mirror of
https://github.com/microsoft/DirectXMath
synced 2024-11-09 22:20:08 +00:00
422 lines
12 KiB
C++
422 lines
12 KiB
C++
//-------------------------------------------------------------------------------------
|
|
// DirectXMathSSE4.h -- SSE4.1 extensions for SIMD C++ Math library
|
|
//
|
|
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
|
|
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
|
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
|
|
// PARTICULAR PURPOSE.
|
|
//
|
|
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
//
|
|
// http://go.microsoft.com/fwlink/?LinkID=615560
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma once
|
|
#endif
|
|
|
|
#ifdef _M_ARM
|
|
#error SSE4 not supported on ARM platform
|
|
#endif
|
|
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4987)
|
|
#include <intrin.h>
|
|
#pragma warning(pop)
|
|
|
|
#include <smmintrin.h>
|
|
|
|
#include <DirectXMath.h>
|
|
|
|
namespace DirectX
|
|
{
|
|
#if (DIRECTXMATH_VERSION < 305) && !defined(XM_CALLCONV)
|
|
#define XM_CALLCONV __fastcall
|
|
typedef const DirectX::XMVECTOR& HXMVECTOR;
|
|
typedef const DirectX::XMMATRIX& FXMMATRIX;
|
|
#endif
|
|
|
|
namespace SSE4
|
|
{
|
|
|
|
inline bool XMVerifySSE4Support()
|
|
{
|
|
// Should return true on AMD Bulldozer, Intel Core 2 ("Penryn"), and Intel Core i7 ("Nehalem") or later processors
|
|
|
|
// See http://msdn.microsoft.com/en-us/library/hskdteyh.aspx
|
|
int CPUInfo[4] = {-1};
|
|
__cpuid( CPUInfo, 0 );
|
|
|
|
if ( CPUInfo[0] < 1 )
|
|
return false;
|
|
|
|
__cpuid(CPUInfo, 1 );
|
|
|
|
// We only check for SSE4.1 instruction set. SSE4.2 instructions are not used.
|
|
return ( (CPUInfo[2] & 0x80000) == 0x80000 );
|
|
}
|
|
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// Vector
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
inline void XM_CALLCONV XMVectorGetYPtr(_Out_ float *y, _In_ FXMVECTOR V)
|
|
{
|
|
assert( y != nullptr );
|
|
*((int*)y) = _mm_extract_ps( V, 1 );
|
|
}
|
|
|
|
inline void XM_CALLCONV XMVectorGetZPtr(_Out_ float *z, _In_ FXMVECTOR V)
|
|
{
|
|
assert( z != nullptr );
|
|
*((int*)z) = _mm_extract_ps( V, 2 );
|
|
}
|
|
|
|
inline void XM_CALLCONV XMVectorGetWPtr(_Out_ float *w, _In_ FXMVECTOR V)
|
|
{
|
|
assert( w != nullptr );
|
|
*((int*)w) = _mm_extract_ps( V, 3 );
|
|
}
|
|
|
|
inline uint32_t XM_CALLCONV XMVectorGetIntY(FXMVECTOR V)
|
|
{
|
|
__m128i V1 = _mm_castps_si128( V );
|
|
return static_cast<uint32_t>( _mm_extract_epi32( V1, 1 ) );
|
|
}
|
|
|
|
inline uint32_t XM_CALLCONV XMVectorGetIntZ(FXMVECTOR V)
|
|
{
|
|
__m128i V1 = _mm_castps_si128( V );
|
|
return static_cast<uint32_t>( _mm_extract_epi32( V1, 2 ) );
|
|
}
|
|
|
|
inline uint32_t XM_CALLCONV XMVectorGetIntW(FXMVECTOR V)
|
|
{
|
|
__m128i V1 = _mm_castps_si128( V );
|
|
return static_cast<uint32_t>( _mm_extract_epi32( V1, 3 ) );
|
|
}
|
|
|
|
inline void XM_CALLCONV XMVectorGetIntYPtr(_Out_ uint32_t *y, _In_ FXMVECTOR V)
|
|
{
|
|
assert( y != nullptr );
|
|
__m128i V1 = _mm_castps_si128( V );
|
|
*y = static_cast<uint32_t>( _mm_extract_epi32( V1, 1 ) );
|
|
}
|
|
|
|
inline void XM_CALLCONV XMVectorGetIntZPtr(_Out_ uint32_t *z, _In_ FXMVECTOR V)
|
|
{
|
|
assert( z != nullptr );
|
|
__m128i V1 = _mm_castps_si128( V );
|
|
*z = static_cast<uint32_t>( _mm_extract_epi32( V1, 2 ) );
|
|
}
|
|
|
|
inline void XM_CALLCONV XMVectorGetIntWPtr(_Out_ uint32_t *w, _In_ FXMVECTOR V)
|
|
{
|
|
assert( w != nullptr );
|
|
__m128i V1 = _mm_castps_si128( V );
|
|
*w = static_cast<uint32_t>( _mm_extract_epi32( V1, 3 ) );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVectorSetY(FXMVECTOR V, float y)
|
|
{
|
|
XMVECTOR vResult = _mm_set_ss(y);
|
|
vResult = _mm_insert_ps( V, vResult, 0x10 );
|
|
return vResult;
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVectorSetZ(FXMVECTOR V, float z)
|
|
{
|
|
XMVECTOR vResult = _mm_set_ss(z);
|
|
vResult = _mm_insert_ps( V, vResult, 0x20 );
|
|
return vResult;
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVectorSetW(FXMVECTOR V, float w)
|
|
{
|
|
XMVECTOR vResult = _mm_set_ss(w);
|
|
vResult = _mm_insert_ps( V, vResult, 0x30 );
|
|
return vResult;
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVectorSetIntY(FXMVECTOR V, uint32_t y)
|
|
{
|
|
__m128i vResult = _mm_castps_si128( V );
|
|
vResult = _mm_insert_epi32( vResult, static_cast<int>(y), 1 );
|
|
return _mm_castsi128_ps( vResult );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVectorSetIntZ(FXMVECTOR V, uint32_t z)
|
|
{
|
|
__m128i vResult = _mm_castps_si128( V );
|
|
vResult = _mm_insert_epi32( vResult, static_cast<int>(z), 2 );
|
|
return _mm_castsi128_ps( vResult );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVectorSetIntW(FXMVECTOR V, uint32_t w)
|
|
{
|
|
__m128i vResult = _mm_castps_si128( V );
|
|
vResult = _mm_insert_epi32( vResult, static_cast<int>(w), 3 );
|
|
return _mm_castsi128_ps( vResult );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVectorRound( FXMVECTOR V )
|
|
{
|
|
return _mm_round_ps( V, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVectorTruncate( FXMVECTOR V )
|
|
{
|
|
return _mm_round_ps( V, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVectorFloor( FXMVECTOR V )
|
|
{
|
|
return _mm_floor_ps( V );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVectorCeiling( FXMVECTOR V )
|
|
{
|
|
return _mm_ceil_ps( V );
|
|
}
|
|
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// Vector2
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector2Dot( FXMVECTOR V1, FXMVECTOR V2 )
|
|
{
|
|
return _mm_dp_ps( V1, V2, 0x3f );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector2LengthSq( FXMVECTOR V )
|
|
{
|
|
return SSE4::XMVector2Dot(V, V);
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector2ReciprocalLengthEst( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0x3f );
|
|
return _mm_rsqrt_ps( vTemp );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector2ReciprocalLength( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0x3f );
|
|
XMVECTOR vLengthSq = _mm_sqrt_ps( vTemp );
|
|
return _mm_div_ps( g_XMOne, vLengthSq );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector2LengthEst( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0x3f );
|
|
return _mm_sqrt_ps( vTemp );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector2Length( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0x3f );
|
|
return _mm_sqrt_ps( vTemp );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector2NormalizeEst( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0x3f );
|
|
XMVECTOR vResult = _mm_rsqrt_ps( vTemp );
|
|
return _mm_mul_ps(vResult, V);
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector2Normalize( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vLengthSq = _mm_dp_ps( V, V, 0x3f );
|
|
// Prepare for the division
|
|
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
|
|
// Create zero with a single instruction
|
|
XMVECTOR vZeroMask = _mm_setzero_ps();
|
|
// Test for a divide by zero (Must be FP to detect -0.0)
|
|
vZeroMask = _mm_cmpneq_ps(vZeroMask,vResult);
|
|
// Failsafe on zero (Or epsilon) length planes
|
|
// If the length is infinity, set the elements to zero
|
|
vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
|
|
// Reciprocal mul to perform the normalization
|
|
vResult = _mm_div_ps(V,vResult);
|
|
// Any that are infinity, set to zero
|
|
vResult = _mm_and_ps(vResult,vZeroMask);
|
|
// Select qnan or result based on infinite length
|
|
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq,g_XMQNaN);
|
|
XMVECTOR vTemp2 = _mm_and_ps(vResult,vLengthSq);
|
|
vResult = _mm_or_ps(vTemp1,vTemp2);
|
|
return vResult;
|
|
}
|
|
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// Vector3
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector3Dot( FXMVECTOR V1, FXMVECTOR V2 )
|
|
{
|
|
return _mm_dp_ps( V1, V2, 0x7f );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector3LengthSq( FXMVECTOR V )
|
|
{
|
|
return SSE4::XMVector3Dot(V, V);
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector3ReciprocalLengthEst( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0x7f );
|
|
return _mm_rsqrt_ps( vTemp );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector3ReciprocalLength( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0x7f );
|
|
XMVECTOR vLengthSq = _mm_sqrt_ps( vTemp );
|
|
return _mm_div_ps( g_XMOne, vLengthSq );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector3LengthEst( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0x7f );
|
|
return _mm_sqrt_ps( vTemp );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector3Length( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0x7f );
|
|
return _mm_sqrt_ps( vTemp );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector3NormalizeEst( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0x7f );
|
|
XMVECTOR vResult = _mm_rsqrt_ps( vTemp );
|
|
return _mm_mul_ps(vResult, V);
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector3Normalize( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vLengthSq = _mm_dp_ps( V, V, 0x7f );
|
|
// Prepare for the division
|
|
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
|
|
// Create zero with a single instruction
|
|
XMVECTOR vZeroMask = _mm_setzero_ps();
|
|
// Test for a divide by zero (Must be FP to detect -0.0)
|
|
vZeroMask = _mm_cmpneq_ps(vZeroMask,vResult);
|
|
// Failsafe on zero (Or epsilon) length planes
|
|
// If the length is infinity, set the elements to zero
|
|
vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
|
|
// Divide to perform the normalization
|
|
vResult = _mm_div_ps(V,vResult);
|
|
// Any that are infinity, set to zero
|
|
vResult = _mm_and_ps(vResult,vZeroMask);
|
|
// Select qnan or result based on infinite length
|
|
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq,g_XMQNaN);
|
|
XMVECTOR vTemp2 = _mm_and_ps(vResult,vLengthSq);
|
|
vResult = _mm_or_ps(vTemp1,vTemp2);
|
|
return vResult;
|
|
}
|
|
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// Vector4
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector4Dot( FXMVECTOR V1, FXMVECTOR V2 )
|
|
{
|
|
return _mm_dp_ps( V1, V2, 0xff );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector4LengthSq( FXMVECTOR V )
|
|
{
|
|
return SSE4::XMVector4Dot(V, V);
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector4ReciprocalLengthEst( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0xff );
|
|
return _mm_rsqrt_ps( vTemp );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector4ReciprocalLength( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0xff );
|
|
XMVECTOR vLengthSq = _mm_sqrt_ps( vTemp );
|
|
return _mm_div_ps( g_XMOne, vLengthSq );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector4LengthEst( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0xff );
|
|
return _mm_sqrt_ps( vTemp );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector4Length( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0xff );
|
|
return _mm_sqrt_ps( vTemp );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector4NormalizeEst( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( V, V, 0xff );
|
|
XMVECTOR vResult = _mm_rsqrt_ps( vTemp );
|
|
return _mm_mul_ps(vResult, V);
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMVector4Normalize( FXMVECTOR V )
|
|
{
|
|
XMVECTOR vLengthSq = _mm_dp_ps( V, V, 0xff );
|
|
// Prepare for the division
|
|
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
|
|
// Create zero with a single instruction
|
|
XMVECTOR vZeroMask = _mm_setzero_ps();
|
|
// Test for a divide by zero (Must be FP to detect -0.0)
|
|
vZeroMask = _mm_cmpneq_ps(vZeroMask,vResult);
|
|
// Failsafe on zero (Or epsilon) length planes
|
|
// If the length is infinity, set the elements to zero
|
|
vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
|
|
// Divide to perform the normalization
|
|
vResult = _mm_div_ps(V,vResult);
|
|
// Any that are infinity, set to zero
|
|
vResult = _mm_and_ps(vResult,vZeroMask);
|
|
// Select qnan or result based on infinite length
|
|
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq,g_XMQNaN);
|
|
XMVECTOR vTemp2 = _mm_and_ps(vResult,vLengthSq);
|
|
vResult = _mm_or_ps(vTemp1,vTemp2);
|
|
return vResult;
|
|
}
|
|
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// Plane
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneNormalizeEst( FXMVECTOR P )
|
|
{
|
|
XMVECTOR vTemp = _mm_dp_ps( P, P, 0x7f );
|
|
XMVECTOR vResult = _mm_rsqrt_ps( vTemp );
|
|
return _mm_mul_ps(vResult, P);
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneNormalize( FXMVECTOR P )
|
|
{
|
|
XMVECTOR vLengthSq = _mm_dp_ps( P, P, 0x7f );
|
|
// Prepare for the division
|
|
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
|
|
// Failsafe on zero (Or epsilon) length planes
|
|
// If the length is infinity, set the elements to zero
|
|
vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
|
|
// Reciprocal mul to perform the normalization
|
|
vResult = _mm_div_ps(P,vResult);
|
|
// Any that are infinity, set to zero
|
|
vResult = _mm_and_ps(vResult,vLengthSq);
|
|
return vResult;
|
|
}
|
|
|
|
}; // namespace SSE4
|
|
|
|
}; // namespace DirectX;
|