphereRadius );
XMVECTOR SMax = XMVectorAdd( SphereCenter, SphereRadius );
2016-08-22 18:43:47 +00:00
return ( XMVector3InBounds( SMin, BoxExtents ) && XMVector3InBounds( SMax, BoxExtents ) ) ? CONTAINS : INTERSECTS;
}
//-----------------------------------------------------------------------------
// Axis aligned box vs. oriented box. Constructs an oriented box and uses
// the oriented box vs. oriented box test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingOrientedBox::Contains( const BoundingBox& box ) const
{
// Make the axis aligned box oriented and do an OBB vs OBB test.
BoundingOrientedBox obox( box.Center, box.Extents, XMFLOAT4( 0.f, 0.f, 0.f, 1.f ) );
return Contains( obox );
}
//-----------------------------------------------------------------------------
// Oriented bounding box in oriented bounding box
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingOrientedBox::Contains( const BoundingOrientedBox& box ) const
{
if ( !Intersects(box) )
return DISJOINT;
// Load the boxes
XMVECTOR aCenter = XMLoadFloat3( &Center );
XMVECTOR aExtents = XMLoadFloat3( &Extents );
XMVECTOR aOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( aOrientation ) );
XMVECTOR bCenter = XMLoadFloat3( &box.Center );
XMVECTOR bExtents = XMLoadFloat3( &box.Extents );
XMVECTOR bOrientation = XMLoadFloat4( &box.Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( bOrientation ) );
XMVECTOR offset = XMVectorSubtract( bCenter, aCenter );
2016-08-22 18:43:47 +00:00
for( size_t i = 0; i < CORNER_COUNT; ++i )
{
// Cb = rotate( bExtents * corneroffset[i], bOrientation ) + bcenter
// Ca = invrotate( Cb - aCenter, aOrientation )
XMVECTOR C = XMVectorAdd( XMVector3Rotate( XMVectorMultiply( bExtents, g_BoxOffset[i] ), bOrientation ), offset );
2016-08-22 18:43:47 +00:00
C = XMVector3InverseRotate( C , aOrientation );
if ( !XMVector3InBounds( C, aExtents ) )
return INTERSECTS;
}
return CONTAINS;
}
//-----------------------------------------------------------------------------
// Frustum in oriented bounding box
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingOrientedBox::Contains( const BoundingFrustum& fr ) const
{
if ( !fr.Intersects(*this) )
return DISJOINT;
XMFLOAT3 Corners[BoundingFrustum::CORNER_COUNT];
fr.GetCorners( Corners );
// Load the box
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
for( size_t i = 0; i < BoundingFrustum::CORNER_COUNT; ++i )
{
XMVECTOR C = XMVector3InverseRotate( XMVectorSubtract( XMLoadFloat3( &Corners[i] ), vCenter ), vOrientation );
2016-08-22 18:43:47 +00:00
if ( !XMVector3InBounds( C, vExtents ) )
return INTERSECTS;
}
return CONTAINS;
}
//-----------------------------------------------------------------------------
// Sphere vs. oriented box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingOrientedBox::Intersects( const BoundingSphere& sh ) const
{
XMVECTOR SphereCenter = XMLoadFloat3( &sh.Center );
XMVECTOR SphereRadius = XMVectorReplicatePtr( &sh.Radius );
XMVECTOR BoxCenter = XMLoadFloat3( &Center );
XMVECTOR BoxExtents = XMLoadFloat3( &Extents );
XMVECTOR BoxOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( BoxOrientation ) );
// Transform the center of the sphere to be local to the box.
// BoxMin = -BoxExtents
// BoxMax = +BoxExtents
SphereCenter = XMVector3InverseRotate( XMVectorSubtract( SphereCenter, BoxCenter ), BoxOrientation );
2016-08-22 18:43:47 +00:00
// Find the distance to the nearest point on the box.
// for each i in (x, y, z)
// if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
// else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
XMVECTOR d = XMVectorZero();
// Compute d for each dimension.
XMVECTOR LessThanMin = XMVectorLess( SphereCenter, XMVectorNegate( BoxExtents ) );
2016-08-22 18:43:47 +00:00
XMVECTOR GreaterThanMax = XMVectorGreater( SphereCenter, BoxExtents );
XMVECTOR MinDelta = XMVectorAdd( SphereCenter, BoxExtents );
XMVECTOR MaxDelta = XMVectorSubtract( SphereCenter, BoxExtents );
2016-08-22 18:43:47 +00:00
// Choose value for each dimension based on the comparison.
d = XMVectorSelect( d, MinDelta, LessThanMin );
d = XMVectorSelect( d, MaxDelta, GreaterThanMax );
// Use a dot-product to square them and sum them together.
XMVECTOR d2 = XMVector3Dot( d, d );
return XMVector4LessOrEqual( d2, XMVectorMultiply( SphereRadius, SphereRadius ) ) ? true : false;
}
//-----------------------------------------------------------------------------
// Axis aligned box vs. oriented box. Constructs an oriented box and uses
// the oriented box vs. oriented box test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingOrientedBox::Intersects( const BoundingBox& box ) const
{
// Make the axis aligned box oriented and do an OBB vs OBB test.
BoundingOrientedBox obox( box.Center, box.Extents, XMFLOAT4( 0.f, 0.f, 0.f, 1.f ) );
return Intersects( obox );
}
//-----------------------------------------------------------------------------
// Fast oriented box / oriented box intersection test using the separating axis
// theorem.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingOrientedBox::Intersects( const BoundingOrientedBox& box ) const
{
// Build the 3x3 rotation matrix that defines the orientation of B relative to A.
XMVECTOR A_quat = XMLoadFloat4( &Orientation );
XMVECTOR B_quat = XMLoadFloat4( &box.Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( A_quat ) );
assert( DirectX::Internal::XMQuaternionIsUnit( B_quat ) );
XMVECTOR Q = XMQuaternionMultiply( A_quat, XMQuaternionConjugate( B_quat ) );
XMMATRIX R = XMMatrixRotationQuaternion( Q );
// Compute the translation of B relative to A.
XMVECTOR A_cent = XMLoadFloat3( &Center );
XMVECTOR B_cent = XMLoadFloat3( &box.Center );
XMVECTOR t = XMVector3InverseRotate( XMVectorSubtract( B_cent, A_cent ), A_quat );
2016-08-22 18:43:47 +00:00
//
// h(A) = extents of A.
// h(B) = extents of B.
//
// a(u) = axes of A = (1,0,0), (0,1,0), (0,0,1)
// b(u) = axes of B relative to A = (r00,r10,r20), (r01,r11,r21), (r02,r12,r22)
//
// For each possible separating axis l:
// d(A) = sum (for i = u,v,w) h(A)(i) * abs( a(i) dot l )
// d(B) = sum (for i = u,v,w) h(B)(i) * abs( b(i) dot l )
// if abs( t dot l ) > d(A) + d(B) then disjoint
//
// Load extents of A and B.
XMVECTOR h_A = XMLoadFloat3( &Extents );
XMVECTOR h_B = XMLoadFloat3( &box.Extents );
// Rows. Note R[0,1,2]X.w = 0.
XMVECTOR R0X = R.r[0];
XMVECTOR R1X = R.r[1];
XMVECTOR R2X = R.r[2];
R = XMMatrixTranspose( R );
// Columns. Note RX[0,1,2].w = 0.
XMVECTOR RX0 = R.r[0];
XMVECTOR RX1 = R.r[1];
XMVECTOR RX2 = R.r[2];
// Absolute value of rows.
XMVECTOR AR0X = XMVectorAbs( R0X );
XMVECTOR AR1X = XMVectorAbs( R1X );
XMVECTOR AR2X = XMVectorAbs( R2X );
// Absolute value of columns.
XMVECTOR ARX0 = XMVectorAbs( RX0 );
XMVECTOR ARX1 = XMVectorAbs( RX1 );
XMVECTOR ARX2 = XMVectorAbs( RX2 );
// Test each of the 15 possible seperating axii.
XMVECTOR d, d_A, d_B;
// l = a(u) = (1, 0, 0)
// t dot l = t.x
// d(A) = h(A).x
// d(B) = h(B) dot abs(r00, r01, r02)
d = XMVectorSplatX( t );
d_A = XMVectorSplatX( h_A );
d_B = XMVector3Dot( h_B, AR0X );
XMVECTOR NoIntersection = XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) );
// l = a(v) = (0, 1, 0)
// t dot l = t.y
// d(A) = h(A).y
// d(B) = h(B) dot abs(r10, r11, r12)
d = XMVectorSplatY( t );
d_A = XMVectorSplatY( h_A );
d_B = XMVector3Dot( h_B, AR1X );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = a(w) = (0, 0, 1)
// t dot l = t.z
// d(A) = h(A).z
// d(B) = h(B) dot abs(r20, r21, r22)
d = XMVectorSplatZ( t );
d_A = XMVectorSplatZ( h_A );
d_B = XMVector3Dot( h_B, AR2X );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = b(u) = (r00, r10, r20)
// d(A) = h(A) dot abs(r00, r10, r20)
// d(B) = h(B).x
d = XMVector3Dot( t, RX0 );
d_A = XMVector3Dot( h_A, ARX0 );
d_B = XMVectorSplatX( h_B );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = b(v) = (r01, r11, r21)
// d(A) = h(A) dot abs(r01, r11, r21)
// d(B) = h(B).y
d = XMVector3Dot( t, RX1 );
d_A = XMVector3Dot( h_A, ARX1 );
d_B = XMVectorSplatY( h_B );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = b(w) = (r02, r12, r22)
// d(A) = h(A) dot abs(r02, r12, r22)
// d(B) = h(B).z
d = XMVector3Dot( t, RX2 );
d_A = XMVector3Dot( h_A, ARX2 );
d_B = XMVectorSplatZ( h_B );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = a(u) x b(u) = (0, -r20, r10)
// d(A) = h(A) dot abs(0, r20, r10)
// d(B) = h(B) dot abs(0, r02, r01)
d = XMVector3Dot( t, XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>( RX0, XMVectorNegate( RX0 ) ) );
2016-08-22 18:43:47 +00:00
d_A = XMVector3Dot( h_A, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>( ARX0 ) );
d_B = XMVector3Dot( h_B, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>( AR0X ) );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = a(u) x b(v) = (0, -r21, r11)
// d(A) = h(A) dot abs(0, r21, r11)
// d(B) = h(B) dot abs(r02, 0, r00)
d = XMVector3Dot( t, XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>( RX1, XMVectorNegate( RX1 ) ) );
2016-08-22 18:43:47 +00:00
d_A = XMVector3Dot( h_A, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>( ARX1 ) );
d_B = XMVector3Dot( h_B, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>( AR0X ) );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = a(u) x b(w) = (0, -r22, r12)
// d(A) = h(A) dot abs(0, r22, r12)
// d(B) = h(B) dot abs(r01, r00, 0)
d = XMVector3Dot( t, XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>( RX2, XMVectorNegate( RX2 ) ) );
2016-08-22 18:43:47 +00:00
d_A = XMVector3Dot( h_A, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>( ARX2 ) );
d_B = XMVector3Dot( h_B, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>( AR0X ) );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = a(v) x b(u) = (r20, 0, -r00)
// d(A) = h(A) dot abs(r20, 0, r00)
// d(B) = h(B) dot abs(0, r12, r11)
d = XMVector3Dot( t, XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>( RX0, XMVectorNegate( RX0 ) ) );
2016-08-22 18:43:47 +00:00
d_A = XMVector3Dot( h_A, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>( ARX0 ) );
d_B = XMVector3Dot( h_B, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>( AR1X ) );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = a(v) x b(v) = (r21, 0, -r01)
// d(A) = h(A) dot abs(r21, 0, r01)
// d(B) = h(B) dot abs(r12, 0, r10)
d = XMVector3Dot( t, XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>( RX1, XMVectorNegate( RX1 ) ) );
2016-08-22 18:43:47 +00:00
d_A = XMVector3Dot( h_A, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>( ARX1 ) );
d_B = XMVector3Dot( h_B, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>( AR1X ) );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = a(v) x b(w) = (r22, 0, -r02)
// d(A) = h(A) dot abs(r22, 0, r02)
// d(B) = h(B) dot abs(r11, r10, 0)
d = XMVector3Dot( t, XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>( RX2, XMVectorNegate( RX2 ) ) );
2016-08-22 18:43:47 +00:00
d_A = XMVector3Dot( h_A, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>( ARX2 ) );
d_B = XMVector3Dot( h_B, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>( AR1X ) );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = a(w) x b(u) = (-r10, r00, 0)
// d(A) = h(A) dot abs(r10, r00, 0)
// d(B) = h(B) dot abs(0, r22, r21)
d = XMVector3Dot( t, XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>( RX0, XMVectorNegate( RX0 ) ) );
2016-08-22 18:43:47 +00:00
d_A = XMVector3Dot( h_A, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>( ARX0 ) );
d_B = XMVector3Dot( h_B, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>( AR2X ) );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = a(w) x b(v) = (-r11, r01, 0)
// d(A) = h(A) dot abs(r11, r01, 0)
// d(B) = h(B) dot abs(r22, 0, r20)
d = XMVector3Dot( t, XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>( RX1, XMVectorNegate( RX1 ) ) );
2016-08-22 18:43:47 +00:00
d_A = XMVector3Dot( h_A, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>( ARX1 ) );
d_B = XMVector3Dot( h_B, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>( AR2X ) );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// l = a(w) x b(w) = (-r12, r02, 0)
// d(A) = h(A) dot abs(r12, r02, 0)
// d(B) = h(B) dot abs(r21, r20, 0)
d = XMVector3Dot( t, XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>( RX2, XMVectorNegate( RX2 ) ) );
2016-08-22 18:43:47 +00:00
d_A = XMVector3Dot( h_A, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>( ARX2 ) );
d_B = XMVector3Dot( h_B, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>( AR2X ) );
NoIntersection = XMVectorOrInt( NoIntersection,
XMVectorGreater( XMVectorAbs(d), XMVectorAdd( d_A, d_B ) ) );
// No seperating axis found, boxes must intersect.
return XMVector4NotEqualInt( NoIntersection, XMVectorTrueInt() ) ? true : false;
}
//-----------------------------------------------------------------------------
// Frustum vs. oriented box test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingOrientedBox::Intersects( const BoundingFrustum& fr ) const
{
return fr.Intersects( *this );
}
//-----------------------------------------------------------------------------
// Triangle vs. oriented box test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool XM_CALLCONV BoundingOrientedBox::Intersects( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2 ) const
{
// Load the box center & orientation.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
// Transform the triangle vertices into the space of the box.
XMVECTOR TV0 = XMVector3InverseRotate( XMVectorSubtract( V0, vCenter ), vOrientation );
XMVECTOR TV1 = XMVector3InverseRotate( XMVectorSubtract( V1, vCenter ), vOrientation );
XMVECTOR TV2 = XMVector3InverseRotate( XMVectorSubtract( V2, vCenter ), vOrientation );
2016-08-22 18:43:47 +00:00
BoundingBox box;
box.Center = XMFLOAT3( 0.0f, 0.0f, 0.0f );
box.Extents = Extents;
// Use the triangle vs axis aligned box intersection routine.
return box.Intersects( TV0, TV1, TV2 );
}
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline PlaneIntersectionType XM_CALLCONV BoundingOrientedBox::Intersects( FXMVECTOR Plane ) const
{
assert( DirectX::Internal::XMPlaneIsUnit( Plane ) );
// Load the box.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR BoxOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( BoxOrientation ) );
// Set w of the center to one so we can dot4 with a plane.
vCenter = XMVectorInsert<0, 0, 0, 0, 1>( vCenter, XMVectorSplatOne() );
// Build the 3x3 rotation matrix that defines the box axes.
XMMATRIX R = XMMatrixRotationQuaternion( BoxOrientation );
XMVECTOR Outside, Inside;
DirectX::Internal::FastIntersectOrientedBoxPlane( vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane, Outside, Inside );
// If the box is outside any plane it is outside.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return FRONT;
// If the box is inside all planes it is inside.
if ( XMVector4EqualInt( Inside, XMVectorTrueInt() ) )
return BACK;
// The box is not inside all planes or outside a plane it intersects.
return INTERSECTING;
}
//-----------------------------------------------------------------------------
// Compute the intersection of a ray (Origin, Direction) with an oriented box
// using the slabs method.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool XM_CALLCONV BoundingOrientedBox::Intersects( FXMVECTOR Origin, FXMVECTOR Direction, float& Dist ) const
{
assert( DirectX::Internal::XMVector3IsUnit( Direction ) );
static const XMVECTORU32 SelectY =
{
XM_SELECT_0, XM_SELECT_1, XM_SELECT_0, XM_SELECT_0
};
static const XMVECTORU32 SelectZ =
{
XM_SELECT_0, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0
};
// Load the box.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Get the boxes normalized side directions.
XMMATRIX R = XMMatrixRotationQuaternion( vOrientation );
// Adjust ray origin to be relative to center of the box.
XMVECTOR TOrigin = XMVectorSubtract( vCenter, Origin );
2016-08-22 18:43:47 +00:00
// Compute the dot product againt each axis of the box.
XMVECTOR AxisDotOrigin = XMVector3Dot( R.r[0], TOrigin );
AxisDotOrigin = XMVectorSelect( AxisDotOrigin, XMVector3Dot( R.r[1], TOrigin ), SelectY );
AxisDotOrigin = XMVectorSelect( AxisDotOrigin, XMVector3Dot( R.r[2], TOrigin ), SelectZ );
XMVECTOR AxisDotDirection = XMVector3Dot( R.r[0], Direction );
AxisDotDirection = XMVectorSelect( AxisDotDirection, XMVector3Dot( R.r[1], Direction ), SelectY );
AxisDotDirection = XMVectorSelect( AxisDotDirection, XMVector3Dot( R.r[2], Direction ), SelectZ );
// if (fabs(AxisDotDirection) <= Epsilon) the ray is nearly parallel to the slab.
XMVECTOR IsParallel = XMVectorLessOrEqual( XMVectorAbs( AxisDotDirection ), g_RayEpsilon );
// Test against all three axes simultaneously.
XMVECTOR InverseAxisDotDirection = XMVectorReciprocal( AxisDotDirection );
XMVECTOR t1 = XMVectorMultiply( XMVectorSubtract( AxisDotOrigin, vExtents ), InverseAxisDotDirection );
XMVECTOR t2 = XMVectorMultiply( XMVectorAdd( AxisDotOrigin, vExtents ), InverseAxisDotDirection );
2016-08-22 18:43:47 +00:00
// Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
// use the results from any directions parallel to the slab.
XMVECTOR t_min = XMVectorSelect( XMVectorMin( t1, t2 ), g_FltMin, IsParallel );
XMVECTOR t_max = XMVectorSelect( XMVectorMax( t1, t2 ), g_FltMax, IsParallel );
// t_min.x = maximum( t_min.x, t_min.y, t_min.z );
// t_max.x = minimum( t_max.x, t_max.y, t_max.z );
t_min = XMVectorMax( t_min, XMVectorSplatY( t_min ) ); // x = max(x,y)
t_min = XMVectorMax( t_min, XMVectorSplatZ( t_min ) ); // x = max(max(x,y),z)
t_max = XMVectorMin( t_max, XMVectorSplatY( t_max ) ); // x = min(x,y)
t_max = XMVectorMin( t_max, XMVectorSplatZ( t_max ) ); // x = min(min(x,y),z)
// if ( t_min > t_max ) return false;
XMVECTOR NoIntersection = XMVectorGreater( XMVectorSplatX( t_min ), XMVectorSplatX( t_max ) );
// if ( t_max < 0.0f ) return false;
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( XMVectorSplatX( t_max ), XMVectorZero() ) );
// if (IsParallel && (-Extents > AxisDotOrigin || Extents < AxisDotOrigin)) return false;
XMVECTOR ParallelOverlap = XMVectorInBounds( AxisDotOrigin, vExtents );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorAndCInt( IsParallel, ParallelOverlap ) );
if( !DirectX::Internal::XMVector3AnyTrue( NoIntersection ) )
{
// Store the x-component to *pDist
XMStoreFloat( &Dist, t_min );
return true;
}
Dist = 0.f;
return false;
}
//-----------------------------------------------------------------------------
// Test an oriented box vs 6 planes (typically forming a frustum).
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingOrientedBox::ContainedBy( FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
GXMVECTOR Plane3, HXMVECTOR Plane4, HXMVECTOR Plane5 ) const
{
// Load the box.
XMVECTOR vCenter = XMLoadFloat3( &Center );
XMVECTOR vExtents = XMLoadFloat3( &Extents );
XMVECTOR BoxOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( BoxOrientation ) );
// Set w of the center to one so we can dot4 with a plane.
vCenter = XMVectorInsert<0, 0, 0, 0, 1>( vCenter, XMVectorSplatOne() );
// Build the 3x3 rotation matrix that defines the box axes.
XMMATRIX R = XMMatrixRotationQuaternion( BoxOrientation );
XMVECTOR Outside, Inside;
// Test against each plane.
DirectX::Internal::FastIntersectOrientedBoxPlane( vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane0, Outside, Inside );
XMVECTOR AnyOutside = Outside;
XMVECTOR AllInside = Inside;
DirectX::Internal::FastIntersectOrientedBoxPlane( vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane1, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectOrientedBoxPlane( vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane2, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectOrientedBoxPlane( vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane3, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectOrientedBoxPlane( vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane4, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectOrientedBoxPlane( vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane5, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
// If the box is outside any plane it is outside.
if ( XMVector4EqualInt( AnyOutside, XMVectorTrueInt() ) )
return DISJOINT;
// If the box is inside all planes it is inside.
if ( XMVector4EqualInt( AllInside, XMVectorTrueInt() ) )
return CONTAINS;
// The box is not inside all planes or outside a plane, it may intersect.
return INTERSECTS;
}
//-----------------------------------------------------------------------------
// Create oriented bounding box from axis-aligned bounding box
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingOrientedBox::CreateFromBoundingBox( BoundingOrientedBox& Out, const BoundingBox& box )
{
Out.Center = box.Center;
Out.Extents = box.Extents;
Out.Orientation = XMFLOAT4( 0.f, 0.f, 0.f, 1.f );
}
//-----------------------------------------------------------------------------
// Find the approximate minimum oriented bounding box containing a set of
// points. Exact computation of minimum oriented bounding box is possible but
// is slower and requires a more complex algorithm.
// The algorithm works by computing the inertia tensor of the points and then
// using the eigenvectors of the intertia tensor as the axes of the box.
// Computing the intertia tensor of the convex hull of the points will usually
// result in better bounding box but the computation is more complex.
// Exact computation of the minimum oriented bounding box is possible but the
// best know algorithm is O(N^3) and is significanly more complex to implement.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingOrientedBox::CreateFromPoints( BoundingOrientedBox& Out, size_t Count, const XMFLOAT3* pPoints, size_t Stride )
{
assert( Count > 0 );
assert( pPoints != 0 );
XMVECTOR CenterOfMass = XMVectorZero();
// Compute the center of mass and inertia tensor of the points.
for( size_t i = 0; i < Count; ++i )
{
XMVECTOR Point = XMLoadFloat3( reinterpret_cast<const XMFLOAT3*>( reinterpret_cast<const uint8_t*>(pPoints) + i * Stride ) );
CenterOfMass = XMVectorAdd( CenterOfMass, Point );
2016-08-22 18:43:47 +00:00
}
CenterOfMass = XMVectorMultiply( CenterOfMass, XMVectorReciprocal( XMVectorReplicate( float( Count ) ) ) );
2016-08-22 18:43:47 +00:00
// Compute the inertia tensor of the points around the center of mass.
// Using the center of mass is not strictly necessary, but will hopefully
// improve the stability of finding the eigenvectors.
XMVECTOR XX_YY_ZZ = XMVectorZero();
XMVECTOR XY_XZ_YZ = XMVectorZero();
for( size_t i = 0; i < Count; ++i )
{
XMVECTOR Point = XMVectorSubtract( XMLoadFloat3( reinterpret_cast<const XMFLOAT3*>( reinterpret_cast<const uint8_t*>(pPoints) + i * Stride ) ), CenterOfMass );
2016-08-22 18:43:47 +00:00
XX_YY_ZZ = XMVectorAdd( XX_YY_ZZ, XMVectorMultiply( Point, Point ) );
2016-08-22 18:43:47 +00:00
XMVECTOR XXY = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_W>( Point );
XMVECTOR YZZ = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_W>( Point );
XY_XZ_YZ = XMVectorAdd( XY_XZ_YZ, XMVectorMultiply( XXY, YZZ ) );
2016-08-22 18:43:47 +00:00
}
XMVECTOR v1, v2, v3;
// Compute the eigenvectors of the inertia tensor.
DirectX::Internal::CalculateEigenVectorsFromCovarianceMatrix( XMVectorGetX( XX_YY_ZZ ), XMVectorGetY( XX_YY_ZZ ),
XMVectorGetZ( XX_YY_ZZ ),
XMVectorGetX( XY_XZ_YZ ), XMVectorGetY( XY_XZ_YZ ),
XMVectorGetZ( XY_XZ_YZ ),
&v1, &v2, &v3 );
// Put them in a matrix.
XMMATRIX R;
R.r[0] = XMVectorSetW( v1, 0.f );
R.r[1] = XMVectorSetW( v2, 0.f );
R.r[2] = XMVectorSetW( v3, 0.f );
R.r[3] = g_XMIdentityR3.v;
// Multiply by -1 to convert the matrix into a right handed coordinate
// system (Det ~= 1) in case the eigenvectors form a left handed
// coordinate system (Det ~= -1) because XMQuaternionRotationMatrix only
// works on right handed matrices.
XMVECTOR Det = XMMatrixDeterminant( R );
if( XMVector4Less( Det, XMVectorZero() ) )
{
R.r[0] = XMVectorMultiply( R.r[0], g_XMNegativeOne.v );
R.r[1] = XMVectorMultiply( R.r[1], g_XMNegativeOne.v );
R.r[2] = XMVectorMultiply( R.r[2], g_XMNegativeOne.v );
2016-08-22 18:43:47 +00:00
}
// Get the rotation quaternion from the matrix.
XMVECTOR vOrientation = XMQuaternionRotationMatrix( R );
// Make sure it is normal (in case the vectors are slightly non-orthogonal).
vOrientation = XMQuaternionNormalize( vOrientation );
// Rebuild the rotation matrix from the quaternion.
R = XMMatrixRotationQuaternion( vOrientation );
// Build the rotation into the rotated space.
XMMATRIX InverseR = XMMatrixTranspose( R );
// Find the minimum OBB using the eigenvectors as the axes.
XMVECTOR vMin, vMax;
vMin = vMax = XMVector3TransformNormal( XMLoadFloat3( pPoints ), InverseR );
for( size_t i = 1; i < Count; ++i )
{
XMVECTOR Point = XMVector3TransformNormal( XMLoadFloat3( reinterpret_cast<const XMFLOAT3*>( reinterpret_cast<const uint8_t*>(pPoints) + i * Stride ) ),
InverseR );
vMin = XMVectorMin( vMin, Point );
vMax = XMVectorMax( vMax, Point );
}
// Rotate the center into world space.
XMVECTOR vCenter = XMVectorScale( XMVectorAdd( vMin, vMax ), 0.5f );
2016-08-22 18:43:47 +00:00
vCenter = XMVector3TransformNormal( vCenter, R );
// Store center, extents, and orientation.
XMStoreFloat3( &Out.Center, vCenter );
XMStoreFloat3( &Out.Extents, XMVectorScale( XMVectorSubtract( vMax, vMin ), 0.5f ) );
2016-08-22 18:43:47 +00:00
XMStoreFloat4( &Out.Orientation, vOrientation );
}
/****************************************************************************
*
* BoundingFrustum
*
****************************************************************************/
//-----------------------------------------------------------------------------
// Transform a frustum by an angle preserving transform.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV BoundingFrustum::Transform( BoundingFrustum& Out, FXMMATRIX M ) const
{
// Load the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Composite the frustum rotation and the transform rotation
XMMATRIX nM;
nM.r[0] = XMVector3Normalize( M.r[0] );
nM.r[1] = XMVector3Normalize( M.r[1] );
nM.r[2] = XMVector3Normalize( M.r[2] );
nM.r[3] = g_XMIdentityR3;
XMVECTOR Rotation = XMQuaternionRotationMatrix( nM );
vOrientation = XMQuaternionMultiply( vOrientation, Rotation );
// Transform the center.
vOrigin = XMVector3Transform( vOrigin, M );
// Store the frustum.
XMStoreFloat3( &Out.Origin, vOrigin );
XMStoreFloat4( &Out.Orientation, vOrientation );
// Scale the near and far distances (the slopes remain the same).
XMVECTOR dX = XMVector3Dot( M.r[0], M.r[0] );
XMVECTOR dY = XMVector3Dot( M.r[1], M.r[1] );
XMVECTOR dZ = XMVector3Dot( M.r[2], M.r[2] );
XMVECTOR d = XMVectorMax( dX, XMVectorMax( dY, dZ ) );
float Scale = sqrtf( XMVectorGetX(d) );
Out.Near = Near * Scale;
Out.Far = Far * Scale;
// Copy the slopes.
Out.RightSlope = RightSlope;
Out.LeftSlope = LeftSlope;
Out.TopSlope = TopSlope;
Out.BottomSlope = BottomSlope;
}
_Use_decl_annotations_
inline void XM_CALLCONV BoundingFrustum::Transform( BoundingFrustum& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation ) const
{
assert( DirectX::Internal::XMQuaternionIsUnit( Rotation ) );
// Load the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Composite the frustum rotation and the transform rotation.
vOrientation = XMQuaternionMultiply( vOrientation, Rotation );
// Transform the origin.
vOrigin = XMVectorAdd( XMVector3Rotate( XMVectorScale( vOrigin, Scale ), Rotation ), Translation );
2016-08-22 18:43:47 +00:00
// Store the frustum.
XMStoreFloat3( &Out.Origin, vOrigin );
XMStoreFloat4( &Out.Orientation, vOrientation );
// Scale the near and far distances (the slopes remain the same).
Out.Near = Near * Scale;
Out.Far = Far * Scale;
// Copy the slopes.
Out.RightSlope = RightSlope;
Out.LeftSlope = LeftSlope;
Out.TopSlope = TopSlope;
Out.BottomSlope = BottomSlope;
}
//-----------------------------------------------------------------------------
// Get the corner points of the frustum
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingFrustum::GetCorners( XMFLOAT3* Corners ) const
{
assert( Corners != 0 );
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Build the corners of the frustum.
XMVECTOR vRightTop = XMVectorSet( RightSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR vRightBottom = XMVectorSet( RightSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR vLeftTop = XMVectorSet( LeftSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR vLeftBottom = XMVectorSet( LeftSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR vNear = XMVectorReplicatePtr( &Near );
XMVECTOR vFar = XMVectorReplicatePtr( &Far );
// Returns 8 corners position of bounding frustum.
// Near Far
// 0----1 4----5
// | | | |
// | | | |
// 3----2 7----6
XMVECTOR vCorners[CORNER_COUNT];
vCorners[0] = XMVectorMultiply( vLeftTop, vNear );
vCorners[1] = XMVectorMultiply( vRightTop, vNear );
vCorners[2] = XMVectorMultiply( vRightBottom, vNear );
vCorners[3] = XMVectorMultiply( vLeftBottom, vNear );
vCorners[4] = XMVectorMultiply( vLeftTop, vFar );
vCorners[5] = XMVectorMultiply( vRightTop, vFar );
vCorners[6] = XMVectorMultiply( vRightBottom, vFar );
vCorners[7] = XMVectorMultiply( vLeftBottom, vFar );
2016-08-22 18:43:47 +00:00
for( size_t i=0; i < CORNER_COUNT; ++i )
{
XMVECTOR C = XMVectorAdd( XMVector3Rotate( vCorners[i], vOrientation ), vOrigin );
2016-08-22 18:43:47 +00:00
XMStoreFloat3( &Corners[i], C );
}
}
//-----------------------------------------------------------------------------
// Point in frustum test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingFrustum::Contains( FXMVECTOR Point ) const
{
// Build frustum planes.
XMVECTOR Planes[6];
Planes[0] = XMVectorSet( 0.0f, 0.0f, -1.0f, Near );
Planes[1] = XMVectorSet( 0.0f, 0.0f, 1.0f, -Far );
Planes[2] = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
Planes[3] = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
Planes[4] = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
Planes[5] = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
// Load origin and orientation.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Transform point into local space of frustum.
XMVECTOR TPoint = XMVector3InverseRotate( XMVectorSubtract( Point, vOrigin ), vOrientation );
2016-08-22 18:43:47 +00:00
// Set w to one.
TPoint = XMVectorInsert<0, 0, 0, 0, 1>( TPoint, XMVectorSplatOne() );
XMVECTOR Zero = XMVectorZero();
XMVECTOR Outside = Zero;
// Test point against each plane of the frustum.
for( size_t i = 0; i < 6; ++i )
{
XMVECTOR Dot = XMVector4Dot( TPoint, Planes[i] );
Outside = XMVectorOrInt( Outside, XMVectorGreater( Dot, Zero ) );
}
return XMVector4NotEqualInt( Outside, XMVectorTrueInt() ) ? CONTAINS : DISJOINT;
}
//-----------------------------------------------------------------------------
// Triangle vs frustum test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingFrustum::Contains( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2 ) const
{
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
// Create 6 planes (do it inline to encourage use of registers)
XMVECTOR NearPlane = XMVectorSet( 0.0f, 0.0f, -1.0f, Near );
NearPlane = DirectX::Internal::XMPlaneTransform( NearPlane, vOrientation, vOrigin );
NearPlane = XMPlaneNormalize( NearPlane );
XMVECTOR FarPlane = XMVectorSet( 0.0f, 0.0f, 1.0f, -Far );
FarPlane = DirectX::Internal::XMPlaneTransform( FarPlane, vOrientation, vOrigin );
FarPlane = XMPlaneNormalize( FarPlane );
XMVECTOR RightPlane = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
RightPlane = DirectX::Internal::XMPlaneTransform( RightPlane, vOrientation, vOrigin );
RightPlane = XMPlaneNormalize( RightPlane );
XMVECTOR LeftPlane = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
LeftPlane = DirectX::Internal::XMPlaneTransform( LeftPlane, vOrientation, vOrigin );
LeftPlane = XMPlaneNormalize( LeftPlane );
XMVECTOR TopPlane = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
TopPlane = DirectX::Internal::XMPlaneTransform( TopPlane, vOrientation, vOrigin );
TopPlane = XMPlaneNormalize( TopPlane );
XMVECTOR BottomPlane = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
BottomPlane = DirectX::Internal::XMPlaneTransform( BottomPlane, vOrientation, vOrigin );
BottomPlane = XMPlaneNormalize( BottomPlane );
return TriangleTests::ContainedBy( V0, V1, V2, NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane );
}
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingFrustum::Contains( const BoundingSphere& sh ) const
{
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
// Create 6 planes (do it inline to encourage use of registers)
XMVECTOR NearPlane = XMVectorSet( 0.0f, 0.0f, -1.0f, Near );
NearPlane = DirectX::Internal::XMPlaneTransform( NearPlane, vOrientation, vOrigin );
NearPlane = XMPlaneNormalize( NearPlane );
XMVECTOR FarPlane = XMVectorSet( 0.0f, 0.0f, 1.0f, -Far );
FarPlane = DirectX::Internal::XMPlaneTransform( FarPlane, vOrientation, vOrigin );
FarPlane = XMPlaneNormalize( FarPlane );
XMVECTOR RightPlane = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
RightPlane = DirectX::Internal::XMPlaneTransform( RightPlane, vOrientation, vOrigin );
RightPlane = XMPlaneNormalize( RightPlane );
XMVECTOR LeftPlane = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
LeftPlane = DirectX::Internal::XMPlaneTransform( LeftPlane, vOrientation, vOrigin );
LeftPlane = XMPlaneNormalize( LeftPlane );
XMVECTOR TopPlane = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
TopPlane = DirectX::Internal::XMPlaneTransform( TopPlane, vOrientation, vOrigin );
TopPlane = XMPlaneNormalize( TopPlane );
XMVECTOR BottomPlane = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
BottomPlane = DirectX::Internal::XMPlaneTransform( BottomPlane, vOrientation, vOrigin );
BottomPlane = XMPlaneNormalize( BottomPlane );
return sh.ContainedBy( NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane );
}
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingFrustum::Contains( const BoundingBox& box ) const
{
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
// Create 6 planes (do it inline to encourage use of registers)
XMVECTOR NearPlane = XMVectorSet( 0.0f, 0.0f, -1.0f, Near );
NearPlane = DirectX::Internal::XMPlaneTransform( NearPlane, vOrientation, vOrigin );
NearPlane = XMPlaneNormalize( NearPlane );
XMVECTOR FarPlane = XMVectorSet( 0.0f, 0.0f, 1.0f, -Far );
FarPlane = DirectX::Internal::XMPlaneTransform( FarPlane, vOrientation, vOrigin );
FarPlane = XMPlaneNormalize( FarPlane );
XMVECTOR RightPlane = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
RightPlane = DirectX::Internal::XMPlaneTransform( RightPlane, vOrientation, vOrigin );
RightPlane = XMPlaneNormalize( RightPlane );
XMVECTOR LeftPlane = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
LeftPlane = DirectX::Internal::XMPlaneTransform( LeftPlane, vOrientation, vOrigin );
LeftPlane = XMPlaneNormalize( LeftPlane );
XMVECTOR TopPlane = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
TopPlane = DirectX::Internal::XMPlaneTransform( TopPlane, vOrientation, vOrigin );
TopPlane = XMPlaneNormalize( TopPlane );
XMVECTOR BottomPlane = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
BottomPlane = DirectX::Internal::XMPlaneTransform( BottomPlane, vOrientation, vOrigin );
BottomPlane = XMPlaneNormalize( BottomPlane );
return box.ContainedBy( NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane );
}
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingFrustum::Contains( const BoundingOrientedBox& box ) const
{
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
// Create 6 planes (do it inline to encourage use of registers)
XMVECTOR NearPlane = XMVectorSet( 0.0f, 0.0f, -1.0f, Near );
NearPlane = DirectX::Internal::XMPlaneTransform( NearPlane, vOrientation, vOrigin );
NearPlane = XMPlaneNormalize( NearPlane );
XMVECTOR FarPlane = XMVectorSet( 0.0f, 0.0f, 1.0f, -Far );
FarPlane = DirectX::Internal::XMPlaneTransform( FarPlane, vOrientation, vOrigin );
FarPlane = XMPlaneNormalize( FarPlane );
XMVECTOR RightPlane = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
RightPlane = DirectX::Internal::XMPlaneTransform( RightPlane, vOrientation, vOrigin );
RightPlane = XMPlaneNormalize( RightPlane );
XMVECTOR LeftPlane = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
LeftPlane = DirectX::Internal::XMPlaneTransform( LeftPlane, vOrientation, vOrigin );
LeftPlane = XMPlaneNormalize( LeftPlane );
XMVECTOR TopPlane = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
TopPlane = DirectX::Internal::XMPlaneTransform( TopPlane, vOrientation, vOrigin );
TopPlane = XMPlaneNormalize( TopPlane );
XMVECTOR BottomPlane = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
BottomPlane = DirectX::Internal::XMPlaneTransform( BottomPlane, vOrientation, vOrigin );
BottomPlane = XMPlaneNormalize( BottomPlane );
return box.ContainedBy( NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane );
}
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType BoundingFrustum::Contains( const BoundingFrustum& fr ) const
{
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
// Create 6 planes (do it inline to encourage use of registers)
XMVECTOR NearPlane = XMVectorSet( 0.0f, 0.0f, -1.0f, Near );
NearPlane = DirectX::Internal::XMPlaneTransform( NearPlane, vOrientation, vOrigin );
NearPlane = XMPlaneNormalize( NearPlane );
XMVECTOR FarPlane = XMVectorSet( 0.0f, 0.0f, 1.0f, -Far );
FarPlane = DirectX::Internal::XMPlaneTransform( FarPlane, vOrientation, vOrigin );
FarPlane = XMPlaneNormalize( FarPlane );
XMVECTOR RightPlane = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
RightPlane = DirectX::Internal::XMPlaneTransform( RightPlane, vOrientation, vOrigin );
RightPlane = XMPlaneNormalize( RightPlane );
XMVECTOR LeftPlane = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
LeftPlane = DirectX::Internal::XMPlaneTransform( LeftPlane, vOrientation, vOrigin );
LeftPlane = XMPlaneNormalize( LeftPlane );
XMVECTOR TopPlane = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
TopPlane = DirectX::Internal::XMPlaneTransform( TopPlane, vOrientation, vOrigin );
TopPlane = XMPlaneNormalize( TopPlane );
XMVECTOR BottomPlane = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
BottomPlane = DirectX::Internal::XMPlaneTransform( BottomPlane, vOrientation, vOrigin );
BottomPlane = XMPlaneNormalize( BottomPlane );
return fr.ContainedBy( NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane );
}
//-----------------------------------------------------------------------------
// Exact sphere vs frustum test. The algorithm first checks the sphere against
// the planes of the frustum, then if the plane checks were indeterminate finds
// the nearest feature (plane, line, point) on the frustum to the center of the
// sphere and compares the distance to the nearest feature to the radius of the
// sphere
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingFrustum::Intersects( const BoundingSphere& sh ) const
{
XMVECTOR Zero = XMVectorZero();
// Build the frustum planes.
XMVECTOR Planes[6];
Planes[0] = XMVectorSet( 0.0f, 0.0f, -1.0f, Near );
Planes[1] = XMVectorSet( 0.0f, 0.0f, 1.0f, -Far );
Planes[2] = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
Planes[3] = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
Planes[4] = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
Planes[5] = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
// Normalize the planes so we can compare to the sphere radius.
Planes[2] = XMVector3Normalize( Planes[2] );
Planes[3] = XMVector3Normalize( Planes[3] );
Planes[4] = XMVector3Normalize( Planes[4] );
Planes[5] = XMVector3Normalize( Planes[5] );
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Load the sphere.
XMVECTOR vCenter = XMLoadFloat3( &sh.Center );
XMVECTOR vRadius = XMVectorReplicatePtr( &sh.Radius );
// Transform the center of the sphere into the local space of frustum.
vCenter = XMVector3InverseRotate( XMVectorSubtract( vCenter, vOrigin ), vOrientation );
2016-08-22 18:43:47 +00:00
// Set w of the center to one so we can dot4 with the plane.
vCenter = XMVectorInsert<0, 0, 0, 0, 1>( vCenter, XMVectorSplatOne() );
// Check against each plane of the frustum.
XMVECTOR Outside = XMVectorFalseInt();
XMVECTOR InsideAll = XMVectorTrueInt();
XMVECTOR CenterInsideAll = XMVectorTrueInt();
XMVECTOR Dist[6];
for( size_t i = 0; i < 6; ++i )
{
Dist[i] = XMVector4Dot( vCenter, Planes[i] );
// Outside the plane?
Outside = XMVectorOrInt( Outside, XMVectorGreater( Dist[i], vRadius ) );
// Fully inside the plane?
InsideAll = XMVectorAndInt( InsideAll, XMVectorLessOrEqual( Dist[i], XMVectorNegate( vRadius ) ) );
2016-08-22 18:43:47 +00:00
// Check if the center is inside the plane.
CenterInsideAll = XMVectorAndInt( CenterInsideAll, XMVectorLessOrEqual( Dist[i], Zero ) );
}
// If the sphere is outside any of the planes it is outside.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return false;
// If the sphere is inside all planes it is fully inside.
if ( XMVector4EqualInt( InsideAll, XMVectorTrueInt() ) )
return true;
// If the center of the sphere is inside all planes and the sphere intersects
// one or more planes then it must intersect.
if ( XMVector4EqualInt( CenterInsideAll, XMVectorTrueInt() ) )
return true;
// The sphere may be outside the frustum or intersecting the frustum.
// Find the nearest feature (face, edge, or corner) on the frustum
// to the sphere.
// The faces adjacent to each face are:
static const size_t adjacent_faces[6][4] =
{
{ 2, 3, 4, 5 }, // 0
{ 2, 3, 4, 5 }, // 1
{ 0, 1, 4, 5 }, // 2
{ 0, 1, 4, 5 }, // 3
{ 0, 1, 2, 3 }, // 4
{ 0, 1, 2, 3 }
}; // 5
XMVECTOR Intersects = XMVectorFalseInt();
// Check to see if the nearest feature is one of the planes.
for( size_t i = 0; i < 6; ++i )
{
// Find the nearest point on the plane to the center of the sphere.
XMVECTOR Point = XMVectorNegativeMultiplySubtract( Planes[i], Dist[i], vCenter );
2016-08-22 18:43:47 +00:00
// Set w of the point to one.
Point = XMVectorInsert<0, 0, 0, 0, 1>( Point, XMVectorSplatOne() );
// If the point is inside the face (inside the adjacent planes) then
// this plane is the nearest feature.
XMVECTOR InsideFace = XMVectorTrueInt();
for ( size_t j = 0; j < 4; j++ )
{
size_t plane_index = adjacent_faces[i][j];
InsideFace = XMVectorAndInt( InsideFace,
XMVectorLessOrEqual( XMVector4Dot( Point, Planes[plane_index] ), Zero ) );
}
// Since we have already checked distance from the plane we know that the
// sphere must intersect if this plane is the nearest feature.
Intersects = XMVectorOrInt( Intersects,
XMVectorAndInt( XMVectorGreater( Dist[i], Zero ), InsideFace ) );
}
if ( XMVector4EqualInt( Intersects, XMVectorTrueInt() ) )
return true;
// Build the corners of the frustum.
XMVECTOR vRightTop = XMVectorSet( RightSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR vRightBottom = XMVectorSet( RightSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR vLeftTop = XMVectorSet( LeftSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR vLeftBottom = XMVectorSet( LeftSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR vNear = XMVectorReplicatePtr( &Near );
XMVECTOR vFar = XMVectorReplicatePtr( &Far );
XMVECTOR Corners[CORNER_COUNT];
Corners[0] = XMVectorMultiply( vRightTop, vNear );
Corners[1] = XMVectorMultiply( vRightBottom, vNear );
Corners[2] = XMVectorMultiply( vLeftTop, vNear );
Corners[3] = XMVectorMultiply( vLeftBottom, vNear );
Corners[4] = XMVectorMultiply( vRightTop, vFar );
Corners[5] = XMVectorMultiply( vRightBottom, vFar );
Corners[6] = XMVectorMultiply( vLeftTop, vFar );
Corners[7] = XMVectorMultiply( vLeftBottom, vFar );
2016-08-22 18:43:47 +00:00
// The Edges are:
static const size_t edges[12][2] =
{
{ 0, 1 }, { 2, 3 }, { 0, 2 }, { 1, 3 }, // Near plane
{ 4, 5 }, { 6, 7 }, { 4, 6 }, { 5, 7 }, // Far plane
{ 0, 4 }, { 1, 5 }, { 2, 6 }, { 3, 7 },
}; // Near to far
XMVECTOR RadiusSq = XMVectorMultiply( vRadius, vRadius );
2016-08-22 18:43:47 +00:00
// Check to see if the nearest feature is one of the edges (or corners).
for( size_t i = 0; i < 12; ++i )
{
size_t ei0 = edges[i][0];
size_t ei1 = edges[i][1];
// Find the nearest point on the edge to the center of the sphere.
// The corners of the frustum are included as the endpoints of the edges.
XMVECTOR Point = DirectX::Internal::PointOnLineSegmentNearestPoint( Corners[ei0], Corners[ei1], vCenter );
XMVECTOR Delta = XMVectorSubtract( vCenter, Point );
2016-08-22 18:43:47 +00:00
XMVECTOR DistSq = XMVector3Dot( Delta, Delta );
// If the distance to the center of the sphere to the point is less than
// the radius of the sphere then it must intersect.
Intersects = XMVectorOrInt( Intersects, XMVectorLessOrEqual( DistSq, RadiusSq ) );
}
if ( XMVector4EqualInt( Intersects, XMVectorTrueInt() ) )
return true;
// The sphere must be outside the frustum.
return false;
}
//-----------------------------------------------------------------------------
// Exact axis aligned box vs frustum test. Constructs an oriented box and uses
// the oriented box vs frustum test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingFrustum::Intersects( const BoundingBox& box ) const
{
// Make the axis aligned box oriented and do an OBB vs frustum test.
BoundingOrientedBox obox( box.Center, box.Extents, XMFLOAT4( 0.f, 0.f, 0.f, 1.f ) );
return Intersects( obox );
}
//-----------------------------------------------------------------------------
// Exact oriented box vs frustum test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingFrustum::Intersects( const BoundingOrientedBox& box ) const
{
static const XMVECTORU32 SelectY =
{
XM_SELECT_0, XM_SELECT_1, XM_SELECT_0, XM_SELECT_0
};
static const XMVECTORU32 SelectZ =
{
XM_SELECT_0, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0
};
XMVECTOR Zero = XMVectorZero();
// Build the frustum planes.
XMVECTOR Planes[6];
Planes[0] = XMVectorSet( 0.0f, 0.0f, -1.0f, Near );
Planes[1] = XMVectorSet( 0.0f, 0.0f, 1.0f, -Far );
Planes[2] = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
Planes[3] = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
Planes[4] = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
Planes[5] = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR FrustumOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( FrustumOrientation ) );
// Load the box.
XMVECTOR Center = XMLoadFloat3( &box.Center );
XMVECTOR Extents = XMLoadFloat3( &box.Extents );
XMVECTOR BoxOrientation = XMLoadFloat4( &box.Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( BoxOrientation ) );
// Transform the oriented box into the space of the frustum in order to
// minimize the number of transforms we have to do.
Center = XMVector3InverseRotate( XMVectorSubtract( Center, vOrigin ), FrustumOrientation );
2016-08-22 18:43:47 +00:00
BoxOrientation = XMQuaternionMultiply( BoxOrientation, XMQuaternionConjugate( FrustumOrientation ) );
// Set w of the center to one so we can dot4 with the plane.
Center = XMVectorInsert<0, 0, 0, 0, 1>( Center, XMVectorSplatOne() );
// Build the 3x3 rotation matrix that defines the box axes.
XMMATRIX R = XMMatrixRotationQuaternion( BoxOrientation );
// Check against each plane of the frustum.
XMVECTOR Outside = XMVectorFalseInt();
XMVECTOR InsideAll = XMVectorTrueInt();
XMVECTOR CenterInsideAll = XMVectorTrueInt();
for( size_t i = 0; i < 6; ++i )
{
// Compute the distance to the center of the box.
XMVECTOR Dist = XMVector4Dot( Center, Planes[i] );
// Project the axes of the box onto the normal of the plane. Half the
// length of the projection (sometime called the "radius") is equal to
// h(u) * abs(n dot b(u))) + h(v) * abs(n dot b(v)) + h(w) * abs(n dot b(w))
// where h(i) are extents of the box, n is the plane normal, and b(i) are the
// axes of the box.
XMVECTOR Radius = XMVector3Dot( Planes[i], R.r[0] );
Radius = XMVectorSelect( Radius, XMVector3Dot( Planes[i], R.r[1] ), SelectY );
Radius = XMVectorSelect( Radius, XMVector3Dot( Planes[i], R.r[2] ), SelectZ );
Radius = XMVector3Dot( Extents, XMVectorAbs( Radius ) );
// Outside the plane?
Outside = XMVectorOrInt( Outside, XMVectorGreater( Dist, Radius ) );
// Fully inside the plane?
InsideAll = XMVectorAndInt( InsideAll, XMVectorLessOrEqual( Dist, XMVectorNegate( Radius ) ) );
2016-08-22 18:43:47 +00:00
// Check if the center is inside the plane.
CenterInsideAll = XMVectorAndInt( CenterInsideAll, XMVectorLessOrEqual( Dist, Zero ) );
}
// If the box is outside any of the planes it is outside.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return false;
// If the box is inside all planes it is fully inside.
if ( XMVector4EqualInt( InsideAll, XMVectorTrueInt() ) )
return true;
// If the center of the box is inside all planes and the box intersects
// one or more planes then it must intersect.
if ( XMVector4EqualInt( CenterInsideAll, XMVectorTrueInt() ) )
return true;
// Build the corners of the frustum.
XMVECTOR vRightTop = XMVectorSet( RightSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR vRightBottom = XMVectorSet( RightSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR vLeftTop = XMVectorSet( LeftSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR vLeftBottom = XMVectorSet( LeftSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR vNear = XMVectorReplicatePtr( &Near );
XMVECTOR vFar = XMVectorReplicatePtr( &Far );
XMVECTOR Corners[CORNER_COUNT];
Corners[0] = XMVectorMultiply( vRightTop, vNear );
Corners[1] = XMVectorMultiply( vRightBottom, vNear );
Corners[2] = XMVectorMultiply( vLeftTop, vNear );
Corners[3] = XMVectorMultiply( vLeftBottom, vNear );
Corners[4] = XMVectorMultiply( vRightTop, vFar );
Corners[5] = XMVectorMultiply( vRightBottom, vFar );
Corners[6] = XMVectorMultiply( vLeftTop, vFar );
Corners[7] = XMVectorMultiply( vLeftBottom, vFar );
2016-08-22 18:43:47 +00:00
// Test against box axes (3)
{
// Find the min/max values of the projection of the frustum onto each axis.
XMVECTOR FrustumMin, FrustumMax;
FrustumMin = XMVector3Dot( Corners[0], R.r[0] );
FrustumMin = XMVectorSelect( FrustumMin, XMVector3Dot( Corners[0], R.r[1] ), SelectY );
FrustumMin = XMVectorSelect( FrustumMin, XMVector3Dot( Corners[0], R.r[2] ), SelectZ );
FrustumMax = FrustumMin;
for( size_t i = 1; i < BoundingOrientedBox::CORNER_COUNT; ++i )
{
XMVECTOR Temp = XMVector3Dot( Corners[i], R.r[0] );
Temp = XMVectorSelect( Temp, XMVector3Dot( Corners[i], R.r[1] ), SelectY );
Temp = XMVectorSelect( Temp, XMVector3Dot( Corners[i], R.r[2] ), SelectZ );
FrustumMin = XMVectorMin( FrustumMin, Temp );
FrustumMax = XMVectorMax( FrustumMax, Temp );
}
// Project the center of the box onto the axes.
XMVECTOR BoxDist = XMVector3Dot( Center, R.r[0] );
BoxDist = XMVectorSelect( BoxDist, XMVector3Dot( Center, R.r[1] ), SelectY );
BoxDist = XMVectorSelect( BoxDist, XMVector3Dot( Center, R.r[2] ), SelectZ );
// The projection of the box onto the axis is just its Center and Extents.
// if (min > box_max || max < box_min) reject;
XMVECTOR Result = XMVectorOrInt( XMVectorGreater( FrustumMin, XMVectorAdd( BoxDist, Extents ) ),
XMVectorLess( FrustumMax, XMVectorSubtract( BoxDist, Extents ) ) );
2016-08-22 18:43:47 +00:00
if( DirectX::Internal::XMVector3AnyTrue( Result ) )
return false;
}
// Test against edge/edge axes (3*6).
XMVECTOR FrustumEdgeAxis[6];
FrustumEdgeAxis[0] = vRightTop;
FrustumEdgeAxis[1] = vRightBottom;
FrustumEdgeAxis[2] = vLeftTop;
FrustumEdgeAxis[3] = vLeftBottom;
FrustumEdgeAxis[4] = XMVectorSubtract( vRightTop, vLeftTop );
FrustumEdgeAxis[5] = XMVectorSubtract( vLeftBottom, vLeftTop );
2016-08-22 18:43:47 +00:00
for( size_t i = 0; i < 3; ++i )
{
for( size_t j = 0; j < 6; j++ )
{
// Compute the axis we are going to test.
XMVECTOR Axis = XMVector3Cross( R.r[i], FrustumEdgeAxis[j] );
// Find the min/max values of the projection of the frustum onto the axis.
XMVECTOR FrustumMin, FrustumMax;
FrustumMin = FrustumMax = XMVector3Dot( Axis, Corners[0] );
for( size_t k = 1; k < CORNER_COUNT; k++ )
{
XMVECTOR Temp = XMVector3Dot( Axis, Corners[k] );
FrustumMin = XMVectorMin( FrustumMin, Temp );
FrustumMax = XMVectorMax( FrustumMax, Temp );
}
// Project the center of the box onto the axis.
XMVECTOR Dist = XMVector3Dot( Center, Axis );
// Project the axes of the box onto the axis to find the "radius" of the box.
XMVECTOR Radius = XMVector3Dot( Axis, R.r[0] );
Radius = XMVectorSelect( Radius, XMVector3Dot( Axis, R.r[1] ), SelectY );
Radius = XMVectorSelect( Radius, XMVector3Dot( Axis, R.r[2] ), SelectZ );
Radius = XMVector3Dot( Extents, XMVectorAbs( Radius ) );
// if (center > max + radius || center < min - radius) reject;
Outside = XMVectorOrInt( Outside, XMVectorGreater( Dist, XMVectorAdd( FrustumMax, Radius ) ) );
Outside = XMVectorOrInt( Outside, XMVectorLess( Dist, XMVectorSubtract( FrustumMin, Radius ) ) );
2016-08-22 18:43:47 +00:00
}
}
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return false;
// If we did not find a separating plane then the box must intersect the frustum.
return true;
}
//-----------------------------------------------------------------------------
// Exact frustum vs frustum test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool BoundingFrustum::Intersects( const BoundingFrustum& fr ) const
{
// Load origin and orientation of frustum B.
XMVECTOR OriginB = XMLoadFloat3( &Origin );
XMVECTOR OrientationB = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( OrientationB ) );
// Build the planes of frustum B.
XMVECTOR AxisB[6];
AxisB[0] = XMVectorSet( 0.0f, 0.0f, -1.0f, 0.0f );
AxisB[1] = XMVectorSet( 0.0f, 0.0f, 1.0f, 0.0f );
AxisB[2] = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
AxisB[3] = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
AxisB[4] = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
AxisB[5] = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
XMVECTOR PlaneDistB[6];
PlaneDistB[0] = XMVectorNegate( XMVectorReplicatePtr( &Near ) );
2016-08-22 18:43:47 +00:00
PlaneDistB[1] = XMVectorReplicatePtr( &Far );
PlaneDistB[2] = XMVectorZero();
PlaneDistB[3] = XMVectorZero();
PlaneDistB[4] = XMVectorZero();
PlaneDistB[5] = XMVectorZero();
// Load origin and orientation of frustum A.
XMVECTOR OriginA = XMLoadFloat3( &fr.Origin );
XMVECTOR OrientationA = XMLoadFloat4( &fr.Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( OrientationA ) );
// Transform frustum A into the space of the frustum B in order to
// minimize the number of transforms we have to do.
OriginA = XMVector3InverseRotate( XMVectorSubtract( OriginA, OriginB ), OrientationB );
2016-08-22 18:43:47 +00:00
OrientationA = XMQuaternionMultiply( OrientationA, XMQuaternionConjugate( OrientationB ) );
// Build the corners of frustum A (in the local space of B).
XMVECTOR RightTopA = XMVectorSet( fr.RightSlope, fr.TopSlope, 1.0f, 0.0f );
XMVECTOR RightBottomA = XMVectorSet( fr.RightSlope, fr.BottomSlope, 1.0f, 0.0f );
XMVECTOR LeftTopA = XMVectorSet(fr.LeftSlope,fr.TopSlope, 1.0f, 0.0f );
XMVECTOR LeftBottomA = XMVectorSet( fr.LeftSlope, fr.BottomSlope, 1.0f, 0.0f );
XMVECTOR NearA = XMVectorReplicatePtr( &fr.Near );
XMVECTOR FarA = XMVectorReplicatePtr( &fr.Far );
RightTopA = XMVector3Rotate( RightTopA, OrientationA );
RightBottomA = XMVector3Rotate( RightBottomA, OrientationA );
LeftTopA = XMVector3Rotate( LeftTopA, OrientationA );
LeftBottomA = XMVector3Rotate( LeftBottomA, OrientationA );
XMVECTOR CornersA[CORNER_COUNT];
CornersA[0] = XMVectorMultiplyAdd( RightTopA, NearA, OriginA );
CornersA[1] = XMVectorMultiplyAdd( RightBottomA, NearA, OriginA );
CornersA[2] = XMVectorMultiplyAdd( LeftTopA, NearA, OriginA );
CornersA[3] = XMVectorMultiplyAdd( LeftBottomA, NearA, OriginA );
CornersA[4] = XMVectorMultiplyAdd( RightTopA, FarA, OriginA );
CornersA[5] = XMVectorMultiplyAdd( RightBottomA, FarA, OriginA );
CornersA[6] = XMVectorMultiplyAdd( LeftTopA, FarA, OriginA );
CornersA[7] = XMVectorMultiplyAdd( LeftBottomA, FarA, OriginA );
2016-08-22 18:43:47 +00:00
// Check frustum A against each plane of frustum B.
XMVECTOR Outside = XMVectorFalseInt();
XMVECTOR InsideAll = XMVectorTrueInt();
for( size_t i = 0; i < 6; ++i )
{
// Find the min/max projection of the frustum onto the plane normal.
XMVECTOR Min, Max;
Min = Max = XMVector3Dot( AxisB[i], CornersA[0] );
for( size_t j = 1; j < CORNER_COUNT; j++ )
{
XMVECTOR Temp = XMVector3Dot( AxisB[i], CornersA[j] );
Min = XMVectorMin( Min, Temp );
Max = XMVectorMax( Max, Temp );
}
// Outside the plane?
Outside = XMVectorOrInt( Outside, XMVectorGreater( Min, PlaneDistB[i] ) );
// Fully inside the plane?
InsideAll = XMVectorAndInt( InsideAll, XMVectorLessOrEqual( Max, PlaneDistB[i] ) );
}
// If the frustum A is outside any of the planes of frustum B it is outside.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return false;
// If frustum A is inside all planes of frustum B it is fully inside.
if ( XMVector4EqualInt( InsideAll, XMVectorTrueInt() ) )
return true;
// Build the corners of frustum B.
XMVECTOR RightTopB = XMVectorSet( RightSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR RightBottomB = XMVectorSet( RightSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR LeftTopB = XMVectorSet( LeftSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR LeftBottomB = XMVectorSet( LeftSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR NearB = XMVectorReplicatePtr( &Near );
XMVECTOR FarB = XMVectorReplicatePtr( &Far );
XMVECTOR CornersB[BoundingFrustum::CORNER_COUNT];
CornersB[0] = XMVectorMultiply( RightTopB, NearB );
CornersB[1] = XMVectorMultiply( RightBottomB, NearB );
CornersB[2] = XMVectorMultiply( LeftTopB, NearB );
CornersB[3] = XMVectorMultiply( LeftBottomB, NearB );
CornersB[4] = XMVectorMultiply( RightTopB, FarB );
CornersB[5] = XMVectorMultiply( RightBottomB, FarB );
CornersB[6] = XMVectorMultiply( LeftTopB, FarB );
CornersB[7] = XMVectorMultiply( LeftBottomB, FarB );
2016-08-22 18:43:47 +00:00
// Build the planes of frustum A (in the local space of B).
XMVECTOR AxisA[6];
XMVECTOR PlaneDistA[6];
AxisA[0] = XMVectorSet( 0.0f, 0.0f, -1.0f, 0.0f );
AxisA[1] = XMVectorSet( 0.0f, 0.0f, 1.0f, 0.0f );
AxisA[2] = XMVectorSet( 1.0f, 0.0f, -fr.RightSlope, 0.0f );
AxisA[3] = XMVectorSet( -1.0f, 0.0f, fr.LeftSlope, 0.0f );
AxisA[4] = XMVectorSet( 0.0f, 1.0f, -fr.TopSlope, 0.0f );
AxisA[5] = XMVectorSet( 0.0f, -1.0f, fr.BottomSlope, 0.0f );
AxisA[0] = XMVector3Rotate( AxisA[0], OrientationA );
AxisA[1] = XMVectorNegate( AxisA[0] );
2016-08-22 18:43:47 +00:00
AxisA[2] = XMVector3Rotate( AxisA[2], OrientationA );
AxisA[3] = XMVector3Rotate( AxisA[3], OrientationA );
AxisA[4] = XMVector3Rotate( AxisA[4], OrientationA );
AxisA[5] = XMVector3Rotate( AxisA[5], OrientationA );
PlaneDistA[0] = XMVector3Dot( AxisA[0], CornersA[0] ); // Re-use corner on near plane.
PlaneDistA[1] = XMVector3Dot( AxisA[1], CornersA[4] ); // Re-use corner on far plane.
PlaneDistA[2] = XMVector3Dot( AxisA[2], OriginA );
PlaneDistA[3] = XMVector3Dot( AxisA[3], OriginA );
PlaneDistA[4] = XMVector3Dot( AxisA[4], OriginA );
PlaneDistA[5] = XMVector3Dot( AxisA[5], OriginA );
// Check each axis of frustum A for a seperating plane (5).
for( size_t i = 0; i < 6; ++i )
{
// Find the minimum projection of the frustum onto the plane normal.
XMVECTOR Min;
Min = XMVector3Dot( AxisA[i], CornersB[0] );
for( size_t j = 1; j < CORNER_COUNT; j++ )
{
XMVECTOR Temp = XMVector3Dot( AxisA[i], CornersB[j] );
Min = XMVectorMin( Min, Temp );
}
// Outside the plane?
Outside = XMVectorOrInt( Outside, XMVectorGreater( Min, PlaneDistA[i] ) );
}
// If the frustum B is outside any of the planes of frustum A it is outside.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return false;
// Check edge/edge axes (6 * 6).
XMVECTOR FrustumEdgeAxisA[6];
FrustumEdgeAxisA[0] = RightTopA;
FrustumEdgeAxisA[1] = RightBottomA;
FrustumEdgeAxisA[2] = LeftTopA;
FrustumEdgeAxisA[3] = LeftBottomA;
FrustumEdgeAxisA[4] = XMVectorSubtract( RightTopA, LeftTopA );
FrustumEdgeAxisA[5] = XMVectorSubtract( LeftBottomA, LeftTopA );
2016-08-22 18:43:47 +00:00
XMVECTOR FrustumEdgeAxisB[6];
FrustumEdgeAxisB[0] = RightTopB;
FrustumEdgeAxisB[1] = RightBottomB;
FrustumEdgeAxisB[2] = LeftTopB;
FrustumEdgeAxisB[3] = LeftBottomB;
FrustumEdgeAxisB[4] = XMVectorSubtract( RightTopB, LeftTopB );
FrustumEdgeAxisB[5] = XMVectorSubtract( LeftBottomB, LeftTopB );
2016-08-22 18:43:47 +00:00
for( size_t i = 0; i < 6; ++i )
{
for( size_t j = 0; j < 6; j++ )
{
// Compute the axis we are going to test.
XMVECTOR Axis = XMVector3Cross( FrustumEdgeAxisA[i], FrustumEdgeAxisB[j] );
// Find the min/max values of the projection of both frustums onto the axis.
XMVECTOR MinA, MaxA;
XMVECTOR MinB, MaxB;
MinA = MaxA = XMVector3Dot( Axis, CornersA[0] );
MinB = MaxB = XMVector3Dot( Axis, CornersB[0] );
for( size_t k = 1; k < CORNER_COUNT; k++ )
{
XMVECTOR TempA = XMVector3Dot( Axis, CornersA[k] );
MinA = XMVectorMin( MinA, TempA );
MaxA = XMVectorMax( MaxA, TempA );
XMVECTOR TempB = XMVector3Dot( Axis, CornersB[k] );
MinB = XMVectorMin( MinB, TempB );
MaxB = XMVectorMax( MaxB, TempB );
}
// if (MinA > MaxB || MinB > MaxA) reject
Outside = XMVectorOrInt( Outside, XMVectorGreater( MinA, MaxB ) );
Outside = XMVectorOrInt( Outside, XMVectorGreater( MinB, MaxA ) );
}
}
// If there is a seperating plane, then the frustums do not intersect.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return false;
// If we did not find a separating plane then the frustums intersect.
return true;
}
//-----------------------------------------------------------------------------
// Triangle vs frustum test.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool XM_CALLCONV BoundingFrustum::Intersects( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2 ) const
{
// Build the frustum planes (NOTE: D is negated from the usual).
XMVECTOR Planes[6];
Planes[0] = XMVectorSet( 0.0f, 0.0f, -1.0f, -Near );
Planes[1] = XMVectorSet( 0.0f, 0.0f, 1.0f, Far );
Planes[2] = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
Planes[3] = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
Planes[4] = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
Planes[5] = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Transform triangle into the local space of frustum.
XMVECTOR TV0 = XMVector3InverseRotate( XMVectorSubtract( V0, vOrigin ), vOrientation );
XMVECTOR TV1 = XMVector3InverseRotate( XMVectorSubtract( V1, vOrigin ), vOrientation );
XMVECTOR TV2 = XMVector3InverseRotate( XMVectorSubtract( V2, vOrigin ), vOrientation );
2016-08-22 18:43:47 +00:00
// Test each vertex of the triangle against the frustum planes.
XMVECTOR Outside = XMVectorFalseInt();
XMVECTOR InsideAll = XMVectorTrueInt();
for( size_t i = 0; i < 6; ++i )
{
XMVECTOR Dist0 = XMVector3Dot( TV0, Planes[i] );
XMVECTOR Dist1 = XMVector3Dot( TV1, Planes[i] );
XMVECTOR Dist2 = XMVector3Dot( TV2, Planes[i] );
XMVECTOR MinDist = XMVectorMin( Dist0, Dist1 );
MinDist = XMVectorMin( MinDist, Dist2 );
XMVECTOR MaxDist = XMVectorMax( Dist0, Dist1 );
MaxDist = XMVectorMax( MaxDist, Dist2 );
XMVECTOR PlaneDist = XMVectorSplatW( Planes[i] );
// Outside the plane?
Outside = XMVectorOrInt( Outside, XMVectorGreater( MinDist, PlaneDist ) );
// Fully inside the plane?
InsideAll = XMVectorAndInt( InsideAll, XMVectorLessOrEqual( MaxDist, PlaneDist ) );
}
// If the triangle is outside any of the planes it is outside.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return false;
// If the triangle is inside all planes it is fully inside.
if ( XMVector4EqualInt( InsideAll, XMVectorTrueInt() ) )
return true;
// Build the corners of the frustum.
XMVECTOR vRightTop = XMVectorSet( RightSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR vRightBottom = XMVectorSet( RightSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR vLeftTop = XMVectorSet( LeftSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR vLeftBottom = XMVectorSet( LeftSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR vNear = XMVectorReplicatePtr( &Near );
XMVECTOR vFar = XMVectorReplicatePtr( &Far );
XMVECTOR Corners[CORNER_COUNT];
Corners[0] = XMVectorMultiply( vRightTop, vNear );
Corners[1] = XMVectorMultiply( vRightBottom, vNear );
Corners[2] = XMVectorMultiply( vLeftTop, vNear );
Corners[3] = XMVectorMultiply( vLeftBottom, vNear );
Corners[4] = XMVectorMultiply( vRightTop, vFar );
Corners[5] = XMVectorMultiply( vRightBottom, vFar );
Corners[6] = XMVectorMultiply( vLeftTop, vFar );
Corners[7] = XMVectorMultiply( vLeftBottom, vFar );
2016-08-22 18:43:47 +00:00
// Test the plane of the triangle.
XMVECTOR Normal = XMVector3Cross( XMVectorSubtract( V1, V0 ), XMVectorSubtract( V2, V0 ) );
2016-08-22 18:43:47 +00:00
XMVECTOR Dist = XMVector3Dot( Normal, V0 );
XMVECTOR MinDist, MaxDist;
MinDist = MaxDist = XMVector3Dot( Corners[0], Normal );
for( size_t i = 1; i < CORNER_COUNT; ++i )
{
XMVECTOR Temp = XMVector3Dot( Corners[i], Normal );
MinDist = XMVectorMin( MinDist, Temp );
MaxDist = XMVectorMax( MaxDist, Temp );
}
Outside = XMVectorOrInt( XMVectorGreater( MinDist, Dist ), XMVectorLess( MaxDist, Dist ) );
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return false;
// Check the edge/edge axes (3*6).
XMVECTOR TriangleEdgeAxis[3];
TriangleEdgeAxis[0] = XMVectorSubtract( V1, V0 );
TriangleEdgeAxis[1] = XMVectorSubtract( V2, V1 );
TriangleEdgeAxis[2] = XMVectorSubtract( V0, V2 );
2016-08-22 18:43:47 +00:00
XMVECTOR FrustumEdgeAxis[6];
FrustumEdgeAxis[0] = vRightTop;
FrustumEdgeAxis[1] = vRightBottom;
FrustumEdgeAxis[2] = vLeftTop;
FrustumEdgeAxis[3] = vLeftBottom;
FrustumEdgeAxis[4] = XMVectorSubtract( vRightTop, vLeftTop );
FrustumEdgeAxis[5] = XMVectorSubtract( vLeftBottom, vLeftTop );
2016-08-22 18:43:47 +00:00
for( size_t i = 0; i < 3; ++i )
{
for( size_t j = 0; j < 6; j++ )
{
// Compute the axis we are going to test.
XMVECTOR Axis = XMVector3Cross( TriangleEdgeAxis[i], FrustumEdgeAxis[j] );
// Find the min/max of the projection of the triangle onto the axis.
XMVECTOR MinA, MaxA;
XMVECTOR Dist0 = XMVector3Dot( V0, Axis );
XMVECTOR Dist1 = XMVector3Dot( V1, Axis );
XMVECTOR Dist2 = XMVector3Dot( V2, Axis );
MinA = XMVectorMin( Dist0, Dist1 );
MinA = XMVectorMin( MinA, Dist2 );
MaxA = XMVectorMax( Dist0, Dist1 );
MaxA = XMVectorMax( MaxA, Dist2 );
// Find the min/max of the projection of the frustum onto the axis.
XMVECTOR MinB, MaxB;
MinB = MaxB = XMVector3Dot( Axis, Corners[0] );
for( size_t k = 1; k < CORNER_COUNT; k++ )
{
XMVECTOR Temp = XMVector3Dot( Axis, Corners[k] );
MinB = XMVectorMin( MinB, Temp );
MaxB = XMVectorMax( MaxB, Temp );
}
// if (MinA > MaxB || MinB > MaxA) reject;
Outside = XMVectorOrInt( Outside, XMVectorGreater( MinA, MaxB ) );
Outside = XMVectorOrInt( Outside, XMVectorGreater( MinB, MaxA ) );
}
}
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return false;
// If we did not find a separating plane then the triangle must intersect the frustum.
return true;
}
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline PlaneIntersectionType XM_CALLCONV BoundingFrustum::Intersects( FXMVECTOR Plane ) const
{
assert( DirectX::Internal::XMPlaneIsUnit( Plane ) );
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Set w of the origin to one so we can dot4 with a plane.
vOrigin = XMVectorInsert<0, 0, 0, 0, 1>( vOrigin, XMVectorSplatOne() );
// Build the corners of the frustum (in world space).
XMVECTOR RightTop = XMVectorSet( RightSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR RightBottom = XMVectorSet( RightSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR LeftTop = XMVectorSet( LeftSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR LeftBottom = XMVectorSet( LeftSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR vNear = XMVectorReplicatePtr( &Near );
XMVECTOR vFar = XMVectorReplicatePtr( &Far );
RightTop = XMVector3Rotate( RightTop, vOrientation );
RightBottom = XMVector3Rotate( RightBottom, vOrientation );
LeftTop = XMVector3Rotate( LeftTop, vOrientation );
LeftBottom = XMVector3Rotate( LeftBottom, vOrientation );
XMVECTOR Corners0 = XMVectorMultiplyAdd( RightTop, vNear, vOrigin );
XMVECTOR Corners1 = XMVectorMultiplyAdd( RightBottom, vNear, vOrigin );
XMVECTOR Corners2 = XMVectorMultiplyAdd( LeftTop, vNear, vOrigin );
XMVECTOR Corners3 = XMVectorMultiplyAdd( LeftBottom, vNear, vOrigin );
XMVECTOR Corners4 = XMVectorMultiplyAdd( RightTop, vFar, vOrigin );
XMVECTOR Corners5 = XMVectorMultiplyAdd( RightBottom, vFar, vOrigin );
XMVECTOR Corners6 = XMVectorMultiplyAdd( LeftTop, vFar, vOrigin );
XMVECTOR Corners7 = XMVectorMultiplyAdd( LeftBottom, vFar, vOrigin );
2016-08-22 18:43:47 +00:00
XMVECTOR Outside, Inside;
DirectX::Internal::FastIntersectFrustumPlane( Corners0, Corners1, Corners2, Corners3,
Corners4, Corners5, Corners6, Corners7,
Plane, Outside, Inside );
// If the frustum is outside any plane it is outside.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return FRONT;
// If the frustum is inside all planes it is inside.
if ( XMVector4EqualInt( Inside, XMVectorTrueInt() ) )
return BACK;
// The frustum is not inside all planes or outside a plane it intersects.
return INTERSECTING;
}
//-----------------------------------------------------------------------------
// Ray vs. frustum test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool XM_CALLCONV BoundingFrustum::Intersects( FXMVECTOR rayOrigin, FXMVECTOR Direction, float& Dist ) const
{
// If ray starts inside the frustum, return a distance of 0 for the hit
if ( Contains(rayOrigin) == CONTAINS )
{
Dist = 0.0f;
return true;
}
// Build the frustum planes.
XMVECTOR Planes[6];
Planes[0] = XMVectorSet( 0.0f, 0.0f, -1.0f, Near );
Planes[1] = XMVectorSet( 0.0f, 0.0f, 1.0f, -Far );
Planes[2] = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
Planes[3] = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
Planes[4] = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
Planes[5] = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
// Load origin and orientation of the frustum.
XMVECTOR frOrigin = XMLoadFloat3( &Origin );
XMVECTOR frOrientation = XMLoadFloat4( &Orientation );
// This algorithm based on "Fast Ray-Convex Polyhedron Intersectin," in James Arvo, ed., Graphics Gems II pp. 247-250
float tnear = -FLT_MAX;
float tfar = FLT_MAX;
for( size_t i=0; i < 6; ++i )
{
XMVECTOR Plane = DirectX::Internal::XMPlaneTransform( Planes[i], frOrientation, frOrigin );
Plane = XMPlaneNormalize( Plane );
XMVECTOR AxisDotOrigin = XMPlaneDotCoord( Plane, rayOrigin );
XMVECTOR AxisDotDirection = XMVector3Dot( Plane, Direction );
if ( XMVector3LessOrEqual( XMVectorAbs( AxisDotDirection ), g_RayEpsilon ) )
{
// Ray is parallel to plane - check if ray origin is inside plane's
if ( XMVector3Greater( AxisDotOrigin, g_XMZero ) )
{
// Ray origin is outside half-space.
Dist = 0.f;
return false;
}
}
else
{
// Ray not parallel - get distance to plane.
float vd = XMVectorGetX( AxisDotDirection );
float vn = XMVectorGetX( AxisDotOrigin );
float t = -vn / vd;
if (vd < 0.0f)
{
// Front face - T is a near point.
if (t > tfar)
{
Dist = 0.f;
return false;
}
if (t > tnear)
{
// Hit near face.
tnear = t;
}
}
else
{
// back face - T is far point.
if (t < tnear)
{
Dist = 0.f;
return false;
}
if (t < tfar)
{
// Hit far face.
tfar = t;
}
}
}
}
// Survived all tests.
// Note: if ray originates on polyhedron, may want to change 0.0f to some
// epsilon to avoid intersecting the originating face.
float distance = ( tnear >= 0.0f ) ? tnear : tfar;
if (distance >= 0.0f)
{
Dist = distance;
return true;
}
Dist = 0.f;
return false;
}
//-----------------------------------------------------------------------------
// Test a frustum vs 6 planes (typically forming another frustum).
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV BoundingFrustum::ContainedBy( FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
GXMVECTOR Plane3, HXMVECTOR Plane4, HXMVECTOR Plane5 ) const
{
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
assert( DirectX::Internal::XMQuaternionIsUnit( vOrientation ) );
// Set w of the origin to one so we can dot4 with a plane.
vOrigin = XMVectorInsert<0, 0, 0, 0, 1>( vOrigin, XMVectorSplatOne() );
// Build the corners of the frustum (in world space).
XMVECTOR RightTop = XMVectorSet( RightSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR RightBottom = XMVectorSet( RightSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR LeftTop = XMVectorSet( LeftSlope, TopSlope, 1.0f, 0.0f );
XMVECTOR LeftBottom = XMVectorSet( LeftSlope, BottomSlope, 1.0f, 0.0f );
XMVECTOR vNear = XMVectorReplicatePtr( &Near );
XMVECTOR vFar = XMVectorReplicatePtr( &Far );
RightTop = XMVector3Rotate( RightTop, vOrientation );
RightBottom = XMVector3Rotate( RightBottom, vOrientation );
LeftTop = XMVector3Rotate( LeftTop, vOrientation );
LeftBottom = XMVector3Rotate( LeftBottom, vOrientation );
XMVECTOR Corners0 = XMVectorMultiplyAdd( RightTop, vNear, vOrigin );
XMVECTOR Corners1 = XMVectorMultiplyAdd( RightBottom, vNear, vOrigin );
XMVECTOR Corners2 = XMVectorMultiplyAdd( LeftTop, vNear, vOrigin );
XMVECTOR Corners3 = XMVectorMultiplyAdd( LeftBottom, vNear, vOrigin );
XMVECTOR Corners4 = XMVectorMultiplyAdd( RightTop, vFar, vOrigin );
XMVECTOR Corners5 = XMVectorMultiplyAdd( RightBottom, vFar, vOrigin );
XMVECTOR Corners6 = XMVectorMultiplyAdd( LeftTop, vFar, vOrigin );
XMVECTOR Corners7 = XMVectorMultiplyAdd( LeftBottom, vFar, vOrigin );
2016-08-22 18:43:47 +00:00
XMVECTOR Outside, Inside;
// Test against each plane.
DirectX::Internal::FastIntersectFrustumPlane( Corners0, Corners1, Corners2, Corners3,
Corners4, Corners5, Corners6, Corners7,
Plane0, Outside, Inside );
XMVECTOR AnyOutside = Outside;
XMVECTOR AllInside = Inside;
DirectX::Internal::FastIntersectFrustumPlane( Corners0, Corners1, Corners2, Corners3,
Corners4, Corners5, Corners6, Corners7,
Plane1, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectFrustumPlane( Corners0, Corners1, Corners2, Corners3,
Corners4, Corners5, Corners6, Corners7,
Plane2, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectFrustumPlane( Corners0, Corners1, Corners2, Corners3,
Corners4, Corners5, Corners6, Corners7,
Plane3, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectFrustumPlane( Corners0, Corners1, Corners2, Corners3,
Corners4, Corners5, Corners6, Corners7,
Plane4, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectFrustumPlane( Corners0, Corners1, Corners2, Corners3,
Corners4, Corners5, Corners6, Corners7,
Plane5, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
// If the frustum is outside any plane it is outside.
if ( XMVector4EqualInt( AnyOutside, XMVectorTrueInt() ) )
return DISJOINT;
// If the frustum is inside all planes it is inside.
if ( XMVector4EqualInt( AllInside, XMVectorTrueInt() ) )
return CONTAINS;
// The frustum is not inside all planes or outside a plane, it may intersect.
return INTERSECTS;
}
//-----------------------------------------------------------------------------
// Build the 6 frustum planes from a frustum.
//
// The intended use for these routines is for fast culling to a view frustum.
// When the volume being tested against a view frustum is small relative to the
// view frustum it is usually either inside all six planes of the frustum
// (CONTAINS) or outside one of the planes of the frustum (DISJOINT). If neither
// of these cases is true then it may or may not be intersecting the frustum
// (INTERSECTS)
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void BoundingFrustum::GetPlanes( XMVECTOR* NearPlane, XMVECTOR* FarPlane, XMVECTOR* RightPlane,
XMVECTOR* LeftPlane, XMVECTOR* TopPlane, XMVECTOR* BottomPlane ) const
{
// Load origin and orientation of the frustum.
XMVECTOR vOrigin = XMLoadFloat3( &Origin );
XMVECTOR vOrientation = XMLoadFloat4( &Orientation );
if (NearPlane)
{
XMVECTOR vNearPlane = XMVectorSet( 0.0f, 0.0f, -1.0f, Near );
vNearPlane = DirectX::Internal::XMPlaneTransform( vNearPlane, vOrientation, vOrigin );
*NearPlane = XMPlaneNormalize( vNearPlane );
}
if (FarPlane)
{
XMVECTOR vFarPlane = XMVectorSet( 0.0f, 0.0f, 1.0f, -Far );
vFarPlane = DirectX::Internal::XMPlaneTransform( vFarPlane, vOrientation, vOrigin );
*FarPlane = XMPlaneNormalize( vFarPlane );
}
if (RightPlane)
{
XMVECTOR vRightPlane = XMVectorSet( 1.0f, 0.0f, -RightSlope, 0.0f );
vRightPlane = DirectX::Internal::XMPlaneTransform( vRightPlane, vOrientation, vOrigin );
*RightPlane = XMPlaneNormalize( vRightPlane );
}
if (LeftPlane)
{
XMVECTOR vLeftPlane = XMVectorSet( -1.0f, 0.0f, LeftSlope, 0.0f );
vLeftPlane = DirectX::Internal::XMPlaneTransform( vLeftPlane, vOrientation, vOrigin );
*LeftPlane = XMPlaneNormalize( vLeftPlane );
}
if (TopPlane)
{
XMVECTOR vTopPlane = XMVectorSet( 0.0f, 1.0f, -TopSlope, 0.0f );
vTopPlane = DirectX::Internal::XMPlaneTransform( vTopPlane, vOrientation, vOrigin );
*TopPlane = XMPlaneNormalize( vTopPlane );
}
if (BottomPlane)
{
XMVECTOR vBottomPlane = XMVectorSet( 0.0f, -1.0f, BottomSlope, 0.0f );
vBottomPlane = DirectX::Internal::XMPlaneTransform( vBottomPlane, vOrientation, vOrigin );
*BottomPlane = XMPlaneNormalize( vBottomPlane );
}
}
//-----------------------------------------------------------------------------
// Build a frustum from a persepective projection matrix. The matrix may only
// contain a projection; any rotation, translation or scale will cause the
// constructed frustum to be incorrect.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV BoundingFrustum::CreateFromMatrix( BoundingFrustum& Out, FXMMATRIX Projection )
{
// Corners of the projection frustum in homogenous space.
static XMVECTORF32 HomogenousPoints[6] =
{
{ 1.0f, 0.0f, 1.0f, 1.0f }, // right (at far plane)
{ -1.0f, 0.0f, 1.0f, 1.0f }, // left
{ 0.0f, 1.0f, 1.0f, 1.0f }, // top
{ 0.0f, -1.0f, 1.0f, 1.0f }, // bottom
{ 0.0f, 0.0f, 0.0f, 1.0f }, // near
{ 0.0f, 0.0f, 1.0f, 1.0f } // far
};
XMVECTOR Determinant;
XMMATRIX matInverse = XMMatrixInverse( &Determinant, Projection );
// Compute the frustum corners in world space.
XMVECTOR Points[6];
for( size_t i = 0; i < 6; ++i )
{
// Transform point.
Points[i] = XMVector4Transform( HomogenousPoints[i], matInverse );
}
Out.Origin = XMFLOAT3( 0.0f, 0.0f, 0.0f );
Out.Orientation = XMFLOAT4( 0.0f, 0.0f, 0.0f, 1.0f );
// Compute the slopes.
Points[0] = XMVectorMultiply( Points[0], XMVectorReciprocal( XMVectorSplatZ( Points[0] ) ) );
Points[1] = XMVectorMultiply( Points[1], XMVectorReciprocal( XMVectorSplatZ( Points[1] ) ) );
Points[2] = XMVectorMultiply( Points[2], XMVectorReciprocal( XMVectorSplatZ( Points[2] ) ) );
Points[3] = XMVectorMultiply( Points[3], XMVectorReciprocal( XMVectorSplatZ( Points[3] ) ) );
2016-08-22 18:43:47 +00:00
Out.RightSlope = XMVectorGetX( Points[0] );
Out.LeftSlope = XMVectorGetX( Points[1] );
Out.TopSlope = XMVectorGetY( Points[2] );
Out.BottomSlope = XMVectorGetY( Points[3] );
// Compute near and far.
Points[4] = XMVectorMultiply( Points[4], XMVectorReciprocal( XMVectorSplatW( Points[4] ) ) );
Points[5] = XMVectorMultiply( Points[5], XMVectorReciprocal( XMVectorSplatW( Points[5] ) ) );
2016-08-22 18:43:47 +00:00
Out.Near = XMVectorGetZ( Points[4] );
Out.Far = XMVectorGetZ( Points[5] );
}
/****************************************************************************
*
* TriangleTests
*
****************************************************************************/
namespace TriangleTests
{
//-----------------------------------------------------------------------------
// Compute the intersection of a ray (Origin, Direction) with a triangle
// (V0, V1, V2). Return true if there is an intersection and also set *pDist
// to the distance along the ray to the intersection.
//
// The algorithm is based on Moller, Tomas and Trumbore, "Fast, Minimum Storage
// Ray-Triangle Intersection", Journal of Graphics Tools, vol. 2, no. 1,
// pp 21-28, 1997.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool XM_CALLCONV Intersects( FXMVECTOR Origin, FXMVECTOR Direction, FXMVECTOR V0, GXMVECTOR V1, HXMVECTOR V2, float& Dist )
{
assert( DirectX::Internal::XMVector3IsUnit( Direction ) );
XMVECTOR Zero = XMVectorZero();
XMVECTOR e1 = XMVectorSubtract( V1, V0 );
XMVECTOR e2 = XMVectorSubtract( V2, V0 );
2016-08-22 18:43:47 +00:00
// p = Direction ^ e2;
XMVECTOR p = XMVector3Cross( Direction, e2 );
// det = e1 * p;
XMVECTOR det = XMVector3Dot( e1, p );
XMVECTOR u, v, t;
if( XMVector3GreaterOrEqual( det, g_RayEpsilon ) )
{
// Determinate is positive (front side of the triangle).
XMVECTOR s = XMVectorSubtract( Origin, V0 );
2016-08-22 18:43:47 +00:00
// u = s * p;
u = XMVector3Dot( s, p );
XMVECTOR NoIntersection = XMVectorLess( u, Zero );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( u, det ) );
// q = s ^ e1;
XMVECTOR q = XMVector3Cross( s, e1 );
// v = Direction * q;
v = XMVector3Dot( Direction, q );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( v, Zero ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( XMVectorAdd( u, v ), det ) );
2016-08-22 18:43:47 +00:00
// t = e2 * q;
t = XMVector3Dot( e2, q );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( t, Zero ) );
if( XMVector4EqualInt( NoIntersection, XMVectorTrueInt() ) )
{
Dist = 0.f;
return false;
}
}
else if( XMVector3LessOrEqual( det, g_RayNegEpsilon ) )
{
// Determinate is negative (back side of the triangle).
XMVECTOR s = XMVectorSubtract( Origin, V0 );
2016-08-22 18:43:47 +00:00
// u = s * p;
u = XMVector3Dot( s, p );
XMVECTOR NoIntersection = XMVectorGreater( u, Zero );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( u, det ) );
// q = s ^ e1;
XMVECTOR q = XMVector3Cross( s, e1 );
// v = Direction * q;
v = XMVector3Dot( Direction, q );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( v, Zero ) );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorLess( XMVectorAdd( u, v ), det ) );
2016-08-22 18:43:47 +00:00
// t = e2 * q;
t = XMVector3Dot( e2, q );
NoIntersection = XMVectorOrInt( NoIntersection, XMVectorGreater( t, Zero ) );
if ( XMVector4EqualInt( NoIntersection, XMVectorTrueInt() ) )
{
Dist = 0.f;
return false;
}
}
else
{
// Parallel ray.
Dist = 0.f;
return false;
}
t = XMVectorDivide ( t, det );
// (u / det) and (v / dev) are the barycentric cooridinates of the intersection.
// Store the x-component to *pDist
XMStoreFloat( &Dist, t );
return true;
}
//-----------------------------------------------------------------------------
// Test if two triangles intersect.
//
// The final test of algorithm is based on Shen, Heng, and Tang, "A Fast
// Triangle-Triangle Overlap Test Using Signed Distances", Journal of Graphics
// Tools, vol. 8, no. 1, pp 17-23, 2003 and Guigue and Devillers, "Fast and
// Robust Triangle-Triangle Overlap Test Using Orientation Predicates", Journal
// of Graphics Tools, vol. 8, no. 1, pp 25-32, 2003.
//
// The final test could be considered an edge-edge separating plane test with
// the 9 possible cases narrowed down to the only two pairs of edges that can
// actaully result in a seperation.
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline bool XM_CALLCONV Intersects( FXMVECTOR A0, FXMVECTOR A1, FXMVECTOR A2, GXMVECTOR B0, HXMVECTOR B1, HXMVECTOR B2 )
{
static const XMVECTORU32 SelectY =
{
XM_SELECT_0, XM_SELECT_1, XM_SELECT_0, XM_SELECT_0
};
static const XMVECTORU32 SelectZ =
{
XM_SELECT_0, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0
};
static const XMVECTORU32 Select0111 =
{
XM_SELECT_0, XM_SELECT_1, XM_SELECT_1, XM_SELECT_1
};
static const XMVECTORU32 Select1011 =
{
XM_SELECT_1, XM_SELECT_0, XM_SELECT_1, XM_SELECT_1
};
static const XMVECTORU32 Select1101 =
{
XM_SELECT_1, XM_SELECT_1, XM_SELECT_0, XM_SELECT_1
};
XMVECTOR Zero = XMVectorZero();
// Compute the normal of triangle A.
XMVECTOR N1 = XMVector3Cross( XMVectorSubtract( A1, A0 ), XMVectorSubtract( A2, A0 ) );
2016-08-22 18:43:47 +00:00
// Assert that the triangle is not degenerate.
assert( !XMVector3Equal( N1, Zero ) );
// Test points of B against the plane of A.
XMVECTOR BDist = XMVector3Dot( N1, XMVectorSubtract( B0, A0 ) );
BDist = XMVectorSelect( BDist, XMVector3Dot( N1, XMVectorSubtract( B1, A0 ) ), SelectY );
BDist = XMVectorSelect( BDist, XMVector3Dot( N1, XMVectorSubtract( B2, A0 ) ), SelectZ );
2016-08-22 18:43:47 +00:00
// Ensure robustness with co-planar triangles by zeroing small distances.
uint32_t BDistIsZeroCR;
XMVECTOR BDistIsZero = XMVectorGreaterR( &BDistIsZeroCR, g_RayEpsilon, XMVectorAbs( BDist ) );
BDist = XMVectorSelect( BDist, Zero, BDistIsZero );
uint32_t BDistIsLessCR;
XMVECTOR BDistIsLess = XMVectorGreaterR( &BDistIsLessCR, Zero, BDist );
uint32_t BDistIsGreaterCR;
XMVECTOR BDistIsGreater = XMVectorGreaterR( &BDistIsGreaterCR, BDist, Zero );
// If all the points are on the same side we don't intersect.
if( XMComparisonAllTrue( BDistIsLessCR ) || XMComparisonAllTrue( BDistIsGreaterCR ) )
return false;
// Compute the normal of triangle B.
XMVECTOR N2 = XMVector3Cross( XMVectorSubtract( B1, B0 ), XMVectorSubtract( B2, B0 ) );
2016-08-22 18:43:47 +00:00
// Assert that the triangle is not degenerate.
assert( !XMVector3Equal( N2, Zero ) );
// Test points of A against the plane of B.
XMVECTOR ADist = XMVector3Dot( N2, XMVectorSubtract( A0, B0 ) );
ADist = XMVectorSelect( ADist, XMVector3Dot( N2, XMVectorSubtract( A1, B0 ) ), SelectY );
ADist = XMVectorSelect( ADist, XMVector3Dot( N2, XMVectorSubtract( A2, B0 ) ), SelectZ );
2016-08-22 18:43:47 +00:00
// Ensure robustness with co-planar triangles by zeroing small distances.
uint32_t ADistIsZeroCR;
XMVECTOR ADistIsZero = XMVectorGreaterR( &ADistIsZeroCR, g_RayEpsilon, XMVectorAbs( BDist ) );
ADist = XMVectorSelect( ADist, Zero, ADistIsZero );
uint32_t ADistIsLessCR;
XMVECTOR ADistIsLess = XMVectorGreaterR( &ADistIsLessCR, Zero, ADist );
uint32_t ADistIsGreaterCR;
XMVECTOR ADistIsGreater = XMVectorGreaterR( &ADistIsGreaterCR, ADist, Zero );
// If all the points are on the same side we don't intersect.
if( XMComparisonAllTrue( ADistIsLessCR ) || XMComparisonAllTrue( ADistIsGreaterCR ) )
return false;
// Special case for co-planar triangles.
if( XMComparisonAllTrue( ADistIsZeroCR ) || XMComparisonAllTrue( BDistIsZeroCR ) )
{
XMVECTOR Axis, Dist, MinDist;
// Compute an axis perpindicular to the edge (points out).
Axis = XMVector3Cross( N1, XMVectorSubtract( A1, A0 ) );
2016-08-22 18:43:47 +00:00
Dist = XMVector3Dot( Axis, A0 );
// Test points of B against the axis.
MinDist = XMVector3Dot( B0, Axis );
MinDist = XMVectorMin( MinDist, XMVector3Dot( B1, Axis ) );
MinDist = XMVectorMin( MinDist, XMVector3Dot( B2, Axis ) );
if( XMVector4GreaterOrEqual( MinDist, Dist ) )
return false;
// Edge (A1, A2)
Axis = XMVector3Cross( N1, XMVectorSubtract( A2, A1 ) );
2016-08-22 18:43:47 +00:00
Dist = XMVector3Dot( Axis, A1 );
MinDist = XMVector3Dot( B0, Axis );
MinDist = XMVectorMin( MinDist, XMVector3Dot( B1, Axis ) );
MinDist = XMVectorMin( MinDist, XMVector3Dot( B2, Axis ) );
if( XMVector4GreaterOrEqual( MinDist, Dist ) )
return false;
// Edge (A2, A0)
Axis = XMVector3Cross( N1, XMVectorSubtract( A0, A2 ) );
2016-08-22 18:43:47 +00:00
Dist = XMVector3Dot( Axis, A2 );
MinDist = XMVector3Dot( B0, Axis );
MinDist = XMVectorMin( MinDist, XMVector3Dot( B1, Axis ) );
MinDist = XMVectorMin( MinDist, XMVector3Dot( B2, Axis ) );
if( XMVector4GreaterOrEqual( MinDist, Dist ) )
return false;
// Edge (B0, B1)
Axis = XMVector3Cross( N2, XMVectorSubtract( B1, B0 ) );
2016-08-22 18:43:47 +00:00
Dist = XMVector3Dot( Axis, B0 );
MinDist = XMVector3Dot( A0, Axis );
MinDist = XMVectorMin( MinDist, XMVector3Dot( A1, Axis ) );
MinDist = XMVectorMin( MinDist, XMVector3Dot( A2, Axis ) );
if( XMVector4GreaterOrEqual( MinDist, Dist ) )
return false;
// Edge (B1, B2)
Axis = XMVector3Cross( N2, XMVectorSubtract( B2, B1 ) );
2016-08-22 18:43:47 +00:00
Dist = XMVector3Dot( Axis, B1 );
MinDist = XMVector3Dot( A0, Axis );
MinDist = XMVectorMin( MinDist, XMVector3Dot( A1, Axis ) );
MinDist = XMVectorMin( MinDist, XMVector3Dot( A2, Axis ) );
if( XMVector4GreaterOrEqual( MinDist, Dist ) )
return false;
// Edge (B2,B0)
Axis = XMVector3Cross( N2, XMVectorSubtract( B0, B2 ) );
2016-08-22 18:43:47 +00:00
Dist = XMVector3Dot( Axis, B2 );
MinDist = XMVector3Dot( A0, Axis );
MinDist = XMVectorMin( MinDist, XMVector3Dot( A1, Axis ) );
MinDist = XMVectorMin( MinDist, XMVector3Dot( A2, Axis ) );
if( XMVector4GreaterOrEqual( MinDist, Dist ) )
return false;
return true;
}
//
// Find the single vertex of A and B (ie the vertex on the opposite side
// of the plane from the other two) and reorder the edges so we can compute
// the signed edge/edge distances.
//
// if ( (V0 >= 0 && V1 < 0 && V2 < 0) ||
// (V0 > 0 && V1 <= 0 && V2 <= 0) ||
// (V0 <= 0 && V1 > 0 && V2 > 0) ||
// (V0 < 0 && V1 >= 0 && V2 >= 0) ) then V0 is singular;
//
// If our singular vertex is not on the positive side of the plane we reverse
// the triangle winding so that the overlap comparisons will compare the
// correct edges with the correct signs.
//
XMVECTOR ADistIsLessEqual = XMVectorOrInt( ADistIsLess, ADistIsZero );
XMVECTOR ADistIsGreaterEqual = XMVectorOrInt( ADistIsGreater, ADistIsZero );
XMVECTOR AA0, AA1, AA2;
bool bPositiveA;
if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsGreaterEqual, ADistIsLess, Select0111 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsGreater, ADistIsLessEqual, Select0111 ) ) )
{
// A0 is singular, crossing from positive to negative.
AA0 = A0; AA1 = A1; AA2 = A2;
bPositiveA = true;
}
else if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsLessEqual, ADistIsGreater, Select0111 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsLess, ADistIsGreaterEqual, Select0111 ) ) )
{
// A0 is singular, crossing from negative to positive.
AA0 = A0; AA1 = A2; AA2 = A1;
bPositiveA = false;
}
else if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsGreaterEqual, ADistIsLess, Select1011 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsGreater, ADistIsLessEqual, Select1011 ) ) )
{
// A1 is singular, crossing from positive to negative.
AA0 = A1; AA1 = A2; AA2 = A0;
bPositiveA = true;
}
else if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsLessEqual, ADistIsGreater, Select1011 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsLess, ADistIsGreaterEqual, Select1011 ) ) )
{
// A1 is singular, crossing from negative to positive.
AA0 = A1; AA1 = A0; AA2 = A2;
bPositiveA = false;
}
else if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsGreaterEqual, ADistIsLess, Select1101 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsGreater, ADistIsLessEqual, Select1101 ) ) )
{
// A2 is singular, crossing from positive to negative.
AA0 = A2; AA1 = A0; AA2 = A1;
bPositiveA = true;
}
else if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsLessEqual, ADistIsGreater, Select1101 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( ADistIsLess, ADistIsGreaterEqual, Select1101 ) ) )
{
// A2 is singular, crossing from negative to positive.
AA0 = A2; AA1 = A1; AA2 = A0;
bPositiveA = false;
}
else
{
assert( false );
return false;
}
XMVECTOR BDistIsLessEqual = XMVectorOrInt( BDistIsLess, BDistIsZero );
XMVECTOR BDistIsGreaterEqual = XMVectorOrInt( BDistIsGreater, BDistIsZero );
XMVECTOR BB0, BB1, BB2;
bool bPositiveB;
if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsGreaterEqual, BDistIsLess, Select0111 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsGreater, BDistIsLessEqual, Select0111 ) ) )
{
// B0 is singular, crossing from positive to negative.
BB0 = B0; BB1 = B1; BB2 = B2;
bPositiveB = true;
}
else if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsLessEqual, BDistIsGreater, Select0111 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsLess, BDistIsGreaterEqual, Select0111 ) ) )
{
// B0 is singular, crossing from negative to positive.
BB0 = B0; BB1 = B2; BB2 = B1;
bPositiveB = false;
}
else if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsGreaterEqual, BDistIsLess, Select1011 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsGreater, BDistIsLessEqual, Select1011 ) ) )
{
// B1 is singular, crossing from positive to negative.
BB0 = B1; BB1 = B2; BB2 = B0;
bPositiveB = true;
}
else if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsLessEqual, BDistIsGreater, Select1011 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsLess, BDistIsGreaterEqual, Select1011 ) ) )
{
// B1 is singular, crossing from negative to positive.
BB0 = B1; BB1 = B0; BB2 = B2;
bPositiveB = false;
}
else if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsGreaterEqual, BDistIsLess, Select1101 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsGreater, BDistIsLessEqual, Select1101 ) ) )
{
// B2 is singular, crossing from positive to negative.
BB0 = B2; BB1 = B0; BB2 = B1;
bPositiveB = true;
}
else if( DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsLessEqual, BDistIsGreater, Select1101 ) ) ||
DirectX::Internal::XMVector3AllTrue( XMVectorSelect( BDistIsLess, BDistIsGreaterEqual, Select1101 ) ) )
{
// B2 is singular, crossing from negative to positive.
BB0 = B2; BB1 = B1; BB2 = B0;
bPositiveB = false;
}
else
{
assert( false );
return false;
}
XMVECTOR Delta0, Delta1;
// Reverse the direction of the test depending on whether the singular vertices are
// the same sign or different signs.
if( bPositiveA ^ bPositiveB )
{
Delta0 = XMVectorSubtract( BB0, AA0 );
Delta1 = XMVectorSubtract( AA0, BB0 );
2016-08-22 18:43:47 +00:00
}
else
{
Delta0 = XMVectorSubtract( AA0, BB0 );
Delta1 = XMVectorSubtract( BB0, AA0 );
2016-08-22 18:43:47 +00:00
}
// Check if the triangles overlap on the line of intersection between the
// planes of the two triangles by finding the signed line distances.
XMVECTOR Dist0 = XMVector3Dot( Delta0, XMVector3Cross( XMVectorSubtract( BB2, BB0 ), XMVectorSubtract( AA2, AA0 ) ) );
2016-08-22 18:43:47 +00:00
if( XMVector4Greater( Dist0, Zero ) )
return false;
XMVECTOR Dist1 = XMVector3Dot( Delta1, XMVector3Cross( XMVectorSubtract( BB1, BB0 ), XMVectorSubtract( AA1, AA0 ) ) );
2016-08-22 18:43:47 +00:00
if( XMVector4Greater( Dist1, Zero ) )
return false;
return true;
}
//-----------------------------------------------------------------------------
// Ray-triangle test
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline PlaneIntersectionType XM_CALLCONV Intersects( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2, GXMVECTOR Plane )
{
XMVECTOR One = XMVectorSplatOne();
assert( DirectX::Internal::XMPlaneIsUnit( Plane ) );
// Set w of the points to one so we can dot4 with a plane.
XMVECTOR TV0 = XMVectorInsert<0, 0, 0, 0, 1>(V0, One);
XMVECTOR TV1 = XMVectorInsert<0, 0, 0, 0, 1>(V1, One);
XMVECTOR TV2 = XMVectorInsert<0, 0, 0, 0, 1>(V2, One);
XMVECTOR Outside, Inside;
DirectX::Internal::FastIntersectTrianglePlane( TV0, TV1, TV2, Plane, Outside, Inside );
// If the triangle is outside any plane it is outside.
if ( XMVector4EqualInt( Outside, XMVectorTrueInt() ) )
return FRONT;
// If the triangle is inside all planes it is inside.
if ( XMVector4EqualInt( Inside, XMVectorTrueInt() ) )
return BACK;
// The triangle is not inside all planes or outside a plane it intersects.
return INTERSECTING;
}
//-----------------------------------------------------------------------------
// Test a triangle vs 6 planes (typically forming a frustum).
//-----------------------------------------------------------------------------
_Use_decl_annotations_
inline ContainmentType XM_CALLCONV ContainedBy( FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2,
GXMVECTOR Plane0, HXMVECTOR Plane1, HXMVECTOR Plane2,
CXMVECTOR Plane3, CXMVECTOR Plane4, CXMVECTOR Plane5 )
{
XMVECTOR One = XMVectorSplatOne();
// Set w of the points to one so we can dot4 with a plane.
XMVECTOR TV0 = XMVectorInsert<0, 0, 0, 0, 1>(V0, One);
XMVECTOR TV1 = XMVectorInsert<0, 0, 0, 0, 1>(V1, One);
XMVECTOR TV2 = XMVectorInsert<0, 0, 0, 0, 1>(V2, One);
XMVECTOR Outside, Inside;
// Test against each plane.
DirectX::Internal::FastIntersectTrianglePlane( TV0, TV1, TV2, Plane0, Outside, Inside );
XMVECTOR AnyOutside = Outside;
XMVECTOR AllInside = Inside;
DirectX::Internal::FastIntersectTrianglePlane( TV0, TV1, TV2, Plane1, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectTrianglePlane( TV0, TV1, TV2, Plane2, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectTrianglePlane( TV0, TV1, TV2, Plane3, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectTrianglePlane( TV0, TV1, TV2, Plane4, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
DirectX::Internal::FastIntersectTrianglePlane( TV0, TV1, TV2, Plane5, Outside, Inside );
AnyOutside = XMVectorOrInt( AnyOutside, Outside );
AllInside = XMVectorAndInt( AllInside, Inside );
// If the triangle is outside any plane it is outside.
if ( XMVector4EqualInt( AnyOutside, XMVectorTrueInt() ) )
return DISJOINT;
// If the triangle is inside all planes it is inside.
if ( XMVector4EqualInt( AllInside, XMVectorTrueInt() ) )
return CONTAINS;
// The triangle is not inside all planes or outside a plane, it may intersect.
return INTERSECTS;
}
}; // namespace TriangleTests