//-------------------------------------------------------------------------------------- // File: XDSP.h // // DirectXMath based Digital Signal Processing (DSP) functions for audio, // primarily Fast Fourier Transform (FFT) // // All buffer parameters must be 16-byte aligned // // All FFT functions support only single-precision floating-point audio // // Copyright (c) Microsoft Corporation. // Licensed under the MIT License. // // http://go.microsoft.com/fwlink/?LinkID=615557 //-------------------------------------------------------------------------------------- #pragma once #include #include #include #include #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 6001 6262) #endif #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunknown-warning-option" #pragma clang diagnostic ignored "-Wunsafe-buffer-usage" #endif namespace XDSP { using XMVECTOR = DirectX::XMVECTOR; using FXMVECTOR = DirectX::FXMVECTOR; using GXMVECTOR = DirectX::GXMVECTOR; using CXMVECTOR = DirectX::CXMVECTOR; using XMFLOAT4A = DirectX::XMFLOAT4A; constexpr bool ISPOWEROF2(size_t n) { return (((n)&((n)-1)) == 0 && (n) != 0); } // Parallel multiplication of four complex numbers, assuming real and imaginary values are stored in separate vectors. inline void XM_CALLCONV vmulComplex( _Out_ XMVECTOR& rResult, _Out_ XMVECTOR& iResult, _In_ FXMVECTOR r1, _In_ FXMVECTOR i1, _In_ FXMVECTOR r2, _In_ GXMVECTOR i2) noexcept { using namespace DirectX; // (r1, i1) * (r2, i2) = (r1r2 - i1i2, r1i2 + r2i1) const XMVECTOR vr1r2 = XMVectorMultiply(r1, r2); const XMVECTOR vr1i2 = XMVectorMultiply(r1, i2); rResult = XMVectorNegativeMultiplySubtract(i1, i2, vr1r2); // real: (r1*r2 - i1*i2) iResult = XMVectorMultiplyAdd(r2, i1, vr1i2); // imaginary: (r1*i2 + r2*i1) } inline void XM_CALLCONV vmulComplex( _Inout_ XMVECTOR& r1, _Inout_ XMVECTOR& i1, _In_ FXMVECTOR r2, _In_ FXMVECTOR i2) noexcept { using namespace DirectX; // (r1, i1) * (r2, i2) = (r1r2 - i1i2, r1i2 + r2i1) const XMVECTOR vr1r2 = XMVectorMultiply(r1, r2); const XMVECTOR vr1i2 = XMVectorMultiply(r1, i2); r1 = XMVectorNegativeMultiplySubtract(i1, i2, vr1r2); // real: (r1*r2 - i1*i2) i1 = XMVectorMultiplyAdd(r2, i1, vr1i2); // imaginary: (r1*i2 + r2*i1) } //---------------------------------------------------------------------------------- // Radix-4 decimation-in-time FFT butterfly. // This version assumes that all four elements of the butterfly are // adjacent in a single vector. // // Compute the product of the complex input vector and the // 4-element DFT matrix: // | 1 1 1 1 | | (r1X,i1X) | // | 1 -j -1 j | | (r1Y,i1Y) | // | 1 -1 1 -1 | | (r1Z,i1Z) | // | 1 j -1 -j | | (r1W,i1W) | // // This matrix can be decomposed into two simpler ones to reduce the // number of additions needed. The decomposed matrices look like this: // | 1 0 1 0 | | 1 0 1 0 | // | 0 1 0 -j | | 1 0 -1 0 | // | 1 0 -1 0 | | 0 1 0 1 | // | 0 1 0 j | | 0 1 0 -1 | // // Combine as follows: // | 1 0 1 0 | | (r1X,i1X) | | (r1X + r1Z, i1X + i1Z) | // Temp = | 1 0 -1 0 | * | (r1Y,i1Y) | = | (r1X - r1Z, i1X - i1Z) | // | 0 1 0 1 | | (r1Z,i1Z) | | (r1Y + r1W, i1Y + i1W) | // | 0 1 0 -1 | | (r1W,i1W) | | (r1Y - r1W, i1Y - i1W) | // // | 1 0 1 0 | | (rTempX,iTempX) | | (rTempX + rTempZ, iTempX + iTempZ) | // Result = | 0 1 0 -j | * | (rTempY,iTempY) | = | (rTempY + iTempW, iTempY - rTempW) | // | 1 0 -1 0 | | (rTempZ,iTempZ) | | (rTempX - rTempZ, iTempX - iTempZ) | // | 0 1 0 j | | (rTempW,iTempW) | | (rTempY - iTempW, iTempY + rTempW) | //---------------------------------------------------------------------------------- inline void ButterflyDIT4_1 (_Inout_ XMVECTOR& r1, _Inout_ XMVECTOR& i1) noexcept { using namespace DirectX; // sign constants for radix-4 butterflies static const XMVECTORF32 vDFT4SignBits1 = { { { 1.0f, -1.0f, 1.0f, -1.0f } } }; static const XMVECTORF32 vDFT4SignBits2 = { { { 1.0f, 1.0f, -1.0f, -1.0f } } }; static const XMVECTORF32 vDFT4SignBits3 = { { { 1.0f, -1.0f, -1.0f, 1.0f } } }; // calculating Temp // [r1X| r1X|r1Y| r1Y] + [r1Z|-r1Z|r1W|-r1W] // [i1X| i1X|i1Y| i1Y] + [i1Z|-i1Z|i1W|-i1W] const XMVECTOR r1L = XMVectorSwizzle<0, 0, 1, 1>(r1); const XMVECTOR r1H = XMVectorSwizzle<2, 2, 3, 3>(r1); const XMVECTOR i1L = XMVectorSwizzle<0, 0, 1, 1>(i1); const XMVECTOR i1H = XMVectorSwizzle<2, 2, 3, 3>(i1); const XMVECTOR rTemp = XMVectorMultiplyAdd(r1H, vDFT4SignBits1, r1L); const XMVECTOR iTemp = XMVectorMultiplyAdd(i1H, vDFT4SignBits1, i1L); // calculating Result const XMVECTOR rZrWiZiW = XMVectorPermute<2, 3, 6, 7>(rTemp, iTemp); // [rTempZ|rTempW|iTempZ|iTempW] const XMVECTOR rZiWrZiW = XMVectorSwizzle<0, 3, 0, 3>(rZrWiZiW); // [rTempZ|iTempW|rTempZ|iTempW] const XMVECTOR iZrWiZrW = XMVectorSwizzle<2, 1, 2, 1>(rZrWiZiW); // [rTempZ|iTempW|rTempZ|iTempW] // [rTempX| rTempY| rTempX| rTempY] + [rTempZ| iTempW|-rTempZ|-iTempW] // [iTempX| iTempY| iTempX| iTempY] + // [iTempZ|-rTempW|-iTempZ| rTempW] const XMVECTOR rTempL = XMVectorSwizzle<0, 1, 0, 1>(rTemp); const XMVECTOR iTempL = XMVectorSwizzle<0, 1, 0, 1>(iTemp); r1 = XMVectorMultiplyAdd(rZiWrZiW, vDFT4SignBits2, rTempL); i1 = XMVectorMultiplyAdd(iZrWiZrW, vDFT4SignBits3, iTempL); } //---------------------------------------------------------------------------------- // Radix-4 decimation-in-time FFT butterfly. // This version assumes that elements of the butterfly are // in different vectors, so that each vector in the input // contains elements from four different butterflies. // The four separate butterflies are processed in parallel. // // The calculations here are the same as the ones in the single-vector // radix-4 DFT, but instead of being done on a single vector (X,Y,Z,W) // they are done in parallel on sixteen independent complex values. // There is no interdependence between the vector elements: // | 1 0 1 0 | | (rIn0,iIn0) | | (rIn0 + rIn2, iIn0 + iIn2) | // | 1 0 -1 0 | * | (rIn1,iIn1) | = Temp = | (rIn0 - rIn2, iIn0 - iIn2) | // | 0 1 0 1 | | (rIn2,iIn2) | | (rIn1 + rIn3, iIn1 + iIn3) | // | 0 1 0 -1 | | (rIn3,iIn3) | | (rIn1 - rIn3, iIn1 - iIn3) | // // | 1 0 1 0 | | (rTemp0,iTemp0) | | (rTemp0 + rTemp2, iTemp0 + iTemp2) | // Result = | 0 1 0 -j | * | (rTemp1,iTemp1) | = | (rTemp1 + iTemp3, iTemp1 - rTemp3) | // | 1 0 -1 0 | | (rTemp2,iTemp2) | | (rTemp0 - rTemp2, iTemp0 - iTemp2) | // | 0 1 0 j | | (rTemp3,iTemp3) | | (rTemp1 - iTemp3, iTemp1 + rTemp3) | //---------------------------------------------------------------------------------- inline void ButterflyDIT4_4( _Inout_ XMVECTOR& r0, _Inout_ XMVECTOR& r1, _Inout_ XMVECTOR& r2, _Inout_ XMVECTOR& r3, _Inout_ XMVECTOR& i0, _Inout_ XMVECTOR& i1, _Inout_ XMVECTOR& i2, _Inout_ XMVECTOR& i3, _In_reads_(uStride * 4) const XMVECTOR* __restrict pUnityTableReal, _In_reads_(uStride * 4) const XMVECTOR* __restrict pUnityTableImaginary, _In_ size_t uStride, _In_ const bool fLast) noexcept { using namespace DirectX; assert(pUnityTableReal); assert(pUnityTableImaginary); assert(reinterpret_cast(pUnityTableReal) % 16 == 0); assert(reinterpret_cast(pUnityTableImaginary) % 16 == 0); assert(ISPOWEROF2(uStride)); // calculating Temp const XMVECTOR rTemp0 = XMVectorAdd(r0, r2); const XMVECTOR iTemp0 = XMVectorAdd(i0, i2); const XMVECTOR rTemp2 = XMVectorAdd(r1, r3); const XMVECTOR iTemp2 = XMVectorAdd(i1, i3); const XMVECTOR rTemp1 = XMVectorSubtract(r0, r2); const XMVECTOR iTemp1 = XMVectorSubtract(i0, i2); const XMVECTOR rTemp3 = XMVectorSubtract(r1, r3); const XMVECTOR iTemp3 = XMVectorSubtract(i1, i3); XMVECTOR rTemp4 = XMVectorAdd(rTemp0, rTemp2); XMVECTOR iTemp4 = XMVectorAdd(iTemp0, iTemp2); XMVECTOR rTemp5 = XMVectorAdd(rTemp1, iTemp3); XMVECTOR iTemp5 = XMVectorSubtract(iTemp1, rTemp3); XMVECTOR rTemp6 = XMVectorSubtract(rTemp0, rTemp2); XMVECTOR iTemp6 = XMVectorSubtract(iTemp0, iTemp2); XMVECTOR rTemp7 = XMVectorSubtract(rTemp1, iTemp3); XMVECTOR iTemp7 = XMVectorAdd(iTemp1, rTemp3); // calculating Result // vmulComplex(rTemp0, iTemp0, rTemp0, iTemp0, pUnityTableReal[0], pUnityTableImaginary[0]); // first one is always trivial vmulComplex(rTemp5, iTemp5, pUnityTableReal[uStride], pUnityTableImaginary[uStride]); vmulComplex(rTemp6, iTemp6, pUnityTableReal[uStride * 2], pUnityTableImaginary[uStride * 2]); vmulComplex(rTemp7, iTemp7, pUnityTableReal[uStride * 3], pUnityTableImaginary[uStride * 3]); if (fLast) { ButterflyDIT4_1(rTemp4, iTemp4); ButterflyDIT4_1(rTemp5, iTemp5); ButterflyDIT4_1(rTemp6, iTemp6); ButterflyDIT4_1(rTemp7, iTemp7); } r0 = rTemp4; i0 = iTemp4; r1 = rTemp5; i1 = iTemp5; r2 = rTemp6; i2 = iTemp6; r3 = rTemp7; i3 = iTemp7; } //================================================================================== // F-U-N-C-T-I-O-N-S //================================================================================== //---------------------------------------------------------------------------------- // DESCRIPTION: // 4-sample FFT. // // PARAMETERS: // pReal - [inout] real components, must have at least uCount elements // pImaginary - [inout] imaginary components, must have at least uCount elements // uCount - [in] number of FFT iterations //---------------------------------------------------------------------------------- inline void FFT4( _Inout_updates_(uCount) XMVECTOR* __restrict pReal, _Inout_updates_(uCount) XMVECTOR* __restrict pImaginary, const size_t uCount = 1) noexcept { assert(pReal); assert(pImaginary); assert(reinterpret_cast(pReal) % 16 == 0); assert(reinterpret_cast(pImaginary) % 16 == 0); assert(ISPOWEROF2(uCount)); for (size_t uIndex = 0; uIndex < uCount; ++uIndex) { ButterflyDIT4_1(pReal[uIndex], pImaginary[uIndex]); } } //---------------------------------------------------------------------------------- // DESCRIPTION: // 8-sample FFT. // // PARAMETERS: // pReal - [inout] real components, must have at least uCount*2 elements // pImaginary - [inout] imaginary components, must have at least uCount*2 elements // uCount - [in] number of FFT iterations //---------------------------------------------------------------------------------- inline void FFT8( _Inout_updates_(uCount * 2) XMVECTOR* __restrict pReal, _Inout_updates_(uCount * 2) XMVECTOR* __restrict pImaginary, _In_ const size_t uCount = 1) noexcept { using namespace DirectX; assert(pReal); assert(pImaginary); assert(reinterpret_cast(pReal) % 16 == 0); assert(reinterpret_cast(pImaginary) % 16 == 0); assert(ISPOWEROF2(uCount)); static const XMVECTORF32 wr1 = { { { 1.0f, 0.70710677f, 0.0f, -0.70710677f } } }; static const XMVECTORF32 wi1 = { { { 0.0f, -0.70710677f, -1.0f, -0.70710677f } } }; static const XMVECTORF32 wr2 = { { { -1.0f, -0.70710677f, 0.0f, 0.70710677f } } }; static const XMVECTORF32 wi2 = { { { 0.0f, 0.70710677f, 1.0f, 0.70710677f } } }; for (size_t uIndex = 0; uIndex < uCount; ++uIndex) { XMVECTOR* __restrict pR = pReal + uIndex * 2; XMVECTOR* __restrict pI = pImaginary + uIndex * 2; XMVECTOR oddsR = XMVectorPermute<1, 3, 5, 7>(pR[0], pR[1]); XMVECTOR evensR = XMVectorPermute<0, 2, 4, 6>(pR[0], pR[1]); XMVECTOR oddsI = XMVectorPermute<1, 3, 5, 7>(pI[0], pI[1]); XMVECTOR evensI = XMVectorPermute<0, 2, 4, 6>(pI[0], pI[1]); ButterflyDIT4_1(oddsR, oddsI); ButterflyDIT4_1(evensR, evensI); XMVECTOR r, i; vmulComplex(r, i, oddsR, oddsI, wr1, wi1); pR[0] = XMVectorAdd(evensR, r); pI[0] = XMVectorAdd(evensI, i); vmulComplex(r, i, oddsR, oddsI, wr2, wi2); pR[1] = XMVectorAdd(evensR, r); pI[1] = XMVectorAdd(evensI, i); } } //---------------------------------------------------------------------------------- // DESCRIPTION: // 16-sample FFT. // // PARAMETERS: // pReal - [inout] real components, must have at least uCount*4 elements // pImaginary - [inout] imaginary components, must have at least uCount*4 elements // uCount - [in] number of FFT iterations //---------------------------------------------------------------------------------- inline void FFT16( _Inout_updates_(uCount * 4) XMVECTOR* __restrict pReal, _Inout_updates_(uCount * 4) XMVECTOR* __restrict pImaginary, _In_ const size_t uCount = 1) noexcept { using namespace DirectX; assert(pReal); assert(pImaginary); assert(reinterpret_cast(pReal) % 16 == 0); assert(reinterpret_cast(pImaginary) % 16 == 0); assert(ISPOWEROF2(uCount)); static const XMVECTORF32 aUnityTableReal[4] = { { { { 1.0f, 1.0f, 1.0f, 1.0f } } }, { { { 1.0f, 0.92387950f, 0.70710677f, 0.38268343f } } }, { { { 1.0f, 0.70710677f, -4.3711388e-008f, -0.70710677f } } }, { { { 1.0f, 0.38268343f, -0.70710677f, -0.92387950f } } } }; static const XMVECTORF32 aUnityTableImaginary[4] = { { { { -0.0f, -0.0f, -0.0f, -0.0f } } }, { { { -0.0f, -0.38268343f, -0.70710677f, -0.92387950f } } }, { { { -0.0f, -0.70710677f, -1.0f, -0.70710677f } } }, { { { -0.0f, -0.92387950f, -0.70710677f, 0.38268343f } } } }; for (size_t uIndex = 0; uIndex < uCount; ++uIndex) { ButterflyDIT4_4(pReal[uIndex * 4], pReal[uIndex * 4 + 1], pReal[uIndex * 4 + 2], pReal[uIndex * 4 + 3], pImaginary[uIndex * 4], pImaginary[uIndex * 4 + 1], pImaginary[uIndex * 4 + 2], pImaginary[uIndex * 4 + 3], reinterpret_cast(aUnityTableReal), reinterpret_cast(aUnityTableImaginary), 1, true); } } //---------------------------------------------------------------------------------- // DESCRIPTION: // 2^N-sample FFT. // // REMARKS: // For FFTs length 16 and below, call FFT16(), FFT8(), or FFT4(). // // PARAMETERS: // pReal - [inout] real components, must have at least (uLength*uCount)/4 elements // pImaginary - [inout] imaginary components, must have at least (uLength*uCount)/4 elements // pUnityTable - [in] unity table, must have at least uLength*uCount elements, see FFTInitializeUnityTable() // uLength - [in] FFT length in samples, must be a power of 2 > 16 // uCount - [in] number of FFT iterations //---------------------------------------------------------------------------------- inline void FFT ( _Inout_updates_((uLength * uCount) / 4) XMVECTOR* __restrict pReal, _Inout_updates_((uLength * uCount) / 4) XMVECTOR* __restrict pImaginary, _In_reads_(uLength * uCount) const XMVECTOR* __restrict pUnityTable, _In_ const size_t uLength, _In_ const size_t uCount = 1) noexcept { assert(pReal); assert(pImaginary); assert(pUnityTable); assert(reinterpret_cast(pReal) % 16 == 0); assert(reinterpret_cast(pImaginary) % 16 == 0); assert(reinterpret_cast(pUnityTable) % 16 == 0); assert(uLength > 16); _Analysis_assume_(uLength > 16); assert(ISPOWEROF2(uLength)); assert(ISPOWEROF2(uCount)); const XMVECTOR* __restrict pUnityTableReal = pUnityTable; const XMVECTOR* __restrict pUnityTableImaginary = pUnityTable + (uLength >> 2); const size_t uTotal = uCount * uLength; const size_t uTotal_vectors = uTotal >> 2; const size_t uStage_vectors = uLength >> 2; const size_t uStage_vectors_mask = uStage_vectors - 1; const size_t uStride = uLength >> 4; // stride between butterfly elements const size_t uStrideMask = uStride - 1; const size_t uStride2 = uStride * 2; const size_t uStride3 = uStride * 3; const size_t uStrideInvMask = ~uStrideMask; for (size_t uIndex=0; uIndex < (uTotal_vectors >> 2); ++uIndex) { const size_t n = ((uIndex & uStrideInvMask) << 2) + (uIndex & uStrideMask); ButterflyDIT4_4(pReal[n], pReal[n + uStride], pReal[n + uStride2], pReal[n + uStride3], pImaginary[n ], pImaginary[n + uStride], pImaginary[n + uStride2], pImaginary[n + uStride3], pUnityTableReal + (n & uStage_vectors_mask), pUnityTableImaginary + (n & uStage_vectors_mask), uStride, false); } if (uLength > 16 * 4) { FFT(pReal, pImaginary, pUnityTable + (uLength >> 1), uLength >> 2, uCount * 4); } else if (uLength == 16 * 4) { FFT16(pReal, pImaginary, uCount * 4); } else if (uLength == 8 * 4) { FFT8(pReal, pImaginary, uCount * 4); } else if (uLength == 4 * 4) { FFT4(pReal, pImaginary, uCount * 4); } } //---------------------------------------------------------------------------------- // DESCRIPTION: // Initializes unity roots lookup table used by FFT functions. // Once initialized, the table need not be initialized again unless a // different FFT length is desired. // // REMARKS: // The unity tables of FFT length 16 and below are hard coded into the // respective FFT functions and so need not be initialized. // // PARAMETERS: // pUnityTable - [out] unity table, receives unity roots lookup table, must have at least uLength elements // uLength - [in] FFT length in frames, must be a power of 2 > 16 //---------------------------------------------------------------------------------- inline void FFTInitializeUnityTable (_Out_writes_(uLength) XMVECTOR* __restrict pUnityTable, _In_ size_t uLength) noexcept { using namespace DirectX; assert(pUnityTable); assert(uLength > 16); _Analysis_assume_(uLength > 16); assert(ISPOWEROF2(uLength)); // initialize unity table for recursive FFT lengths: uLength, uLength/4, uLength/16... > 16 // pUnityTable[0 to uLength*4-1] contains real components for current FFT length // pUnityTable[uLength*4 to uLength*8-1] contains imaginary components for current FFT length static const XMVECTORF32 vXM0123 = { { { 0.0f, 1.0f, 2.0f, 3.0f } } }; size_t len = uLength; len >>= 2; XMVECTOR vlStep = XMVectorReplicate(XM_PIDIV2 / float(len)); do { len >>= 2; XMVECTOR vJP = vXM0123; for (size_t j = 0; j < len; ++j) { XMVECTOR vSin, vCos; XMVECTOR viJP, vlS; pUnityTable[j] = g_XMOne; pUnityTable[j + len * 4] = XMVectorZero(); vlS = XMVectorMultiply(vJP, vlStep); XMVectorSinCos(&vSin, &vCos, vlS); pUnityTable[j + len] = vCos; pUnityTable[j + len * 5] = XMVectorMultiply(vSin, g_XMNegativeOne); viJP = XMVectorAdd(vJP, vJP); vlS = XMVectorMultiply(viJP, vlStep); XMVectorSinCos(&vSin, &vCos, vlS); pUnityTable[j + len * 2] = vCos; pUnityTable[j + len * 6] = XMVectorMultiply(vSin, g_XMNegativeOne); viJP = XMVectorAdd(viJP, vJP); vlS = XMVectorMultiply(viJP, vlStep); XMVectorSinCos(&vSin, &vCos, vlS); pUnityTable[j + len * 3] = vCos; pUnityTable[j + len * 7] = XMVectorMultiply(vSin, g_XMNegativeOne); vJP = XMVectorAdd(vJP, g_XMFour); } vlStep = XMVectorMultiply(vlStep, g_XMFour); pUnityTable += len * 8; } while (len > 4); } //---------------------------------------------------------------------------------- // DESCRIPTION: // The FFT functions generate output in bit reversed order. // Use this function to re-arrange them into order of increasing frequency. // // REMARKS: // Exponential values and bits correspond, so the reversed upper index can be omitted depending on the number of exponents. // // PARAMETERS: // pOutput - [out] output buffer, receives samples in order of increasing frequency, cannot overlap pInput, must have at least (1<= 2 //---------------------------------------------------------------------------------- inline void FFTUnswizzle ( _Out_writes_((1 << uLog2Length) / 4) XMVECTOR* __restrict pOutput, _In_reads_((1 << uLog2Length) / 4) const XMVECTOR* __restrict pInput, _In_ const size_t uLog2Length) noexcept { assert(pOutput); assert(pInput); assert(uLog2Length >= 2); _Analysis_assume_(uLog2Length >= 2); float* __restrict pfOutput = reinterpret_cast(pOutput); const size_t uLength = size_t(1) << (uLog2Length - 2); static const unsigned char cSwizzleTable[256] = { 0x00, 0x40, 0x80, 0xC0, 0x10, 0x50, 0x90, 0xD0, 0x20, 0x60, 0xA0, 0xE0, 0x30, 0x70, 0xB0, 0xF0, 0x04, 0x44, 0x84, 0xC4, 0x14, 0x54, 0x94, 0xD4, 0x24, 0x64, 0xA4, 0xE4, 0x34, 0x74, 0xB4, 0xF4, 0x08, 0x48, 0x88, 0xC8, 0x18, 0x58, 0x98, 0xD8, 0x28, 0x68, 0xA8, 0xE8, 0x38, 0x78, 0xB8, 0xF8, 0x0C, 0x4C, 0x8C, 0xCC, 0x1C, 0x5C, 0x9C, 0xDC, 0x2C, 0x6C, 0xAC, 0xEC, 0x3C, 0x7C, 0xBC, 0xFC, 0x01, 0x41, 0x81, 0xC1, 0x11, 0x51, 0x91, 0xD1, 0x21, 0x61, 0xA1, 0xE1, 0x31, 0x71, 0xB1, 0xF1, 0x05, 0x45, 0x85, 0xC5, 0x15, 0x55, 0x95, 0xD5, 0x25, 0x65, 0xA5, 0xE5, 0x35, 0x75, 0xB5, 0xF5, 0x09, 0x49, 0x89, 0xC9, 0x19, 0x59, 0x99, 0xD9, 0x29, 0x69, 0xA9, 0xE9, 0x39, 0x79, 0xB9, 0xF9, 0x0D, 0x4D, 0x8D, 0xCD, 0x1D, 0x5D, 0x9D, 0xDD, 0x2D, 0x6D, 0xAD, 0xED, 0x3D, 0x7D, 0xBD, 0xFD, 0x02, 0x42, 0x82, 0xC2, 0x12, 0x52, 0x92, 0xD2, 0x22, 0x62, 0xA2, 0xE2, 0x32, 0x72, 0xB2, 0xF2, 0x06, 0x46, 0x86, 0xC6, 0x16, 0x56, 0x96, 0xD6, 0x26, 0x66, 0xA6, 0xE6, 0x36, 0x76, 0xB6, 0xF6, 0x0A, 0x4A, 0x8A, 0xCA, 0x1A, 0x5A, 0x9A, 0xDA, 0x2A, 0x6A, 0xAA, 0xEA, 0x3A, 0x7A, 0xBA, 0xFA, 0x0E, 0x4E, 0x8E, 0xCE, 0x1E, 0x5E, 0x9E, 0xDE, 0x2E, 0x6E, 0xAE, 0xEE, 0x3E, 0x7E, 0xBE, 0xFE, 0x03, 0x43, 0x83, 0xC3, 0x13, 0x53, 0x93, 0xD3, 0x23, 0x63, 0xA3, 0xE3, 0x33, 0x73, 0xB3, 0xF3, 0x07, 0x47, 0x87, 0xC7, 0x17, 0x57, 0x97, 0xD7, 0x27, 0x67, 0xA7, 0xE7, 0x37, 0x77, 0xB7, 0xF7, 0x0B, 0x4B, 0x8B, 0xCB, 0x1B, 0x5B, 0x9B, 0xDB, 0x2B, 0x6B, 0xAB, 0xEB, 0x3B, 0x7B, 0xBB, 0xFB, 0x0F, 0x4F, 0x8F, 0xCF, 0x1F, 0x5F, 0x9F, 0xDF, 0x2F, 0x6F, 0xAF, 0xEF, 0x3F, 0x7F, 0xBF, 0xFF }; if ((uLog2Length & 1) == 0) { // even powers of two const size_t uRev32 = 32 - uLog2Length; for (size_t uIndex = 0; uIndex < uLength; ++uIndex) { XMFLOAT4A f4a; XMStoreFloat4A(&f4a, pInput[uIndex]); const size_t n = uIndex * 4; const size_t uAddr = (static_cast(cSwizzleTable[n & 0xff]) << 24) | (static_cast(cSwizzleTable[(n >> 8) & 0xff]) << 16) | (static_cast(cSwizzleTable[(n >> 16) & 0xff]) << 8) | (static_cast(cSwizzleTable[(n >> 24)])); pfOutput[uAddr >> uRev32] = f4a.x; pfOutput[(0x40000000 | uAddr) >> uRev32] = f4a.y; pfOutput[(0x80000000 | uAddr) >> uRev32] = f4a.z; pfOutput[(0xC0000000 | uAddr) >> uRev32] = f4a.w; } } else { // odd powers of two const size_t uRev7 = size_t(1) << (uLog2Length - 3); const size_t uRev32 = 32 - (uLog2Length - 3); for (size_t uIndex = 0; uIndex < uLength; ++uIndex) { XMFLOAT4A f4a; XMStoreFloat4A(&f4a, pInput[uIndex]); const size_t n = (uIndex >> 1); size_t uAddr = (((static_cast(cSwizzleTable[n & 0xff]) << 24) | (static_cast(cSwizzleTable[(n >> 8) & 0xff]) << 16) | (static_cast(cSwizzleTable[(n >> 16) & 0xff]) << 8) | (static_cast(cSwizzleTable[(n >> 24)]))) >> uRev32) | ((uIndex & 1) * uRev7 * 4); pfOutput[uAddr] = f4a.x; uAddr += uRev7; pfOutput[uAddr] = f4a.y; uAddr += uRev7; pfOutput[uAddr] = f4a.z; uAddr += uRev7; pfOutput[uAddr] = f4a.w; } } } //---------------------------------------------------------------------------------- // DESCRIPTION: // Convert complex components to polar form. // // PARAMETERS: // pOutput - [out] output buffer, receives samples in polar form, must have at least uLength/4 elements // pInputReal - [in] input buffer (real components), must have at least uLength/4 elements // pInputImaginary - [in] input buffer (imaginary components), must have at least uLength/4 elements // uLength - [in] FFT length in samples, must be a power of 2 >= 4 //---------------------------------------------------------------------------------- #ifdef _MSC_VER #pragma warning(suppress: 6101) #endif inline void FFTPolar( _Out_writes_(uLength / 4) XMVECTOR* __restrict pOutput, _In_reads_(uLength / 4) const XMVECTOR* __restrict pInputReal, _In_reads_(uLength / 4) const XMVECTOR* __restrict pInputImaginary, _In_ const size_t uLength) noexcept { using namespace DirectX; assert(pOutput); assert(pInputReal); assert(pInputImaginary); assert(uLength >= 4); _Analysis_assume_(uLength >= 4); assert(ISPOWEROF2(uLength)); const float flOneOverLength = 1.0f / float(uLength); // result = sqrtf((real/uLength)^2 + (imaginary/uLength)^2) * 2 const XMVECTOR vOneOverLength = XMVectorReplicate(flOneOverLength); for (size_t uIndex = 0; uIndex < (uLength >> 2); ++uIndex) { XMVECTOR vReal = XMVectorMultiply(pInputReal[uIndex], vOneOverLength); XMVECTOR vImaginary = XMVectorMultiply(pInputImaginary[uIndex], vOneOverLength); XMVECTOR vRR = XMVectorMultiply(vReal, vReal); XMVECTOR vII = XMVectorMultiply(vImaginary, vImaginary); XMVECTOR vRRplusII = XMVectorAdd(vRR, vII); XMVECTOR vTotal = XMVectorSqrt(vRRplusII); pOutput[uIndex] = XMVectorAdd(vTotal, vTotal); } } //---------------------------------------------------------------------------------- // DESCRIPTION: // Deinterleaves audio samples // // REMARKS: // For example, audio of the form [LRLRLR] becomes [LLLRRR]. // // PARAMETERS: // pOutput - [out] output buffer, receives samples in deinterleaved form, cannot overlap pInput, must have at least (uChannelCount*uFrameCount)/4 elements // pInput - [in] input buffer, cannot overlap pOutput, must have at least (uChannelCount*uFrameCount)/4 elements // uChannelCount - [in] number of channels, must be > 1 // uFrameCount - [in] number of frames of valid data, must be > 0 //---------------------------------------------------------------------------------- inline void Deinterleave ( _Out_writes_((uChannelCount * uFrameCount) / 4) XMVECTOR* __restrict pOutput, _In_reads_((uChannelCount * uFrameCount) / 4) const XMVECTOR* __restrict pInput, _In_ const size_t uChannelCount, _In_ const size_t uFrameCount) noexcept { assert(pOutput); assert(pInput); assert(uChannelCount > 1); assert(uFrameCount > 0); float* __restrict pfOutput = reinterpret_cast(pOutput); const float* __restrict pfInput = reinterpret_cast(pInput); for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { for (size_t uFrame = 0; uFrame < uFrameCount; ++uFrame) { pfOutput[uChannel * uFrameCount + uFrame] = pfInput[uFrame * uChannelCount + uChannel]; } } } //---------------------------------------------------------------------------------- // DESCRIPTION: // Interleaves audio samples // // REMARKS: // For example, audio of the form [LLLRRR] becomes [LRLRLR]. // // PARAMETERS: // pOutput - [out] output buffer, receives samples in interleaved form, cannot overlap pInput, must have at least (uChannelCount*uFrameCount)/4 elements // pInput - [in] input buffer, cannot overlap pOutput, must have at least (uChannelCount*uFrameCount)/4 elements // uChannelCount - [in] number of channels, must be > 1 // uFrameCount - [in] number of frames of valid data, must be > 0 //---------------------------------------------------------------------------------- inline void Interleave( _Out_writes_((uChannelCount * uFrameCount) / 4) XMVECTOR* __restrict pOutput, _In_reads_((uChannelCount * uFrameCount) / 4) const XMVECTOR* __restrict pInput, _In_ const size_t uChannelCount, _In_ const size_t uFrameCount) noexcept { assert(pOutput); assert(pInput); assert(uChannelCount > 1); assert(uFrameCount > 0); float* __restrict pfOutput = reinterpret_cast(pOutput); const float* __restrict pfInput = reinterpret_cast(pInput); for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { for (size_t uFrame = 0; uFrame < uFrameCount; ++uFrame) { pfOutput[uFrame * uChannelCount + uChannel] = pfInput[uChannel * uFrameCount + uFrame]; } } } //---------------------------------------------------------------------------------- // DESCRIPTION: // This function applies a 2^N-sample FFT and unswizzles the result such // that the samples are in order of increasing frequency. // Audio is first deinterleaved if multichannel. // // PARAMETERS: // pReal - [inout] real components, must have at least (1<(pReal) % 16 == 0); assert(reinterpret_cast(pImaginary) % 16 == 0); assert(reinterpret_cast(pUnityTable) % 16 == 0); assert(uChannelCount > 0 && uChannelCount <= 6); assert(uLog2Length >= 2 && uLog2Length <= 9); XM_ALIGNED_DATA(16) XMVECTOR vRealTemp[768]; XM_ALIGNED_DATA(16) XMVECTOR vImaginaryTemp[768]; const size_t uLength = size_t(1) << uLog2Length; if (uChannelCount > 1) { Deinterleave(vRealTemp, pReal, uChannelCount, uLength); } else { memcpy_s(vRealTemp, sizeof(vRealTemp), pReal, (uLength >> 2) * sizeof(XMVECTOR)); } memset(vImaginaryTemp, 0, (uChannelCount * (uLength >> 2)) * sizeof(XMVECTOR)); if (uLength > 16) { for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { FFT(&vRealTemp[uChannel * (uLength >> 2)], &vImaginaryTemp[uChannel * (uLength >> 2)], pUnityTable, uLength); } } else if (uLength == 16) { for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { FFT16(&vRealTemp[uChannel * (uLength >> 2)], &vImaginaryTemp[uChannel * (uLength >> 2)]); } } else if (uLength == 8) { for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { FFT8(&vRealTemp[uChannel * (uLength >> 2)], &vImaginaryTemp[uChannel * (uLength >> 2)]); } } else if (uLength == 4) { for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { FFT4(&vRealTemp[uChannel * (uLength >> 2)], &vImaginaryTemp[uChannel * (uLength >> 2)]); } } for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { FFTUnswizzle(&pReal[uChannel * (uLength >> 2)], &vRealTemp[uChannel * (uLength >> 2)], uLog2Length); FFTUnswizzle(&pImaginary[uChannel * (uLength >> 2)], &vImaginaryTemp[uChannel * (uLength >> 2)], uLog2Length); } } //---------------------------------------------------------------------------------- // DESCRIPTION: // This function applies a 2^N-sample inverse FFT. // Audio is interleaved if multichannel. // // PARAMETERS: // pReal - [inout] real components, must have at least (1< 0 // uLog2Length - [in] LOG (base 2) of FFT length in frames, must within [2, 9] //---------------------------------------------------------------------------------- inline void IFFTDeinterleaved( _Inout_updates_(((1 << uLog2Length) * uChannelCount) / 4) XMVECTOR* __restrict pReal, _In_reads_(((1 << uLog2Length) * uChannelCount) / 4) const XMVECTOR* __restrict pImaginary, _In_reads_(1 << uLog2Length) const XMVECTOR* __restrict pUnityTable, _In_ const size_t uChannelCount, _In_ const size_t uLog2Length) noexcept { using namespace DirectX; assert(pReal); assert(pImaginary); assert(pUnityTable); assert(reinterpret_cast(pReal) % 16 == 0); assert(reinterpret_cast(pImaginary) % 16 == 0); assert(reinterpret_cast(pUnityTable) % 16 == 0); assert(uChannelCount > 0 && uChannelCount <= 6); _Analysis_assume_(uChannelCount > 0 && uChannelCount <= 6); assert(uLog2Length >= 2 && uLog2Length <= 9); _Analysis_assume_(uLog2Length >= 2 && uLog2Length <= 9); XM_ALIGNED_DATA(16) XMVECTOR vRealTemp[768] = {}; XM_ALIGNED_DATA(16) XMVECTOR vImaginaryTemp[768] = {}; const size_t uLength = size_t(1) << uLog2Length; const XMVECTOR vRnp = XMVectorReplicate(1.0f / float(uLength)); const XMVECTOR vRnm = XMVectorReplicate(-1.0f / float(uLength)); for (size_t u = 0; u < uChannelCount * (uLength >> 2); u++) { vRealTemp[u] = XMVectorMultiply(pReal[u], vRnp); vImaginaryTemp[u] = XMVectorMultiply(pImaginary[u], vRnm); } if (uLength > 16) { for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { FFT(&vRealTemp[uChannel * (uLength >> 2)], &vImaginaryTemp[uChannel * (uLength >> 2)], pUnityTable, uLength); } } else if (uLength == 16) { for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { FFT16(&vRealTemp[uChannel * (uLength >> 2)], &vImaginaryTemp[uChannel * (uLength >> 2)]); } } else if (uLength == 8) { for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { FFT8(&vRealTemp[uChannel * (uLength >> 2)], &vImaginaryTemp[uChannel * (uLength >> 2)]); } } else if (uLength == 4) { for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { FFT4(&vRealTemp[uChannel * (uLength >> 2)], &vImaginaryTemp[uChannel * (uLength >> 2)]); } } for (size_t uChannel = 0; uChannel < uChannelCount; ++uChannel) { FFTUnswizzle(&vImaginaryTemp[uChannel * (uLength >> 2)], &vRealTemp[uChannel * (uLength >> 2)], uLog2Length); } if (uChannelCount > 1) { Interleave(pReal, vImaginaryTemp, uChannelCount, uLength); } else { memcpy_s(pReal, uLength * uChannelCount * sizeof(float), vImaginaryTemp, (uLength >> 2) * sizeof(XMVECTOR)); } } } // namespace XDSP #ifdef __clang__ #pragma clang diagnostic pop #endif #ifdef _MSC_VER #pragma warning(pop) #endif