mirror of
https://github.com/microsoft/DirectXMath
synced 2024-11-10 06:30:09 +00:00
2512 lines
75 KiB
C++
2512 lines
75 KiB
C++
//-------------------------------------------------------------------------------------
|
|
// DirectXMathMisc.inl -- SIMD C++ Math library
|
|
//
|
|
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
// Licensed under the MIT License.
|
|
//
|
|
// http://go.microsoft.com/fwlink/?LinkID=615560
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
#pragma once
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Quaternion
|
|
*
|
|
****************************************************************************/
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Comparison operations
|
|
//------------------------------------------------------------------------------
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMQuaternionEqual
|
|
(
|
|
FXMVECTOR Q1,
|
|
FXMVECTOR Q2
|
|
)
|
|
{
|
|
return XMVector4Equal(Q1, Q2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMQuaternionNotEqual
|
|
(
|
|
FXMVECTOR Q1,
|
|
FXMVECTOR Q2
|
|
)
|
|
{
|
|
return XMVector4NotEqual(Q1, Q2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMQuaternionIsNaN
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
return XMVector4IsNaN(Q);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMQuaternionIsInfinite
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
return XMVector4IsInfinite(Q);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMQuaternionIsIdentity
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
return XMVector4Equal(Q, g_XMIdentityR3.v);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Computation operations
|
|
//------------------------------------------------------------------------------
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionDot
|
|
(
|
|
FXMVECTOR Q1,
|
|
FXMVECTOR Q2
|
|
)
|
|
{
|
|
return XMVector4Dot(Q1, Q2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionMultiply
|
|
(
|
|
FXMVECTOR Q1,
|
|
FXMVECTOR Q2
|
|
)
|
|
{
|
|
// Returns the product Q2*Q1 (which is the concatenation of a rotation Q1 followed by the rotation Q2)
|
|
|
|
// [ (Q2.w * Q1.x) + (Q2.x * Q1.w) + (Q2.y * Q1.z) - (Q2.z * Q1.y),
|
|
// (Q2.w * Q1.y) - (Q2.x * Q1.z) + (Q2.y * Q1.w) + (Q2.z * Q1.x),
|
|
// (Q2.w * Q1.z) + (Q2.x * Q1.y) - (Q2.y * Q1.x) + (Q2.z * Q1.w),
|
|
// (Q2.w * Q1.w) - (Q2.x * Q1.x) - (Q2.y * Q1.y) - (Q2.z * Q1.z) ]
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
XMVECTORF32 Result = { { {
|
|
(Q2.vector4_f32[3] * Q1.vector4_f32[0]) + (Q2.vector4_f32[0] * Q1.vector4_f32[3]) + (Q2.vector4_f32[1] * Q1.vector4_f32[2]) - (Q2.vector4_f32[2] * Q1.vector4_f32[1]),
|
|
(Q2.vector4_f32[3] * Q1.vector4_f32[1]) - (Q2.vector4_f32[0] * Q1.vector4_f32[2]) + (Q2.vector4_f32[1] * Q1.vector4_f32[3]) + (Q2.vector4_f32[2] * Q1.vector4_f32[0]),
|
|
(Q2.vector4_f32[3] * Q1.vector4_f32[2]) + (Q2.vector4_f32[0] * Q1.vector4_f32[1]) - (Q2.vector4_f32[1] * Q1.vector4_f32[0]) + (Q2.vector4_f32[2] * Q1.vector4_f32[3]),
|
|
(Q2.vector4_f32[3] * Q1.vector4_f32[3]) - (Q2.vector4_f32[0] * Q1.vector4_f32[0]) - (Q2.vector4_f32[1] * Q1.vector4_f32[1]) - (Q2.vector4_f32[2] * Q1.vector4_f32[2])
|
|
} } };
|
|
return Result.v;
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
static const XMVECTORF32 ControlWZYX = { { { 1.0f, -1.0f, 1.0f, -1.0f } } };
|
|
static const XMVECTORF32 ControlZWXY = { { { 1.0f, 1.0f, -1.0f, -1.0f } } };
|
|
static const XMVECTORF32 ControlYXWZ = { { { -1.0f, 1.0f, 1.0f, -1.0f } } };
|
|
|
|
float32x2_t Q2L = vget_low_f32(Q2);
|
|
float32x2_t Q2H = vget_high_f32(Q2);
|
|
|
|
float32x4_t Q2X = vdupq_lane_f32( Q2L, 0 );
|
|
float32x4_t Q2Y = vdupq_lane_f32( Q2L, 1 );
|
|
float32x4_t Q2Z = vdupq_lane_f32( Q2H, 0 );
|
|
XMVECTOR vResult = vmulq_lane_f32(Q1, Q2H, 1);
|
|
|
|
// Mul by Q1WZYX
|
|
float32x4_t vTemp = vrev64q_f32(Q1);
|
|
vTemp = vcombine_f32( vget_high_f32(vTemp), vget_low_f32(vTemp) );
|
|
Q2X = vmulq_f32(Q2X,vTemp);
|
|
vResult = vmlaq_f32( vResult, Q2X, ControlWZYX );
|
|
|
|
// Mul by Q1ZWXY
|
|
vTemp = vrev64q_u32(vTemp);
|
|
Q2Y = vmulq_f32(Q2Y,vTemp);
|
|
vResult = vmlaq_f32(vResult, Q2Y, ControlZWXY);
|
|
|
|
// Mul by Q1YXWZ
|
|
vTemp = vrev64q_u32(vTemp);
|
|
vTemp = vcombine_f32(vget_high_f32(vTemp), vget_low_f32(vTemp));
|
|
Q2Z = vmulq_f32(Q2Z,vTemp);
|
|
vResult = vmlaq_f32(vResult, Q2Z, ControlYXWZ);
|
|
return vResult;
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
static const XMVECTORF32 ControlWZYX = { { { 1.0f, -1.0f, 1.0f, -1.0f } } };
|
|
static const XMVECTORF32 ControlZWXY = { { { 1.0f, 1.0f, -1.0f, -1.0f } } };
|
|
static const XMVECTORF32 ControlYXWZ = { { { -1.0f, 1.0f, 1.0f, -1.0f } } };
|
|
// Copy to SSE registers and use as few as possible for x86
|
|
XMVECTOR Q2X = Q2;
|
|
XMVECTOR Q2Y = Q2;
|
|
XMVECTOR Q2Z = Q2;
|
|
XMVECTOR vResult = Q2;
|
|
// Splat with one instruction
|
|
vResult = XM_PERMUTE_PS(vResult,_MM_SHUFFLE(3,3,3,3));
|
|
Q2X = XM_PERMUTE_PS(Q2X,_MM_SHUFFLE(0,0,0,0));
|
|
Q2Y = XM_PERMUTE_PS(Q2Y,_MM_SHUFFLE(1,1,1,1));
|
|
Q2Z = XM_PERMUTE_PS(Q2Z,_MM_SHUFFLE(2,2,2,2));
|
|
// Retire Q1 and perform Q1*Q2W
|
|
vResult = _mm_mul_ps(vResult,Q1);
|
|
XMVECTOR Q1Shuffle = Q1;
|
|
// Shuffle the copies of Q1
|
|
Q1Shuffle = XM_PERMUTE_PS(Q1Shuffle,_MM_SHUFFLE(0,1,2,3));
|
|
// Mul by Q1WZYX
|
|
Q2X = _mm_mul_ps(Q2X,Q1Shuffle);
|
|
Q1Shuffle = XM_PERMUTE_PS(Q1Shuffle,_MM_SHUFFLE(2,3,0,1));
|
|
// Flip the signs on y and z
|
|
Q2X = _mm_mul_ps(Q2X,ControlWZYX);
|
|
// Mul by Q1ZWXY
|
|
Q2Y = _mm_mul_ps(Q2Y,Q1Shuffle);
|
|
Q1Shuffle = XM_PERMUTE_PS(Q1Shuffle,_MM_SHUFFLE(0,1,2,3));
|
|
// Flip the signs on z and w
|
|
Q2Y = _mm_mul_ps(Q2Y,ControlZWXY);
|
|
// Mul by Q1YXWZ
|
|
Q2Z = _mm_mul_ps(Q2Z,Q1Shuffle);
|
|
vResult = _mm_add_ps(vResult,Q2X);
|
|
// Flip the signs on x and w
|
|
Q2Z = _mm_mul_ps(Q2Z,ControlYXWZ);
|
|
Q2Y = _mm_add_ps(Q2Y,Q2Z);
|
|
vResult = _mm_add_ps(vResult,Q2Y);
|
|
return vResult;
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionLengthSq
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
return XMVector4LengthSq(Q);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionReciprocalLength
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
return XMVector4ReciprocalLength(Q);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionLength
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
return XMVector4Length(Q);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionNormalizeEst
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
return XMVector4NormalizeEst(Q);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionNormalize
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
return XMVector4Normalize(Q);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionConjugate
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
XMVECTORF32 Result = { { {
|
|
-Q.vector4_f32[0],
|
|
-Q.vector4_f32[1],
|
|
-Q.vector4_f32[2],
|
|
Q.vector4_f32[3]
|
|
} } };
|
|
return Result.v;
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
static const XMVECTORF32 NegativeOne3 = { { { -1.0f, -1.0f, -1.0f, 1.0f } } };
|
|
return vmulq_f32(Q, NegativeOne3.v );
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
static const XMVECTORF32 NegativeOne3 = { { { -1.0f, -1.0f, -1.0f, 1.0f } } };
|
|
return _mm_mul_ps(Q,NegativeOne3);
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionInverse
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
const XMVECTOR Zero = XMVectorZero();
|
|
|
|
XMVECTOR L = XMVector4LengthSq(Q);
|
|
XMVECTOR Conjugate = XMQuaternionConjugate(Q);
|
|
|
|
XMVECTOR Control = XMVectorLessOrEqual(L, g_XMEpsilon.v);
|
|
|
|
XMVECTOR Result = XMVectorDivide(Conjugate, L);
|
|
|
|
Result = XMVectorSelect(Result, Zero, Control);
|
|
|
|
return Result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionLn
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
static const XMVECTORF32 OneMinusEpsilon = { { { 1.0f - 0.00001f, 1.0f - 0.00001f, 1.0f - 0.00001f, 1.0f - 0.00001f } } };
|
|
|
|
XMVECTOR QW = XMVectorSplatW(Q);
|
|
XMVECTOR Q0 = XMVectorSelect(g_XMSelect1110.v, Q, g_XMSelect1110.v);
|
|
|
|
XMVECTOR ControlW = XMVectorInBounds(QW, OneMinusEpsilon.v);
|
|
|
|
XMVECTOR Theta = XMVectorACos(QW);
|
|
XMVECTOR SinTheta = XMVectorSin(Theta);
|
|
|
|
XMVECTOR S = XMVectorDivide(Theta,SinTheta);
|
|
|
|
XMVECTOR Result = XMVectorMultiply(Q0, S);
|
|
Result = XMVectorSelect(Q0, Result, ControlW);
|
|
|
|
return Result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionExp
|
|
(
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
XMVECTOR Theta = XMVector3Length(Q);
|
|
|
|
XMVECTOR SinTheta, CosTheta;
|
|
XMVectorSinCos(&SinTheta, &CosTheta, Theta);
|
|
|
|
XMVECTOR S = XMVectorDivide(SinTheta, Theta);
|
|
|
|
XMVECTOR Result = XMVectorMultiply(Q, S);
|
|
|
|
const XMVECTOR Zero = XMVectorZero();
|
|
XMVECTOR Control = XMVectorNearEqual(Theta, Zero, g_XMEpsilon.v);
|
|
Result = XMVectorSelect(Result, Q, Control);
|
|
|
|
Result = XMVectorSelect(CosTheta, Result, g_XMSelect1110.v);
|
|
|
|
return Result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionSlerp
|
|
(
|
|
FXMVECTOR Q0,
|
|
FXMVECTOR Q1,
|
|
float t
|
|
)
|
|
{
|
|
XMVECTOR T = XMVectorReplicate(t);
|
|
return XMQuaternionSlerpV(Q0, Q1, T);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionSlerpV
|
|
(
|
|
FXMVECTOR Q0,
|
|
FXMVECTOR Q1,
|
|
FXMVECTOR T
|
|
)
|
|
{
|
|
assert((XMVectorGetY(T) == XMVectorGetX(T)) && (XMVectorGetZ(T) == XMVectorGetX(T)) && (XMVectorGetW(T) == XMVectorGetX(T)));
|
|
|
|
// Result = Q0 * sin((1.0 - t) * Omega) / sin(Omega) + Q1 * sin(t * Omega) / sin(Omega)
|
|
|
|
#if defined(_XM_NO_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
const XMVECTORF32 OneMinusEpsilon = { { { 1.0f - 0.00001f, 1.0f - 0.00001f, 1.0f - 0.00001f, 1.0f - 0.00001f } } };
|
|
|
|
XMVECTOR CosOmega = XMQuaternionDot(Q0, Q1);
|
|
|
|
const XMVECTOR Zero = XMVectorZero();
|
|
XMVECTOR Control = XMVectorLess(CosOmega, Zero);
|
|
XMVECTOR Sign = XMVectorSelect(g_XMOne.v, g_XMNegativeOne.v, Control);
|
|
|
|
CosOmega = XMVectorMultiply(CosOmega, Sign);
|
|
|
|
Control = XMVectorLess(CosOmega, OneMinusEpsilon);
|
|
|
|
XMVECTOR SinOmega = XMVectorNegativeMultiplySubtract(CosOmega, CosOmega, g_XMOne.v);
|
|
SinOmega = XMVectorSqrt(SinOmega);
|
|
|
|
XMVECTOR Omega = XMVectorATan2(SinOmega, CosOmega);
|
|
|
|
XMVECTOR SignMask = XMVectorSplatSignMask();
|
|
XMVECTOR V01 = XMVectorShiftLeft(T, Zero, 2);
|
|
SignMask = XMVectorShiftLeft(SignMask, Zero, 3);
|
|
V01 = XMVectorXorInt(V01, SignMask);
|
|
V01 = XMVectorAdd(g_XMIdentityR0.v, V01);
|
|
|
|
XMVECTOR InvSinOmega = XMVectorReciprocal(SinOmega);
|
|
|
|
XMVECTOR S0 = XMVectorMultiply(V01, Omega);
|
|
S0 = XMVectorSin(S0);
|
|
S0 = XMVectorMultiply(S0, InvSinOmega);
|
|
|
|
S0 = XMVectorSelect(V01, S0, Control);
|
|
|
|
XMVECTOR S1 = XMVectorSplatY(S0);
|
|
S0 = XMVectorSplatX(S0);
|
|
|
|
S1 = XMVectorMultiply(S1, Sign);
|
|
|
|
XMVECTOR Result = XMVectorMultiply(Q0, S0);
|
|
Result = XMVectorMultiplyAdd(Q1, S1, Result);
|
|
|
|
return Result;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
static const XMVECTORF32 OneMinusEpsilon = { { { 1.0f - 0.00001f, 1.0f - 0.00001f, 1.0f - 0.00001f, 1.0f - 0.00001f } } };
|
|
static const XMVECTORU32 SignMask2 = { { { 0x80000000, 0x00000000, 0x00000000, 0x00000000 } } };
|
|
|
|
XMVECTOR CosOmega = XMQuaternionDot(Q0, Q1);
|
|
|
|
const XMVECTOR Zero = XMVectorZero();
|
|
XMVECTOR Control = XMVectorLess(CosOmega, Zero);
|
|
XMVECTOR Sign = XMVectorSelect(g_XMOne, g_XMNegativeOne, Control);
|
|
|
|
CosOmega = _mm_mul_ps(CosOmega, Sign);
|
|
|
|
Control = XMVectorLess(CosOmega, OneMinusEpsilon);
|
|
|
|
XMVECTOR SinOmega = _mm_mul_ps(CosOmega,CosOmega);
|
|
SinOmega = _mm_sub_ps(g_XMOne,SinOmega);
|
|
SinOmega = _mm_sqrt_ps(SinOmega);
|
|
|
|
XMVECTOR Omega = XMVectorATan2(SinOmega, CosOmega);
|
|
|
|
XMVECTOR V01 = XM_PERMUTE_PS(T,_MM_SHUFFLE(2,3,0,1));
|
|
V01 = _mm_and_ps(V01,g_XMMaskXY);
|
|
V01 = _mm_xor_ps(V01,SignMask2);
|
|
V01 = _mm_add_ps(g_XMIdentityR0, V01);
|
|
|
|
XMVECTOR S0 = _mm_mul_ps(V01, Omega);
|
|
S0 = XMVectorSin(S0);
|
|
S0 = _mm_div_ps(S0, SinOmega);
|
|
|
|
S0 = XMVectorSelect(V01, S0, Control);
|
|
|
|
XMVECTOR S1 = XMVectorSplatY(S0);
|
|
S0 = XMVectorSplatX(S0);
|
|
|
|
S1 = _mm_mul_ps(S1, Sign);
|
|
XMVECTOR Result = _mm_mul_ps(Q0, S0);
|
|
S1 = _mm_mul_ps(S1, Q1);
|
|
Result = _mm_add_ps(Result,S1);
|
|
return Result;
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionSquad
|
|
(
|
|
FXMVECTOR Q0,
|
|
FXMVECTOR Q1,
|
|
FXMVECTOR Q2,
|
|
GXMVECTOR Q3,
|
|
float t
|
|
)
|
|
{
|
|
XMVECTOR T = XMVectorReplicate(t);
|
|
return XMQuaternionSquadV(Q0, Q1, Q2, Q3, T);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionSquadV
|
|
(
|
|
FXMVECTOR Q0,
|
|
FXMVECTOR Q1,
|
|
FXMVECTOR Q2,
|
|
GXMVECTOR Q3,
|
|
HXMVECTOR T
|
|
)
|
|
{
|
|
assert( (XMVectorGetY(T) == XMVectorGetX(T)) && (XMVectorGetZ(T) == XMVectorGetX(T)) && (XMVectorGetW(T) == XMVectorGetX(T)) );
|
|
|
|
XMVECTOR TP = T;
|
|
const XMVECTOR Two = XMVectorSplatConstant(2, 0);
|
|
|
|
XMVECTOR Q03 = XMQuaternionSlerpV(Q0, Q3, T);
|
|
XMVECTOR Q12 = XMQuaternionSlerpV(Q1, Q2, T);
|
|
|
|
TP = XMVectorNegativeMultiplySubtract(TP, TP, TP);
|
|
TP = XMVectorMultiply(TP, Two);
|
|
|
|
XMVECTOR Result = XMQuaternionSlerpV(Q03, Q12, TP);
|
|
|
|
return Result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
_Use_decl_annotations_
|
|
inline void XM_CALLCONV XMQuaternionSquadSetup
|
|
(
|
|
XMVECTOR* pA,
|
|
XMVECTOR* pB,
|
|
XMVECTOR* pC,
|
|
FXMVECTOR Q0,
|
|
FXMVECTOR Q1,
|
|
FXMVECTOR Q2,
|
|
GXMVECTOR Q3
|
|
)
|
|
{
|
|
assert(pA);
|
|
assert(pB);
|
|
assert(pC);
|
|
|
|
XMVECTOR LS12 = XMQuaternionLengthSq(XMVectorAdd(Q1, Q2));
|
|
XMVECTOR LD12 = XMQuaternionLengthSq(XMVectorSubtract(Q1, Q2));
|
|
XMVECTOR SQ2 = XMVectorNegate(Q2);
|
|
|
|
XMVECTOR Control1 = XMVectorLess(LS12, LD12);
|
|
SQ2 = XMVectorSelect(Q2, SQ2, Control1);
|
|
|
|
XMVECTOR LS01 = XMQuaternionLengthSq(XMVectorAdd(Q0, Q1));
|
|
XMVECTOR LD01 = XMQuaternionLengthSq(XMVectorSubtract(Q0, Q1));
|
|
XMVECTOR SQ0 = XMVectorNegate(Q0);
|
|
|
|
XMVECTOR LS23 = XMQuaternionLengthSq(XMVectorAdd(SQ2, Q3));
|
|
XMVECTOR LD23 = XMQuaternionLengthSq(XMVectorSubtract(SQ2, Q3));
|
|
XMVECTOR SQ3 = XMVectorNegate(Q3);
|
|
|
|
XMVECTOR Control0 = XMVectorLess(LS01, LD01);
|
|
XMVECTOR Control2 = XMVectorLess(LS23, LD23);
|
|
|
|
SQ0 = XMVectorSelect(Q0, SQ0, Control0);
|
|
SQ3 = XMVectorSelect(Q3, SQ3, Control2);
|
|
|
|
XMVECTOR InvQ1 = XMQuaternionInverse(Q1);
|
|
XMVECTOR InvQ2 = XMQuaternionInverse(SQ2);
|
|
|
|
XMVECTOR LnQ0 = XMQuaternionLn(XMQuaternionMultiply(InvQ1, SQ0));
|
|
XMVECTOR LnQ2 = XMQuaternionLn(XMQuaternionMultiply(InvQ1, SQ2));
|
|
XMVECTOR LnQ1 = XMQuaternionLn(XMQuaternionMultiply(InvQ2, Q1));
|
|
XMVECTOR LnQ3 = XMQuaternionLn(XMQuaternionMultiply(InvQ2, SQ3));
|
|
|
|
const XMVECTOR NegativeOneQuarter = XMVectorSplatConstant(-1, 2);
|
|
|
|
XMVECTOR ExpQ02 = XMVectorMultiply(XMVectorAdd(LnQ0, LnQ2), NegativeOneQuarter);
|
|
XMVECTOR ExpQ13 = XMVectorMultiply(XMVectorAdd(LnQ1, LnQ3), NegativeOneQuarter);
|
|
ExpQ02 = XMQuaternionExp(ExpQ02);
|
|
ExpQ13 = XMQuaternionExp(ExpQ13);
|
|
|
|
*pA = XMQuaternionMultiply(Q1, ExpQ02);
|
|
*pB = XMQuaternionMultiply(SQ2, ExpQ13);
|
|
*pC = SQ2;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionBaryCentric
|
|
(
|
|
FXMVECTOR Q0,
|
|
FXMVECTOR Q1,
|
|
FXMVECTOR Q2,
|
|
float f,
|
|
float g
|
|
)
|
|
{
|
|
float s = f + g;
|
|
|
|
XMVECTOR Result;
|
|
if ((s < 0.00001f) && (s > -0.00001f))
|
|
{
|
|
Result = Q0;
|
|
}
|
|
else
|
|
{
|
|
XMVECTOR Q01 = XMQuaternionSlerp(Q0, Q1, s);
|
|
XMVECTOR Q02 = XMQuaternionSlerp(Q0, Q2, s);
|
|
|
|
Result = XMQuaternionSlerp(Q01, Q02, g / s);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionBaryCentricV
|
|
(
|
|
FXMVECTOR Q0,
|
|
FXMVECTOR Q1,
|
|
FXMVECTOR Q2,
|
|
GXMVECTOR F,
|
|
HXMVECTOR G
|
|
)
|
|
{
|
|
assert( (XMVectorGetY(F) == XMVectorGetX(F)) && (XMVectorGetZ(F) == XMVectorGetX(F)) && (XMVectorGetW(F) == XMVectorGetX(F)) );
|
|
assert( (XMVectorGetY(G) == XMVectorGetX(G)) && (XMVectorGetZ(G) == XMVectorGetX(G)) && (XMVectorGetW(G) == XMVectorGetX(G)) );
|
|
|
|
const XMVECTOR Epsilon = XMVectorSplatConstant(1, 16);
|
|
|
|
XMVECTOR S = XMVectorAdd(F, G);
|
|
|
|
XMVECTOR Result;
|
|
if (XMVector4InBounds(S, Epsilon))
|
|
{
|
|
Result = Q0;
|
|
}
|
|
else
|
|
{
|
|
XMVECTOR Q01 = XMQuaternionSlerpV(Q0, Q1, S);
|
|
XMVECTOR Q02 = XMQuaternionSlerpV(Q0, Q2, S);
|
|
XMVECTOR GS = XMVectorReciprocal(S);
|
|
GS = XMVectorMultiply(G, GS);
|
|
|
|
Result = XMQuaternionSlerpV(Q01, Q02, GS);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Transformation operations
|
|
//------------------------------------------------------------------------------
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionIdentity()
|
|
{
|
|
return g_XMIdentityR3.v;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionRotationRollPitchYaw
|
|
(
|
|
float Pitch,
|
|
float Yaw,
|
|
float Roll
|
|
)
|
|
{
|
|
XMVECTOR Angles = XMVectorSet(Pitch, Yaw, Roll, 0.0f);
|
|
XMVECTOR Q = XMQuaternionRotationRollPitchYawFromVector(Angles);
|
|
return Q;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionRotationRollPitchYawFromVector
|
|
(
|
|
FXMVECTOR Angles // <Pitch, Yaw, Roll, 0>
|
|
)
|
|
{
|
|
static const XMVECTORF32 Sign = { { { 1.0f, -1.0f, -1.0f, 1.0f } } };
|
|
|
|
XMVECTOR HalfAngles = XMVectorMultiply(Angles, g_XMOneHalf.v);
|
|
|
|
XMVECTOR SinAngles, CosAngles;
|
|
XMVectorSinCos(&SinAngles, &CosAngles, HalfAngles);
|
|
|
|
XMVECTOR P0 = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_1X, XM_PERMUTE_1X, XM_PERMUTE_1X>(SinAngles, CosAngles);
|
|
XMVECTOR Y0 = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0Y, XM_PERMUTE_1Y, XM_PERMUTE_1Y>(SinAngles, CosAngles);
|
|
XMVECTOR R0 = XMVectorPermute<XM_PERMUTE_1Z, XM_PERMUTE_1Z, XM_PERMUTE_0Z, XM_PERMUTE_1Z>(SinAngles, CosAngles);
|
|
XMVECTOR P1 = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_1X, XM_PERMUTE_1X, XM_PERMUTE_1X>(CosAngles, SinAngles);
|
|
XMVECTOR Y1 = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0Y, XM_PERMUTE_1Y, XM_PERMUTE_1Y>(CosAngles, SinAngles);
|
|
XMVECTOR R1 = XMVectorPermute<XM_PERMUTE_1Z, XM_PERMUTE_1Z, XM_PERMUTE_0Z, XM_PERMUTE_1Z>(CosAngles, SinAngles);
|
|
|
|
XMVECTOR Q1 = XMVectorMultiply(P1, Sign.v);
|
|
XMVECTOR Q0 = XMVectorMultiply(P0, Y0);
|
|
Q1 = XMVectorMultiply(Q1, Y1);
|
|
Q0 = XMVectorMultiply(Q0, R0);
|
|
XMVECTOR Q = XMVectorMultiplyAdd(Q1, R1, Q0);
|
|
|
|
return Q;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionRotationNormal
|
|
(
|
|
FXMVECTOR NormalAxis,
|
|
float Angle
|
|
)
|
|
{
|
|
#if defined(_XM_NO_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
XMVECTOR N = XMVectorSelect(g_XMOne.v, NormalAxis, g_XMSelect1110.v);
|
|
|
|
float SinV, CosV;
|
|
XMScalarSinCos(&SinV, &CosV, 0.5f * Angle);
|
|
|
|
XMVECTOR Scale = XMVectorSet( SinV, SinV, SinV, CosV );
|
|
return XMVectorMultiply(N, Scale);
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
XMVECTOR N = _mm_and_ps(NormalAxis,g_XMMask3);
|
|
N = _mm_or_ps(N,g_XMIdentityR3);
|
|
XMVECTOR Scale = _mm_set_ps1(0.5f * Angle);
|
|
XMVECTOR vSine;
|
|
XMVECTOR vCosine;
|
|
XMVectorSinCos(&vSine,&vCosine,Scale);
|
|
Scale = _mm_and_ps(vSine,g_XMMask3);
|
|
vCosine = _mm_and_ps(vCosine,g_XMMaskW);
|
|
Scale = _mm_or_ps(Scale,vCosine);
|
|
N = _mm_mul_ps(N,Scale);
|
|
return N;
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionRotationAxis
|
|
(
|
|
FXMVECTOR Axis,
|
|
float Angle
|
|
)
|
|
{
|
|
assert(!XMVector3Equal(Axis, XMVectorZero()));
|
|
assert(!XMVector3IsInfinite(Axis));
|
|
|
|
XMVECTOR Normal = XMVector3Normalize(Axis);
|
|
XMVECTOR Q = XMQuaternionRotationNormal(Normal, Angle);
|
|
return Q;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMQuaternionRotationMatrix
|
|
(
|
|
FXMMATRIX M
|
|
)
|
|
{
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
|
|
XMVECTORF32 q;
|
|
float r22 = M.m[2][2];
|
|
if (r22 <= 0.f) // x^2 + y^2 >= z^2 + w^2
|
|
{
|
|
float dif10 = M.m[1][1] - M.m[0][0];
|
|
float omr22 = 1.f - r22;
|
|
if (dif10 <= 0.f) // x^2 >= y^2
|
|
{
|
|
float fourXSqr = omr22 - dif10;
|
|
float inv4x = 0.5f / sqrtf(fourXSqr);
|
|
q.f[0] = fourXSqr*inv4x;
|
|
q.f[1] = (M.m[0][1] + M.m[1][0])*inv4x;
|
|
q.f[2] = (M.m[0][2] + M.m[2][0])*inv4x;
|
|
q.f[3] = (M.m[1][2] - M.m[2][1])*inv4x;
|
|
}
|
|
else // y^2 >= x^2
|
|
{
|
|
float fourYSqr = omr22 + dif10;
|
|
float inv4y = 0.5f / sqrtf(fourYSqr);
|
|
q.f[0] = (M.m[0][1] + M.m[1][0])*inv4y;
|
|
q.f[1] = fourYSqr*inv4y;
|
|
q.f[2] = (M.m[1][2] + M.m[2][1])*inv4y;
|
|
q.f[3] = (M.m[2][0] - M.m[0][2])*inv4y;
|
|
}
|
|
}
|
|
else // z^2 + w^2 >= x^2 + y^2
|
|
{
|
|
float sum10 = M.m[1][1] + M.m[0][0];
|
|
float opr22 = 1.f + r22;
|
|
if (sum10 <= 0.f) // z^2 >= w^2
|
|
{
|
|
float fourZSqr = opr22 - sum10;
|
|
float inv4z = 0.5f / sqrtf(fourZSqr);
|
|
q.f[0] = (M.m[0][2] + M.m[2][0])*inv4z;
|
|
q.f[1] = (M.m[1][2] + M.m[2][1])*inv4z;
|
|
q.f[2] = fourZSqr*inv4z;
|
|
q.f[3] = (M.m[0][1] - M.m[1][0])*inv4z;
|
|
}
|
|
else // w^2 >= z^2
|
|
{
|
|
float fourWSqr = opr22 + sum10;
|
|
float inv4w = 0.5f / sqrtf(fourWSqr);
|
|
q.f[0] = (M.m[1][2] - M.m[2][1])*inv4w;
|
|
q.f[1] = (M.m[2][0] - M.m[0][2])*inv4w;
|
|
q.f[2] = (M.m[0][1] - M.m[1][0])*inv4w;
|
|
q.f[3] = fourWSqr*inv4w;
|
|
}
|
|
}
|
|
return q.v;
|
|
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
static const XMVECTORF32 XMPMMP = { { { +1.0f, -1.0f, -1.0f, +1.0f } } };
|
|
static const XMVECTORF32 XMMPMP = { { { -1.0f, +1.0f, -1.0f, +1.0f } } };
|
|
static const XMVECTORF32 XMMMPP = { { { -1.0f, -1.0f, +1.0f, +1.0f } } };
|
|
static const XMVECTORU32 Select0110 = { { { XM_SELECT_0, XM_SELECT_1, XM_SELECT_1, XM_SELECT_0 } } };
|
|
static const XMVECTORU32 Select0010 = { { { XM_SELECT_0, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0 } } };
|
|
|
|
XMVECTOR r0 = M.r[0];
|
|
XMVECTOR r1 = M.r[1];
|
|
XMVECTOR r2 = M.r[2];
|
|
|
|
XMVECTOR r00 = vdupq_lane_f32(vget_low_f32(r0), 0);
|
|
XMVECTOR r11 = vdupq_lane_f32(vget_low_f32(r1), 1);
|
|
XMVECTOR r22 = vdupq_lane_f32(vget_high_f32(r2), 0);
|
|
|
|
// x^2 >= y^2 equivalent to r11 - r00 <= 0
|
|
XMVECTOR r11mr00 = vsubq_f32(r11, r00);
|
|
XMVECTOR x2gey2 = vcleq_f32(r11mr00, g_XMZero);
|
|
|
|
// z^2 >= w^2 equivalent to r11 + r00 <= 0
|
|
XMVECTOR r11pr00 = vaddq_f32(r11, r00);
|
|
XMVECTOR z2gew2 = vcleq_f32(r11pr00, g_XMZero);
|
|
|
|
// x^2 + y^2 >= z^2 + w^2 equivalent to r22 <= 0
|
|
XMVECTOR x2py2gez2pw2 = vcleq_f32(r22, g_XMZero);
|
|
|
|
// (4*x^2, 4*y^2, 4*z^2, 4*w^2)
|
|
XMVECTOR t0 = vmulq_f32( XMPMMP, r00 );
|
|
XMVECTOR x2y2z2w2 = vmlaq_f32( t0, XMMPMP, r11 );
|
|
x2y2z2w2 = vmlaq_f32( x2y2z2w2, XMMMPP, r22 );
|
|
x2y2z2w2 = vaddq_f32( x2y2z2w2, g_XMOne );
|
|
|
|
// (r01, r02, r12, r11)
|
|
t0 = vextq_f32(r0, r0, 1);
|
|
XMVECTOR t1 = vextq_f32(r1, r1, 1);
|
|
t0 = vcombine_f32( vget_low_f32(t0), vrev64_f32( vget_low_f32( t1 ) ) );
|
|
|
|
// (r10, r20, r21, r10)
|
|
t1 = vextq_f32(r2, r2, 3);
|
|
XMVECTOR r10 = vdupq_lane_f32( vget_low_f32(r1), 0 );
|
|
t1 = vbslq_f32( Select0110, t1, r10 );
|
|
|
|
// (4*x*y, 4*x*z, 4*y*z, unused)
|
|
XMVECTOR xyxzyz = vaddq_f32(t0, t1);
|
|
|
|
// (r21, r20, r10, r10)
|
|
t0 = vcombine_f32( vrev64_f32( vget_low_f32(r2) ), vget_low_f32(r10) );
|
|
|
|
// (r12, r02, r01, r12)
|
|
XMVECTOR t2 = vcombine_f32( vrev64_f32( vget_high_f32(r0) ), vrev64_f32( vget_low_f32(r0) ) );
|
|
XMVECTOR t3 = vdupq_lane_f32( vget_high_f32(r1), 0 );
|
|
t1 = vbslq_f32( Select0110, t2, t3 );
|
|
|
|
// (4*x*w, 4*y*w, 4*z*w, unused)
|
|
XMVECTOR xwywzw = vsubq_f32(t0, t1);
|
|
xwywzw = vmulq_f32(XMMPMP, xwywzw);
|
|
|
|
// (4*x*x, 4*x*y, 4*x*z, 4*x*w)
|
|
t0 = vextq_f32( xyxzyz, xyxzyz, 3 );
|
|
t1 = vbslq_f32( Select0110, t0, x2y2z2w2 );
|
|
t2 = vdupq_lane_f32( vget_low_f32(xwywzw), 0 );
|
|
XMVECTOR tensor0 = vbslq_f32( g_XMSelect1110, t1, t2 );
|
|
|
|
// (4*y*x, 4*y*y, 4*y*z, 4*y*w)
|
|
t0 = vbslq_f32( g_XMSelect1011, xyxzyz, x2y2z2w2 );
|
|
t1 = vdupq_lane_f32( vget_low_f32(xwywzw), 1 );
|
|
XMVECTOR tensor1 = vbslq_f32( g_XMSelect1110, t0, t1 );
|
|
|
|
// (4*z*x, 4*z*y, 4*z*z, 4*z*w)
|
|
t0 = vextq_f32(xyxzyz, xyxzyz, 1);
|
|
t1 = vcombine_f32( vget_low_f32(t0), vrev64_f32( vget_high_f32(xwywzw) ) );
|
|
XMVECTOR tensor2 = vbslq_f32( Select0010, x2y2z2w2, t1 );
|
|
|
|
// (4*w*x, 4*w*y, 4*w*z, 4*w*w)
|
|
XMVECTOR tensor3 = vbslq_f32( g_XMSelect1110, xwywzw, x2y2z2w2 );
|
|
|
|
// Select the row of the tensor-product matrix that has the largest
|
|
// magnitude.
|
|
t0 = vbslq_f32( x2gey2, tensor0, tensor1 );
|
|
t1 = vbslq_f32( z2gew2, tensor2, tensor3 );
|
|
t2 = vbslq_f32( x2py2gez2pw2, t0, t1 );
|
|
|
|
// Normalize the row. No division by zero is possible because the
|
|
// quaternion is unit-length (and the row is a nonzero multiple of
|
|
// the quaternion).
|
|
t0 = XMVector4Length(t2);
|
|
return XMVectorDivide(t2, t0);
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
static const XMVECTORF32 XMPMMP = { { { +1.0f, -1.0f, -1.0f, +1.0f } } };
|
|
static const XMVECTORF32 XMMPMP = { { { -1.0f, +1.0f, -1.0f, +1.0f } } };
|
|
static const XMVECTORF32 XMMMPP = { { { -1.0f, -1.0f, +1.0f, +1.0f } } };
|
|
|
|
XMVECTOR r0 = M.r[0]; // (r00, r01, r02, 0)
|
|
XMVECTOR r1 = M.r[1]; // (r10, r11, r12, 0)
|
|
XMVECTOR r2 = M.r[2]; // (r20, r21, r22, 0)
|
|
|
|
// (r00, r00, r00, r00)
|
|
XMVECTOR r00 = XM_PERMUTE_PS(r0, _MM_SHUFFLE(0,0,0,0));
|
|
// (r11, r11, r11, r11)
|
|
XMVECTOR r11 = XM_PERMUTE_PS(r1, _MM_SHUFFLE(1,1,1,1));
|
|
// (r22, r22, r22, r22)
|
|
XMVECTOR r22 = XM_PERMUTE_PS(r2, _MM_SHUFFLE(2,2,2,2));
|
|
|
|
// x^2 >= y^2 equivalent to r11 - r00 <= 0
|
|
// (r11 - r00, r11 - r00, r11 - r00, r11 - r00)
|
|
XMVECTOR r11mr00 = _mm_sub_ps(r11, r00);
|
|
XMVECTOR x2gey2 = _mm_cmple_ps(r11mr00, g_XMZero);
|
|
|
|
// z^2 >= w^2 equivalent to r11 + r00 <= 0
|
|
// (r11 + r00, r11 + r00, r11 + r00, r11 + r00)
|
|
XMVECTOR r11pr00 = _mm_add_ps(r11, r00);
|
|
XMVECTOR z2gew2 = _mm_cmple_ps(r11pr00, g_XMZero);
|
|
|
|
// x^2 + y^2 >= z^2 + w^2 equivalent to r22 <= 0
|
|
XMVECTOR x2py2gez2pw2 = _mm_cmple_ps(r22, g_XMZero);
|
|
|
|
// (+r00, -r00, -r00, +r00)
|
|
XMVECTOR t0 = _mm_mul_ps(XMPMMP, r00);
|
|
|
|
// (-r11, +r11, -r11, +r11)
|
|
XMVECTOR t1 = _mm_mul_ps(XMMPMP, r11);
|
|
|
|
// (-r22, -r22, +r22, +r22)
|
|
XMVECTOR t2 = _mm_mul_ps(XMMMPP, r22);
|
|
|
|
// (4*x^2, 4*y^2, 4*z^2, 4*w^2)
|
|
XMVECTOR x2y2z2w2 = _mm_add_ps(t0, t1);
|
|
x2y2z2w2 = _mm_add_ps(t2, x2y2z2w2);
|
|
x2y2z2w2 = _mm_add_ps(x2y2z2w2, g_XMOne);
|
|
|
|
// (r01, r02, r12, r11)
|
|
t0 = _mm_shuffle_ps(r0, r1, _MM_SHUFFLE(1,2,2,1));
|
|
// (r10, r10, r20, r21)
|
|
t1 = _mm_shuffle_ps(r1, r2, _MM_SHUFFLE(1,0,0,0));
|
|
// (r10, r20, r21, r10)
|
|
t1 = XM_PERMUTE_PS(t1, _MM_SHUFFLE(1,3,2,0));
|
|
// (4*x*y, 4*x*z, 4*y*z, unused)
|
|
XMVECTOR xyxzyz = _mm_add_ps(t0, t1);
|
|
|
|
// (r21, r20, r10, r10)
|
|
t0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0,0,0,1));
|
|
// (r12, r12, r02, r01)
|
|
t1 = _mm_shuffle_ps(r1, r0, _MM_SHUFFLE(1,2,2,2));
|
|
// (r12, r02, r01, r12)
|
|
t1 = XM_PERMUTE_PS(t1, _MM_SHUFFLE(1,3,2,0));
|
|
// (4*x*w, 4*y*w, 4*z*w, unused)
|
|
XMVECTOR xwywzw = _mm_sub_ps(t0, t1);
|
|
xwywzw = _mm_mul_ps(XMMPMP, xwywzw);
|
|
|
|
// (4*x^2, 4*y^2, 4*x*y, unused)
|
|
t0 = _mm_shuffle_ps(x2y2z2w2, xyxzyz, _MM_SHUFFLE(0,0,1,0));
|
|
// (4*z^2, 4*w^2, 4*z*w, unused)
|
|
t1 = _mm_shuffle_ps(x2y2z2w2, xwywzw, _MM_SHUFFLE(0,2,3,2));
|
|
// (4*x*z, 4*y*z, 4*x*w, 4*y*w)
|
|
t2 = _mm_shuffle_ps(xyxzyz, xwywzw, _MM_SHUFFLE(1,0,2,1));
|
|
|
|
// (4*x*x, 4*x*y, 4*x*z, 4*x*w)
|
|
XMVECTOR tensor0 = _mm_shuffle_ps(t0, t2, _MM_SHUFFLE(2,0,2,0));
|
|
// (4*y*x, 4*y*y, 4*y*z, 4*y*w)
|
|
XMVECTOR tensor1 = _mm_shuffle_ps(t0, t2, _MM_SHUFFLE(3,1,1,2));
|
|
// (4*z*x, 4*z*y, 4*z*z, 4*z*w)
|
|
XMVECTOR tensor2 = _mm_shuffle_ps(t2, t1, _MM_SHUFFLE(2,0,1,0));
|
|
// (4*w*x, 4*w*y, 4*w*z, 4*w*w)
|
|
XMVECTOR tensor3 = _mm_shuffle_ps(t2, t1, _MM_SHUFFLE(1,2,3,2));
|
|
|
|
// Select the row of the tensor-product matrix that has the largest
|
|
// magnitude.
|
|
t0 = _mm_and_ps(x2gey2, tensor0);
|
|
t1 = _mm_andnot_ps(x2gey2, tensor1);
|
|
t0 = _mm_or_ps(t0, t1);
|
|
t1 = _mm_and_ps(z2gew2, tensor2);
|
|
t2 = _mm_andnot_ps(z2gew2, tensor3);
|
|
t1 = _mm_or_ps(t1, t2);
|
|
t0 = _mm_and_ps(x2py2gez2pw2, t0);
|
|
t1 = _mm_andnot_ps(x2py2gez2pw2, t1);
|
|
t2 = _mm_or_ps(t0, t1);
|
|
|
|
// Normalize the row. No division by zero is possible because the
|
|
// quaternion is unit-length (and the row is a nonzero multiple of
|
|
// the quaternion).
|
|
t0 = XMVector4Length(t2);
|
|
return _mm_div_ps(t2, t0);
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Conversion operations
|
|
//------------------------------------------------------------------------------
|
|
|
|
//------------------------------------------------------------------------------
|
|
_Use_decl_annotations_
|
|
inline void XM_CALLCONV XMQuaternionToAxisAngle
|
|
(
|
|
XMVECTOR* pAxis,
|
|
float* pAngle,
|
|
FXMVECTOR Q
|
|
)
|
|
{
|
|
assert(pAxis);
|
|
assert(pAngle);
|
|
|
|
*pAxis = Q;
|
|
|
|
*pAngle = 2.0f * XMScalarACos(XMVectorGetW(Q));
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Plane
|
|
*
|
|
****************************************************************************/
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Comparison operations
|
|
//------------------------------------------------------------------------------
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMPlaneEqual
|
|
(
|
|
FXMVECTOR P1,
|
|
FXMVECTOR P2
|
|
)
|
|
{
|
|
return XMVector4Equal(P1, P2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMPlaneNearEqual
|
|
(
|
|
FXMVECTOR P1,
|
|
FXMVECTOR P2,
|
|
FXMVECTOR Epsilon
|
|
)
|
|
{
|
|
XMVECTOR NP1 = XMPlaneNormalize(P1);
|
|
XMVECTOR NP2 = XMPlaneNormalize(P2);
|
|
return XMVector4NearEqual(NP1, NP2, Epsilon);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMPlaneNotEqual
|
|
(
|
|
FXMVECTOR P1,
|
|
FXMVECTOR P2
|
|
)
|
|
{
|
|
return XMVector4NotEqual(P1, P2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMPlaneIsNaN
|
|
(
|
|
FXMVECTOR P
|
|
)
|
|
{
|
|
return XMVector4IsNaN(P);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMPlaneIsInfinite
|
|
(
|
|
FXMVECTOR P
|
|
)
|
|
{
|
|
return XMVector4IsInfinite(P);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Computation operations
|
|
//------------------------------------------------------------------------------
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneDot
|
|
(
|
|
FXMVECTOR P,
|
|
FXMVECTOR V
|
|
)
|
|
{
|
|
return XMVector4Dot(P, V);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneDotCoord
|
|
(
|
|
FXMVECTOR P,
|
|
FXMVECTOR V
|
|
)
|
|
{
|
|
// Result = P[0] * V[0] + P[1] * V[1] + P[2] * V[2] + P[3]
|
|
|
|
XMVECTOR V3 = XMVectorSelect(g_XMOne.v, V, g_XMSelect1110.v);
|
|
XMVECTOR Result = XMVector4Dot(P, V3);
|
|
return Result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneDotNormal
|
|
(
|
|
FXMVECTOR P,
|
|
FXMVECTOR V
|
|
)
|
|
{
|
|
return XMVector3Dot(P, V);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// XMPlaneNormalizeEst uses a reciprocal estimate and
|
|
// returns QNaN on zero and infinite vectors.
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneNormalizeEst
|
|
(
|
|
FXMVECTOR P
|
|
)
|
|
{
|
|
#if defined(_XM_NO_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
XMVECTOR Result = XMVector3ReciprocalLengthEst(P);
|
|
return XMVectorMultiply(P, Result);
|
|
|
|
#elif defined(_XM_SSE4_INTRINSICS_)
|
|
XMVECTOR vTemp = _mm_dp_ps( P, P, 0x7f );
|
|
XMVECTOR vResult = _mm_rsqrt_ps( vTemp );
|
|
return _mm_mul_ps(vResult, P);
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
// Perform the dot product
|
|
XMVECTOR vDot = _mm_mul_ps(P,P);
|
|
// x=Dot.y, y=Dot.z
|
|
XMVECTOR vTemp = XM_PERMUTE_PS(vDot,_MM_SHUFFLE(2,1,2,1));
|
|
// Result.x = x+y
|
|
vDot = _mm_add_ss(vDot,vTemp);
|
|
// x=Dot.z
|
|
vTemp = XM_PERMUTE_PS(vTemp,_MM_SHUFFLE(1,1,1,1));
|
|
// Result.x = (x+y)+z
|
|
vDot = _mm_add_ss(vDot,vTemp);
|
|
// Splat x
|
|
vDot = XM_PERMUTE_PS(vDot,_MM_SHUFFLE(0,0,0,0));
|
|
// Get the reciprocal
|
|
vDot = _mm_rsqrt_ps(vDot);
|
|
// Get the reciprocal
|
|
vDot = _mm_mul_ps(vDot,P);
|
|
return vDot;
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneNormalize
|
|
(
|
|
FXMVECTOR P
|
|
)
|
|
{
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
float fLengthSq = sqrtf((P.vector4_f32[0]*P.vector4_f32[0])+(P.vector4_f32[1]*P.vector4_f32[1])+(P.vector4_f32[2]*P.vector4_f32[2]));
|
|
// Prevent divide by zero
|
|
if (fLengthSq > 0)
|
|
{
|
|
fLengthSq = 1.0f/fLengthSq;
|
|
}
|
|
XMVECTORF32 vResult = { { {
|
|
P.vector4_f32[0] * fLengthSq,
|
|
P.vector4_f32[1] * fLengthSq,
|
|
P.vector4_f32[2] * fLengthSq,
|
|
P.vector4_f32[3] * fLengthSq
|
|
} } };
|
|
return vResult.v;
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
XMVECTOR vLength = XMVector3ReciprocalLength(P);
|
|
return XMVectorMultiply( P, vLength );
|
|
#elif defined(_XM_SSE4_INTRINSICS_)
|
|
XMVECTOR vLengthSq = _mm_dp_ps( P, P, 0x7f );
|
|
// Prepare for the division
|
|
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
|
|
// Failsafe on zero (Or epsilon) length planes
|
|
// If the length is infinity, set the elements to zero
|
|
vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
|
|
// Reciprocal mul to perform the normalization
|
|
vResult = _mm_div_ps(P,vResult);
|
|
// Any that are infinity, set to zero
|
|
vResult = _mm_and_ps(vResult,vLengthSq);
|
|
return vResult;
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
// Perform the dot product on x,y and z only
|
|
XMVECTOR vLengthSq = _mm_mul_ps(P,P);
|
|
XMVECTOR vTemp = XM_PERMUTE_PS(vLengthSq,_MM_SHUFFLE(2,1,2,1));
|
|
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
|
|
vTemp = XM_PERMUTE_PS(vTemp,_MM_SHUFFLE(1,1,1,1));
|
|
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
|
|
vLengthSq = XM_PERMUTE_PS(vLengthSq,_MM_SHUFFLE(0,0,0,0));
|
|
// Prepare for the division
|
|
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
|
|
// Failsafe on zero (Or epsilon) length planes
|
|
// If the length is infinity, set the elements to zero
|
|
vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
|
|
// Reciprocal mul to perform the normalization
|
|
vResult = _mm_div_ps(P,vResult);
|
|
// Any that are infinity, set to zero
|
|
vResult = _mm_and_ps(vResult,vLengthSq);
|
|
return vResult;
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneIntersectLine
|
|
(
|
|
FXMVECTOR P,
|
|
FXMVECTOR LinePoint1,
|
|
FXMVECTOR LinePoint2
|
|
)
|
|
{
|
|
XMVECTOR V1 = XMVector3Dot(P, LinePoint1);
|
|
XMVECTOR V2 = XMVector3Dot(P, LinePoint2);
|
|
XMVECTOR D = XMVectorSubtract(V1, V2);
|
|
|
|
XMVECTOR VT = XMPlaneDotCoord(P, LinePoint1);
|
|
VT = XMVectorDivide(VT, D);
|
|
|
|
XMVECTOR Point = XMVectorSubtract(LinePoint2, LinePoint1);
|
|
Point = XMVectorMultiplyAdd(Point, VT, LinePoint1);
|
|
|
|
const XMVECTOR Zero = XMVectorZero();
|
|
XMVECTOR Control = XMVectorNearEqual(D, Zero, g_XMEpsilon.v);
|
|
|
|
return XMVectorSelect(Point, g_XMQNaN.v, Control);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
_Use_decl_annotations_
|
|
inline void XM_CALLCONV XMPlaneIntersectPlane
|
|
(
|
|
XMVECTOR* pLinePoint1,
|
|
XMVECTOR* pLinePoint2,
|
|
FXMVECTOR P1,
|
|
FXMVECTOR P2
|
|
)
|
|
{
|
|
assert(pLinePoint1);
|
|
assert(pLinePoint2);
|
|
|
|
XMVECTOR V1 = XMVector3Cross(P2, P1);
|
|
|
|
XMVECTOR LengthSq = XMVector3LengthSq(V1);
|
|
|
|
XMVECTOR V2 = XMVector3Cross(P2, V1);
|
|
|
|
XMVECTOR P1W = XMVectorSplatW(P1);
|
|
XMVECTOR Point = XMVectorMultiply(V2, P1W);
|
|
|
|
XMVECTOR V3 = XMVector3Cross(V1, P1);
|
|
|
|
XMVECTOR P2W = XMVectorSplatW(P2);
|
|
Point = XMVectorMultiplyAdd(V3, P2W, Point);
|
|
|
|
XMVECTOR LinePoint1 = XMVectorDivide(Point, LengthSq);
|
|
|
|
XMVECTOR LinePoint2 = XMVectorAdd(LinePoint1, V1);
|
|
|
|
XMVECTOR Control = XMVectorLessOrEqual(LengthSq, g_XMEpsilon.v);
|
|
*pLinePoint1 = XMVectorSelect(LinePoint1,g_XMQNaN.v, Control);
|
|
*pLinePoint2 = XMVectorSelect(LinePoint2,g_XMQNaN.v, Control);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneTransform
|
|
(
|
|
FXMVECTOR P,
|
|
FXMMATRIX M
|
|
)
|
|
{
|
|
XMVECTOR W = XMVectorSplatW(P);
|
|
XMVECTOR Z = XMVectorSplatZ(P);
|
|
XMVECTOR Y = XMVectorSplatY(P);
|
|
XMVECTOR X = XMVectorSplatX(P);
|
|
|
|
XMVECTOR Result = XMVectorMultiply(W, M.r[3]);
|
|
Result = XMVectorMultiplyAdd(Z, M.r[2], Result);
|
|
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
|
|
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
|
|
return Result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
_Use_decl_annotations_
|
|
inline XMFLOAT4* XM_CALLCONV XMPlaneTransformStream
|
|
(
|
|
XMFLOAT4* pOutputStream,
|
|
size_t OutputStride,
|
|
const XMFLOAT4* pInputStream,
|
|
size_t InputStride,
|
|
size_t PlaneCount,
|
|
FXMMATRIX M
|
|
)
|
|
{
|
|
return XMVector4TransformStream(pOutputStream,
|
|
OutputStride,
|
|
pInputStream,
|
|
InputStride,
|
|
PlaneCount,
|
|
M);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Conversion operations
|
|
//------------------------------------------------------------------------------
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneFromPointNormal
|
|
(
|
|
FXMVECTOR Point,
|
|
FXMVECTOR Normal
|
|
)
|
|
{
|
|
XMVECTOR W = XMVector3Dot(Point, Normal);
|
|
W = XMVectorNegate(W);
|
|
return XMVectorSelect(W, Normal, g_XMSelect1110.v);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMPlaneFromPoints
|
|
(
|
|
FXMVECTOR Point1,
|
|
FXMVECTOR Point2,
|
|
FXMVECTOR Point3
|
|
)
|
|
{
|
|
XMVECTOR V21 = XMVectorSubtract(Point1, Point2);
|
|
XMVECTOR V31 = XMVectorSubtract(Point1, Point3);
|
|
|
|
XMVECTOR N = XMVector3Cross(V21, V31);
|
|
N = XMVector3Normalize(N);
|
|
|
|
XMVECTOR D = XMPlaneDotNormal(N, Point1);
|
|
D = XMVectorNegate(D);
|
|
|
|
XMVECTOR Result = XMVectorSelect(D, N, g_XMSelect1110.v);
|
|
|
|
return Result;
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Color
|
|
*
|
|
****************************************************************************/
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Comparison operations
|
|
//------------------------------------------------------------------------------
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMColorEqual
|
|
(
|
|
FXMVECTOR C1,
|
|
FXMVECTOR C2
|
|
)
|
|
{
|
|
return XMVector4Equal(C1, C2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMColorNotEqual
|
|
(
|
|
FXMVECTOR C1,
|
|
FXMVECTOR C2
|
|
)
|
|
{
|
|
return XMVector4NotEqual(C1, C2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMColorGreater
|
|
(
|
|
FXMVECTOR C1,
|
|
FXMVECTOR C2
|
|
)
|
|
{
|
|
return XMVector4Greater(C1, C2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMColorGreaterOrEqual
|
|
(
|
|
FXMVECTOR C1,
|
|
FXMVECTOR C2
|
|
)
|
|
{
|
|
return XMVector4GreaterOrEqual(C1, C2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMColorLess
|
|
(
|
|
FXMVECTOR C1,
|
|
FXMVECTOR C2
|
|
)
|
|
{
|
|
return XMVector4Less(C1, C2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMColorLessOrEqual
|
|
(
|
|
FXMVECTOR C1,
|
|
FXMVECTOR C2
|
|
)
|
|
{
|
|
return XMVector4LessOrEqual(C1, C2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMColorIsNaN
|
|
(
|
|
FXMVECTOR C
|
|
)
|
|
{
|
|
return XMVector4IsNaN(C);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XM_CALLCONV XMColorIsInfinite
|
|
(
|
|
FXMVECTOR C
|
|
)
|
|
{
|
|
return XMVector4IsInfinite(C);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Computation operations
|
|
//------------------------------------------------------------------------------
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorNegative
|
|
(
|
|
FXMVECTOR vColor
|
|
)
|
|
{
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
XMVECTORF32 vResult = { { {
|
|
1.0f - vColor.vector4_f32[0],
|
|
1.0f - vColor.vector4_f32[1],
|
|
1.0f - vColor.vector4_f32[2],
|
|
vColor.vector4_f32[3]
|
|
} } };
|
|
return vResult.v;
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
XMVECTOR vTemp = veorq_u32(vColor,g_XMNegate3);
|
|
return vaddq_f32(vTemp,g_XMOne3);
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
// Negate only x,y and z.
|
|
XMVECTOR vTemp = _mm_xor_ps(vColor,g_XMNegate3);
|
|
// Add 1,1,1,0 to -x,-y,-z,w
|
|
return _mm_add_ps(vTemp,g_XMOne3);
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorModulate
|
|
(
|
|
FXMVECTOR C1,
|
|
FXMVECTOR C2
|
|
)
|
|
{
|
|
return XMVectorMultiply(C1, C2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorAdjustSaturation
|
|
(
|
|
FXMVECTOR vColor,
|
|
float fSaturation
|
|
)
|
|
{
|
|
// Luminance = 0.2125f * C[0] + 0.7154f * C[1] + 0.0721f * C[2];
|
|
// Result = (C - Luminance) * Saturation + Luminance;
|
|
|
|
const XMVECTORF32 gvLuminance = { { { 0.2125f, 0.7154f, 0.0721f, 0.0f } } };
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
float fLuminance = (vColor.vector4_f32[0]*gvLuminance.f[0])+(vColor.vector4_f32[1]*gvLuminance.f[1])+(vColor.vector4_f32[2]*gvLuminance.f[2]);
|
|
XMVECTOR vResult;
|
|
vResult.vector4_f32[0] = ((vColor.vector4_f32[0] - fLuminance)*fSaturation)+fLuminance;
|
|
vResult.vector4_f32[1] = ((vColor.vector4_f32[1] - fLuminance)*fSaturation)+fLuminance;
|
|
vResult.vector4_f32[2] = ((vColor.vector4_f32[2] - fLuminance)*fSaturation)+fLuminance;
|
|
vResult.vector4_f32[3] = vColor.vector4_f32[3];
|
|
return vResult;
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
XMVECTOR vLuminance = XMVector3Dot( vColor, gvLuminance );
|
|
XMVECTOR vResult = vsubq_f32(vColor, vLuminance);
|
|
vResult = vmlaq_n_f32( vLuminance, vResult, fSaturation );
|
|
return vbslq_f32( g_XMSelect1110, vResult, vColor );
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
XMVECTOR vLuminance = XMVector3Dot( vColor, gvLuminance );
|
|
// Splat fSaturation
|
|
XMVECTOR vSaturation = _mm_set_ps1(fSaturation);
|
|
// vResult = ((vColor-vLuminance)*vSaturation)+vLuminance;
|
|
XMVECTOR vResult = _mm_sub_ps(vColor,vLuminance);
|
|
vResult = _mm_mul_ps(vResult,vSaturation);
|
|
vResult = _mm_add_ps(vResult,vLuminance);
|
|
// Retain w from the source color
|
|
vLuminance = _mm_shuffle_ps(vResult,vColor,_MM_SHUFFLE(3,2,2,2)); // x = vResult.z,y = vResult.z,z = vColor.z,w=vColor.w
|
|
vResult = _mm_shuffle_ps(vResult,vLuminance,_MM_SHUFFLE(3,0,1,0)); // x = vResult.x,y = vResult.y,z = vResult.z,w=vColor.w
|
|
return vResult;
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorAdjustContrast
|
|
(
|
|
FXMVECTOR vColor,
|
|
float fContrast
|
|
)
|
|
{
|
|
// Result = (vColor - 0.5f) * fContrast + 0.5f;
|
|
|
|
#if defined(_XM_NO_INTRINSICS_)
|
|
XMVECTORF32 vResult = { { {
|
|
((vColor.vector4_f32[0] - 0.5f) * fContrast) + 0.5f,
|
|
((vColor.vector4_f32[1] - 0.5f) * fContrast) + 0.5f,
|
|
((vColor.vector4_f32[2] - 0.5f) * fContrast) + 0.5f,
|
|
vColor.vector4_f32[3] // Leave W untouched
|
|
} } };
|
|
return vResult.v;
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_)
|
|
XMVECTOR vResult = vsubq_f32(vColor, g_XMOneHalf.v);
|
|
vResult = vmlaq_n_f32( g_XMOneHalf.v, vResult, fContrast );
|
|
return vbslq_f32( g_XMSelect1110, vResult, vColor );
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
XMVECTOR vScale = _mm_set_ps1(fContrast); // Splat the scale
|
|
XMVECTOR vResult = _mm_sub_ps(vColor,g_XMOneHalf); // Subtract 0.5f from the source (Saving source)
|
|
vResult = _mm_mul_ps(vResult,vScale); // Mul by scale
|
|
vResult = _mm_add_ps(vResult,g_XMOneHalf); // Add 0.5f
|
|
// Retain w from the source color
|
|
vScale = _mm_shuffle_ps(vResult,vColor,_MM_SHUFFLE(3,2,2,2)); // x = vResult.z,y = vResult.z,z = vColor.z,w=vColor.w
|
|
vResult = _mm_shuffle_ps(vResult,vScale,_MM_SHUFFLE(3,0,1,0)); // x = vResult.x,y = vResult.y,z = vResult.z,w=vColor.w
|
|
return vResult;
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorRGBToHSL( FXMVECTOR rgb )
|
|
{
|
|
XMVECTOR r = XMVectorSplatX( rgb );
|
|
XMVECTOR g = XMVectorSplatY( rgb );
|
|
XMVECTOR b = XMVectorSplatZ( rgb );
|
|
|
|
XMVECTOR min = XMVectorMin( r, XMVectorMin( g, b ) );
|
|
XMVECTOR max = XMVectorMax( r, XMVectorMax( g, b ) );
|
|
|
|
XMVECTOR l = XMVectorMultiply( XMVectorAdd( min, max ), g_XMOneHalf );
|
|
|
|
XMVECTOR d = XMVectorSubtract( max, min );
|
|
|
|
XMVECTOR la = XMVectorSelect( rgb, l, g_XMSelect1110 );
|
|
|
|
if ( XMVector3Less( d, g_XMEpsilon ) )
|
|
{
|
|
// Achromatic, assume H and S of 0
|
|
return XMVectorSelect( la, g_XMZero, g_XMSelect1100 );
|
|
}
|
|
else
|
|
{
|
|
XMVECTOR s, h;
|
|
|
|
XMVECTOR d2 = XMVectorAdd( min, max );
|
|
|
|
if ( XMVector3Greater( l, g_XMOneHalf ) )
|
|
{
|
|
// d / (2-max-min)
|
|
s = XMVectorDivide( d, XMVectorSubtract( g_XMTwo, d2 ) );
|
|
}
|
|
else
|
|
{
|
|
// d / (max+min)
|
|
s = XMVectorDivide( d, d2 );
|
|
}
|
|
|
|
if ( XMVector3Equal( r, max ) )
|
|
{
|
|
// Red is max
|
|
h = XMVectorDivide( XMVectorSubtract( g, b ), d );
|
|
}
|
|
else if ( XMVector3Equal( g, max ) )
|
|
{
|
|
// Green is max
|
|
h = XMVectorDivide( XMVectorSubtract( b, r ), d );
|
|
h = XMVectorAdd( h, g_XMTwo );
|
|
}
|
|
else
|
|
{
|
|
// Blue is max
|
|
h = XMVectorDivide( XMVectorSubtract( r, g ), d );
|
|
h = XMVectorAdd( h, g_XMFour );
|
|
}
|
|
|
|
h = XMVectorDivide( h, g_XMSix );
|
|
|
|
if ( XMVector3Less( h, g_XMZero ) )
|
|
h = XMVectorAdd( h, g_XMOne );
|
|
|
|
XMVECTOR lha = XMVectorSelect( la, h, g_XMSelect1100 );
|
|
return XMVectorSelect( s, lha, g_XMSelect1011 );
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
namespace Internal
|
|
{
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorHue2Clr( FXMVECTOR p, FXMVECTOR q, FXMVECTOR h )
|
|
{
|
|
static const XMVECTORF32 oneSixth = { { { 1.0f / 6.0f, 1.0f / 6.0f, 1.0f / 6.0f, 1.0f / 6.0f } } };
|
|
static const XMVECTORF32 twoThirds = { { { 2.0f / 3.0f, 2.0f / 3.0f, 2.0f / 3.0f, 2.0f / 3.0f } } };
|
|
|
|
XMVECTOR t = h;
|
|
|
|
if ( XMVector3Less( t, g_XMZero ) )
|
|
t = XMVectorAdd( t, g_XMOne );
|
|
|
|
if ( XMVector3Greater( t, g_XMOne ) )
|
|
t = XMVectorSubtract( t, g_XMOne );
|
|
|
|
if ( XMVector3Less( t, oneSixth ) )
|
|
{
|
|
// p + (q - p) * 6 * t
|
|
XMVECTOR t1 = XMVectorSubtract( q, p );
|
|
XMVECTOR t2 = XMVectorMultiply( g_XMSix, t );
|
|
return XMVectorMultiplyAdd( t1, t2, p );
|
|
}
|
|
|
|
if ( XMVector3Less( t, g_XMOneHalf ) )
|
|
return q;
|
|
|
|
if ( XMVector3Less( t, twoThirds ) )
|
|
{
|
|
// p + (q - p) * 6 * (2/3 - t)
|
|
XMVECTOR t1 = XMVectorSubtract( q, p );
|
|
XMVECTOR t2 = XMVectorMultiply( g_XMSix, XMVectorSubtract( twoThirds, t ) );
|
|
return XMVectorMultiplyAdd( t1, t2, p );
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
} // namespace Internal
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorHSLToRGB( FXMVECTOR hsl )
|
|
{
|
|
static const XMVECTORF32 oneThird = { { { 1.0f / 3.0f, 1.0f / 3.0f, 1.0f / 3.0f, 1.0f / 3.0f } } };
|
|
|
|
XMVECTOR s = XMVectorSplatY( hsl );
|
|
XMVECTOR l = XMVectorSplatZ( hsl );
|
|
|
|
if ( XMVector3NearEqual( s, g_XMZero, g_XMEpsilon ) )
|
|
{
|
|
// Achromatic
|
|
return XMVectorSelect( hsl, l, g_XMSelect1110 );
|
|
}
|
|
else
|
|
{
|
|
XMVECTOR h = XMVectorSplatX( hsl );
|
|
|
|
XMVECTOR q;
|
|
if ( XMVector3Less( l, g_XMOneHalf ) )
|
|
{
|
|
q = XMVectorMultiply( l, XMVectorAdd ( g_XMOne, s ) );
|
|
}
|
|
else
|
|
{
|
|
q = XMVectorSubtract( XMVectorAdd( l, s ), XMVectorMultiply( l, s ) );
|
|
}
|
|
|
|
XMVECTOR p = XMVectorSubtract( XMVectorMultiply( g_XMTwo, l ), q );
|
|
|
|
XMVECTOR r = DirectX::Internal::XMColorHue2Clr( p, q, XMVectorAdd( h, oneThird ) );
|
|
XMVECTOR g = DirectX::Internal::XMColorHue2Clr( p, q, h );
|
|
XMVECTOR b = DirectX::Internal::XMColorHue2Clr( p, q, XMVectorSubtract( h, oneThird ) );
|
|
|
|
XMVECTOR rg = XMVectorSelect( g, r, g_XMSelect1000 );
|
|
XMVECTOR ba = XMVectorSelect( hsl, b, g_XMSelect1110 );
|
|
|
|
return XMVectorSelect( ba, rg, g_XMSelect1100 );
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorRGBToHSV( FXMVECTOR rgb )
|
|
{
|
|
XMVECTOR r = XMVectorSplatX( rgb );
|
|
XMVECTOR g = XMVectorSplatY( rgb );
|
|
XMVECTOR b = XMVectorSplatZ( rgb );
|
|
|
|
XMVECTOR min = XMVectorMin( r, XMVectorMin( g, b ) );
|
|
XMVECTOR v = XMVectorMax( r, XMVectorMax( g, b ) );
|
|
|
|
XMVECTOR d = XMVectorSubtract( v, min );
|
|
|
|
XMVECTOR s = ( XMVector3NearEqual( v, g_XMZero, g_XMEpsilon ) ) ? g_XMZero : XMVectorDivide( d, v );
|
|
|
|
if ( XMVector3Less( d, g_XMEpsilon ) )
|
|
{
|
|
// Achromatic, assume H of 0
|
|
XMVECTOR hv = XMVectorSelect( v, g_XMZero, g_XMSelect1000 );
|
|
XMVECTOR hva = XMVectorSelect( rgb, hv, g_XMSelect1110 );
|
|
return XMVectorSelect( s, hva, g_XMSelect1011 );
|
|
}
|
|
else
|
|
{
|
|
XMVECTOR h;
|
|
|
|
if ( XMVector3Equal( r, v ) )
|
|
{
|
|
// Red is max
|
|
h = XMVectorDivide( XMVectorSubtract( g, b ), d );
|
|
|
|
if ( XMVector3Less( g, b ) )
|
|
h = XMVectorAdd( h, g_XMSix );
|
|
}
|
|
else if ( XMVector3Equal( g, v ) )
|
|
{
|
|
// Green is max
|
|
h = XMVectorDivide( XMVectorSubtract( b, r ), d );
|
|
h = XMVectorAdd( h, g_XMTwo );
|
|
}
|
|
else
|
|
{
|
|
// Blue is max
|
|
h = XMVectorDivide( XMVectorSubtract( r, g ), d );
|
|
h = XMVectorAdd( h, g_XMFour );
|
|
}
|
|
|
|
h = XMVectorDivide( h, g_XMSix );
|
|
|
|
XMVECTOR hv = XMVectorSelect( v, h, g_XMSelect1000 );
|
|
XMVECTOR hva = XMVectorSelect( rgb, hv, g_XMSelect1110 );
|
|
return XMVectorSelect( s, hva, g_XMSelect1011 );
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorHSVToRGB( FXMVECTOR hsv )
|
|
{
|
|
XMVECTOR h = XMVectorSplatX( hsv );
|
|
XMVECTOR s = XMVectorSplatY( hsv );
|
|
XMVECTOR v = XMVectorSplatZ( hsv );
|
|
|
|
XMVECTOR h6 = XMVectorMultiply( h, g_XMSix );
|
|
|
|
XMVECTOR i = XMVectorFloor( h6 );
|
|
XMVECTOR f = XMVectorSubtract( h6, i );
|
|
|
|
// p = v* (1-s)
|
|
XMVECTOR p = XMVectorMultiply( v, XMVectorSubtract( g_XMOne, s ) );
|
|
|
|
// q = v*(1-f*s)
|
|
XMVECTOR q = XMVectorMultiply( v, XMVectorSubtract( g_XMOne, XMVectorMultiply( f, s ) ) );
|
|
|
|
// t = v*(1 - (1-f)*s)
|
|
XMVECTOR t = XMVectorMultiply( v, XMVectorSubtract( g_XMOne, XMVectorMultiply( XMVectorSubtract( g_XMOne, f ), s ) ) );
|
|
|
|
auto ii = static_cast<int>( XMVectorGetX( XMVectorMod( i, g_XMSix ) ) );
|
|
|
|
XMVECTOR _rgb;
|
|
|
|
switch (ii)
|
|
{
|
|
case 0: // rgb = vtp
|
|
{
|
|
XMVECTOR vt = XMVectorSelect( t, v, g_XMSelect1000 );
|
|
_rgb = XMVectorSelect( p, vt, g_XMSelect1100 );
|
|
}
|
|
break;
|
|
case 1: // rgb = qvp
|
|
{
|
|
XMVECTOR qv = XMVectorSelect( v, q, g_XMSelect1000 );
|
|
_rgb = XMVectorSelect( p, qv, g_XMSelect1100 );
|
|
}
|
|
break;
|
|
case 2: // rgb = pvt
|
|
{
|
|
XMVECTOR pv = XMVectorSelect( v, p, g_XMSelect1000 );
|
|
_rgb = XMVectorSelect( t, pv, g_XMSelect1100 );
|
|
}
|
|
break;
|
|
case 3: // rgb = pqv
|
|
{
|
|
XMVECTOR pq = XMVectorSelect( q, p, g_XMSelect1000 );
|
|
_rgb = XMVectorSelect( v, pq, g_XMSelect1100 );
|
|
}
|
|
break;
|
|
case 4: // rgb = tpv
|
|
{
|
|
XMVECTOR tp = XMVectorSelect( p, t, g_XMSelect1000 );
|
|
_rgb = XMVectorSelect( v, tp, g_XMSelect1100 );
|
|
}
|
|
break;
|
|
default: // rgb = vpq
|
|
{
|
|
XMVECTOR vp = XMVectorSelect( p, v, g_XMSelect1000 );
|
|
_rgb = XMVectorSelect( q, vp, g_XMSelect1100 );
|
|
}
|
|
break;
|
|
}
|
|
|
|
return XMVectorSelect( hsv, _rgb, g_XMSelect1110 );
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorRGBToYUV( FXMVECTOR rgb )
|
|
{
|
|
static const XMVECTORF32 Scale0 = { { { 0.299f, -0.147f, 0.615f, 0.0f } } };
|
|
static const XMVECTORF32 Scale1 = { { { 0.587f, -0.289f, -0.515f, 0.0f } } };
|
|
static const XMVECTORF32 Scale2 = { { { 0.114f, 0.436f, -0.100f, 0.0f } } };
|
|
|
|
XMMATRIX M( Scale0, Scale1, Scale2, g_XMZero );
|
|
XMVECTOR clr = XMVector3Transform( rgb, M );
|
|
|
|
return XMVectorSelect( rgb, clr, g_XMSelect1110 );
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorYUVToRGB( FXMVECTOR yuv )
|
|
{
|
|
static const XMVECTORF32 Scale1 = { { { 0.0f, -0.395f, 2.032f, 0.0f } } };
|
|
static const XMVECTORF32 Scale2 = { { { 1.140f, -0.581f, 0.0f, 0.0f } } };
|
|
|
|
XMMATRIX M( g_XMOne, Scale1, Scale2, g_XMZero );
|
|
XMVECTOR clr = XMVector3Transform( yuv, M );
|
|
|
|
return XMVectorSelect( yuv, clr, g_XMSelect1110 );
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorRGBToYUV_HD( FXMVECTOR rgb )
|
|
{
|
|
static const XMVECTORF32 Scale0 = { { { 0.2126f, -0.0997f, 0.6150f, 0.0f } } };
|
|
static const XMVECTORF32 Scale1 = { { { 0.7152f, -0.3354f, -0.5586f, 0.0f } } };
|
|
static const XMVECTORF32 Scale2 = { { { 0.0722f, 0.4351f, -0.0564f, 0.0f } } };
|
|
|
|
XMMATRIX M( Scale0, Scale1, Scale2, g_XMZero );
|
|
XMVECTOR clr = XMVector3Transform( rgb, M );
|
|
|
|
return XMVectorSelect( rgb, clr, g_XMSelect1110 );
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorYUVToRGB_HD( FXMVECTOR yuv )
|
|
{
|
|
static const XMVECTORF32 Scale1 = { { { 0.0f, -0.2153f, 2.1324f, 0.0f } } };
|
|
static const XMVECTORF32 Scale2 = { { { 1.2803f, -0.3806f, 0.0f, 0.0f } } };
|
|
|
|
XMMATRIX M( g_XMOne, Scale1, Scale2, g_XMZero );
|
|
XMVECTOR clr = XMVector3Transform( yuv, M );
|
|
|
|
return XMVectorSelect( yuv, clr, g_XMSelect1110 );
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorRGBToXYZ( FXMVECTOR rgb )
|
|
{
|
|
static const XMVECTORF32 Scale0 = { { { 0.4887180f, 0.1762044f, 0.0000000f, 0.0f } } };
|
|
static const XMVECTORF32 Scale1 = { { { 0.3106803f, 0.8129847f, 0.0102048f, 0.0f } } };
|
|
static const XMVECTORF32 Scale2 = { { { 0.2006017f, 0.0108109f, 0.9897952f, 0.0f } } };
|
|
static const XMVECTORF32 Scale = { { { 1.f / 0.17697f, 1.f / 0.17697f, 1.f / 0.17697f, 0.0f } } };
|
|
|
|
XMMATRIX M( Scale0, Scale1, Scale2, g_XMZero );
|
|
XMVECTOR clr = XMVectorMultiply( XMVector3Transform( rgb, M ), Scale );
|
|
|
|
return XMVectorSelect( rgb, clr, g_XMSelect1110 );
|
|
}
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorXYZToRGB( FXMVECTOR xyz )
|
|
{
|
|
static const XMVECTORF32 Scale0 = { { { 2.3706743f, -0.5138850f, 0.0052982f, 0.0f } } };
|
|
static const XMVECTORF32 Scale1 = { { { -0.9000405f, 1.4253036f, -0.0146949f, 0.0f } } };
|
|
static const XMVECTORF32 Scale2 = { { { -0.4706338f, 0.0885814f, 1.0093968f, 0.0f } } };
|
|
static const XMVECTORF32 Scale = { { { 0.17697f, 0.17697f, 0.17697f, 0.0f } } };
|
|
|
|
XMMATRIX M( Scale0, Scale1, Scale2, g_XMZero );
|
|
XMVECTOR clr = XMVector3Transform( XMVectorMultiply( xyz, Scale ), M );
|
|
|
|
return XMVectorSelect( xyz, clr, g_XMSelect1110 );
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorXYZToSRGB( FXMVECTOR xyz )
|
|
{
|
|
static const XMVECTORF32 Scale0 = { { { 3.2406f, -0.9689f, 0.0557f, 0.0f } } };
|
|
static const XMVECTORF32 Scale1 = { { { -1.5372f, 1.8758f, -0.2040f, 0.0f } } };
|
|
static const XMVECTORF32 Scale2 = { { { -0.4986f, 0.0415f, 1.0570f, 0.0f } } };
|
|
static const XMVECTORF32 Cutoff = { { { 0.0031308f, 0.0031308f, 0.0031308f, 0.0f } } };
|
|
static const XMVECTORF32 Exp = { { { 1.0f / 2.4f, 1.0f / 2.4f, 1.0f / 2.4f, 1.0f } } };
|
|
|
|
XMMATRIX M( Scale0, Scale1, Scale2, g_XMZero );
|
|
XMVECTOR lclr = XMVector3Transform( xyz, M );
|
|
|
|
XMVECTOR sel = XMVectorGreater( lclr, Cutoff );
|
|
|
|
// clr = 12.92 * lclr for lclr <= 0.0031308f
|
|
XMVECTOR smallC = XMVectorMultiply( lclr, g_XMsrgbScale );
|
|
|
|
// clr = (1+a)*pow(lclr, 1/2.4) - a for lclr > 0.0031308 (where a = 0.055)
|
|
XMVECTOR largeC = XMVectorSubtract( XMVectorMultiply( g_XMsrgbA1, XMVectorPow( lclr, Exp ) ), g_XMsrgbA );
|
|
|
|
XMVECTOR clr = XMVectorSelect( smallC, largeC, sel );
|
|
|
|
return XMVectorSelect( xyz, clr, g_XMSelect1110 );
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorSRGBToXYZ( FXMVECTOR srgb )
|
|
{
|
|
static const XMVECTORF32 Scale0 = { { { 0.4124f, 0.2126f, 0.0193f, 0.0f } } };
|
|
static const XMVECTORF32 Scale1 = { { { 0.3576f, 0.7152f, 0.1192f, 0.0f } } };
|
|
static const XMVECTORF32 Scale2 = { { { 0.1805f, 0.0722f, 0.9505f, 0.0f } } };
|
|
static const XMVECTORF32 Cutoff = { { { 0.04045f, 0.04045f, 0.04045f, 0.0f } } };
|
|
static const XMVECTORF32 Exp = { { { 2.4f, 2.4f, 2.4f, 1.0f } } };
|
|
|
|
XMVECTOR sel = XMVectorGreater( srgb, Cutoff );
|
|
|
|
// lclr = clr / 12.92
|
|
XMVECTOR smallC = XMVectorDivide( srgb, g_XMsrgbScale );
|
|
|
|
// lclr = pow( (clr + a) / (1+a), 2.4 )
|
|
XMVECTOR largeC = XMVectorPow( XMVectorDivide( XMVectorAdd( srgb, g_XMsrgbA ), g_XMsrgbA1 ), Exp );
|
|
|
|
XMVECTOR lclr = XMVectorSelect( smallC, largeC, sel );
|
|
|
|
XMMATRIX M( Scale0, Scale1, Scale2, g_XMZero );
|
|
XMVECTOR clr = XMVector3Transform( lclr, M );
|
|
|
|
return XMVectorSelect( srgb, clr, g_XMSelect1110 );
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorRGBToSRGB( FXMVECTOR rgb )
|
|
{
|
|
static const XMVECTORF32 Cutoff = { { { 0.0031308f, 0.0031308f, 0.0031308f, 1.f } } };
|
|
static const XMVECTORF32 Linear = { { { 12.92f, 12.92f, 12.92f, 1.f } } };
|
|
static const XMVECTORF32 Scale = { { { 1.055f, 1.055f, 1.055f, 1.f } } };
|
|
static const XMVECTORF32 Bias = { { { 0.055f, 0.055f, 0.055f, 0.f } } };
|
|
static const XMVECTORF32 InvGamma = { { { 1.0f / 2.4f, 1.0f / 2.4f, 1.0f / 2.4f, 1.f } } };
|
|
|
|
XMVECTOR V = XMVectorSaturate(rgb);
|
|
XMVECTOR V0 = XMVectorMultiply( V, Linear );
|
|
XMVECTOR V1 = XMVectorSubtract( XMVectorMultiply( Scale, XMVectorPow( V, InvGamma ) ), Bias );
|
|
XMVECTOR select = XMVectorLess( V, Cutoff );
|
|
V = XMVectorSelect( V1, V0, select );
|
|
return XMVectorSelect( rgb, V, g_XMSelect1110 );
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMColorSRGBToRGB( FXMVECTOR srgb )
|
|
{
|
|
static const XMVECTORF32 Cutoff = { { { 0.04045f, 0.04045f, 0.04045f, 1.f } } };
|
|
static const XMVECTORF32 ILinear = { { { 1.f / 12.92f, 1.f / 12.92f, 1.f / 12.92f, 1.f } } };
|
|
static const XMVECTORF32 Scale = { { { 1.f / 1.055f, 1.f / 1.055f, 1.f / 1.055f, 1.f } } };
|
|
static const XMVECTORF32 Bias = { { { 0.055f, 0.055f, 0.055f, 0.f } } };
|
|
static const XMVECTORF32 Gamma = { { { 2.4f, 2.4f, 2.4f, 1.f } } };
|
|
|
|
XMVECTOR V = XMVectorSaturate(srgb);
|
|
XMVECTOR V0 = XMVectorMultiply( V, ILinear );
|
|
XMVECTOR V1 = XMVectorPow( XMVectorMultiply( XMVectorAdd( V, Bias ), Scale ), Gamma );
|
|
XMVECTOR select = XMVectorGreater( V, Cutoff );
|
|
V = XMVectorSelect( V0, V1, select );
|
|
return XMVectorSelect( srgb, V, g_XMSelect1110 );
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Miscellaneous
|
|
*
|
|
****************************************************************************/
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XMVerifyCPUSupport()
|
|
{
|
|
#if defined(_XM_SSE_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_)
|
|
int CPUInfo[4] = { -1 };
|
|
__cpuid(CPUInfo, 0);
|
|
|
|
#ifdef __AVX2__
|
|
if (CPUInfo[0] < 7)
|
|
return false;
|
|
#else
|
|
if (CPUInfo[0] < 1)
|
|
return false;
|
|
#endif
|
|
|
|
__cpuid(CPUInfo, 1);
|
|
|
|
#if defined(__AVX2__) || defined(_XM_AVX2_INTRINSICS_)
|
|
// The compiler can emit FMA3 instructions even without explicit intrinsics use
|
|
if ((CPUInfo[2] & 0x38081001) != 0x38081001)
|
|
return false; // No F16C/AVX/OSXSAVE/SSE4.1/FMA3/SSE3 support
|
|
#elif defined(_XM_FMA3_INTRINSICS_) && defined(_XM_F16C_INTRINSICS_)
|
|
if ((CPUInfo[2] & 0x38081001) != 0x38081001)
|
|
return false; // No F16C/AVX/OSXSAVE/SSE4.1/FMA3/SSE3 support
|
|
#elif defined(_XM_FMA3_INTRINSICS_)
|
|
if ((CPUInfo[2] & 0x18081001) != 0x18081001)
|
|
return false; // No AVX/OSXSAVE/SSE4.1/FMA3/SSE3 support
|
|
#elif defined(_XM_F16C_INTRINSICS_)
|
|
if ((CPUInfo[2] & 0x38080001) != 0x38080001)
|
|
return false; // No F16C/AVX/OSXSAVE/SSE4.1/SSE3 support
|
|
#elif defined(__AVX__) || defined(_XM_AVX_INTRINSICS_)
|
|
if ((CPUInfo[2] & 0x18080001) != 0x18080001)
|
|
return false; // No AVX/OSXSAVE/SSE4.1/SSE3 support
|
|
#elif defined(_XM_SSE4_INTRINSICS_)
|
|
if ((CPUInfo[2] & 0x80001) != 0x80001)
|
|
return false; // No SSE3/SSE4.1 support
|
|
#elif defined(_XM_SSE3_INTRINSICS_)
|
|
if (!(CPUInfo[2] & 0x1))
|
|
return false; // No SSE3 support
|
|
#endif
|
|
|
|
// The x64 processor model requires SSE2 support, but no harm in checking
|
|
if ((CPUInfo[3] & 0x6000000) != 0x6000000)
|
|
return false; // No SSE2/SSE support
|
|
|
|
#if defined(__AVX2__) || defined(_XM_AVX2_INTRINSICS_)
|
|
__cpuidex(CPUInfo, 7, 0);
|
|
if (!(CPUInfo[1] & 0x20))
|
|
return false; // No AVX2 support
|
|
#endif
|
|
|
|
return true;
|
|
#elif defined(_XM_ARM_NEON_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_)
|
|
// ARM-NEON support is required for the Windows on ARM platform
|
|
return true;
|
|
#else
|
|
// No intrinsics path always supported
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline XMVECTOR XM_CALLCONV XMFresnelTerm
|
|
(
|
|
FXMVECTOR CosIncidentAngle,
|
|
FXMVECTOR RefractionIndex
|
|
)
|
|
{
|
|
assert(!XMVector4IsInfinite(CosIncidentAngle));
|
|
|
|
// Result = 0.5f * (g - c)^2 / (g + c)^2 * ((c * (g + c) - 1)^2 / (c * (g - c) + 1)^2 + 1) where
|
|
// c = CosIncidentAngle
|
|
// g = sqrt(c^2 + RefractionIndex^2 - 1)
|
|
|
|
#if defined(_XM_NO_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
|
|
|
|
XMVECTOR G = XMVectorMultiplyAdd(RefractionIndex, RefractionIndex, g_XMNegativeOne.v);
|
|
G = XMVectorMultiplyAdd(CosIncidentAngle, CosIncidentAngle, G);
|
|
G = XMVectorAbs(G);
|
|
G = XMVectorSqrt(G);
|
|
|
|
XMVECTOR S = XMVectorAdd(G, CosIncidentAngle);
|
|
XMVECTOR D = XMVectorSubtract(G, CosIncidentAngle);
|
|
|
|
XMVECTOR V0 = XMVectorMultiply(D, D);
|
|
XMVECTOR V1 = XMVectorMultiply(S, S);
|
|
V1 = XMVectorReciprocal(V1);
|
|
V0 = XMVectorMultiply(g_XMOneHalf.v, V0);
|
|
V0 = XMVectorMultiply(V0, V1);
|
|
|
|
XMVECTOR V2 = XMVectorMultiplyAdd(CosIncidentAngle, S, g_XMNegativeOne.v);
|
|
XMVECTOR V3 = XMVectorMultiplyAdd(CosIncidentAngle, D, g_XMOne.v);
|
|
V2 = XMVectorMultiply(V2, V2);
|
|
V3 = XMVectorMultiply(V3, V3);
|
|
V3 = XMVectorReciprocal(V3);
|
|
V2 = XMVectorMultiplyAdd(V2, V3, g_XMOne.v);
|
|
|
|
XMVECTOR Result = XMVectorMultiply(V0, V2);
|
|
|
|
Result = XMVectorSaturate(Result);
|
|
|
|
return Result;
|
|
|
|
#elif defined(_XM_SSE_INTRINSICS_)
|
|
// G = sqrt(abs((RefractionIndex^2-1) + CosIncidentAngle^2))
|
|
XMVECTOR G = _mm_mul_ps(RefractionIndex,RefractionIndex);
|
|
XMVECTOR vTemp = _mm_mul_ps(CosIncidentAngle,CosIncidentAngle);
|
|
G = _mm_sub_ps(G,g_XMOne);
|
|
vTemp = _mm_add_ps(vTemp,G);
|
|
// max((0-vTemp),vTemp) == abs(vTemp)
|
|
// The abs is needed to deal with refraction and cosine being zero
|
|
G = _mm_setzero_ps();
|
|
G = _mm_sub_ps(G,vTemp);
|
|
G = _mm_max_ps(G,vTemp);
|
|
// Last operation, the sqrt()
|
|
G = _mm_sqrt_ps(G);
|
|
|
|
// Calc G-C and G+C
|
|
XMVECTOR GAddC = _mm_add_ps(G,CosIncidentAngle);
|
|
XMVECTOR GSubC = _mm_sub_ps(G,CosIncidentAngle);
|
|
// Perform the term (0.5f *(g - c)^2) / (g + c)^2
|
|
XMVECTOR vResult = _mm_mul_ps(GSubC,GSubC);
|
|
vTemp = _mm_mul_ps(GAddC,GAddC);
|
|
vResult = _mm_mul_ps(vResult,g_XMOneHalf);
|
|
vResult = _mm_div_ps(vResult,vTemp);
|
|
// Perform the term ((c * (g + c) - 1)^2 / (c * (g - c) + 1)^2 + 1)
|
|
GAddC = _mm_mul_ps(GAddC,CosIncidentAngle);
|
|
GSubC = _mm_mul_ps(GSubC,CosIncidentAngle);
|
|
GAddC = _mm_sub_ps(GAddC,g_XMOne);
|
|
GSubC = _mm_add_ps(GSubC,g_XMOne);
|
|
GAddC = _mm_mul_ps(GAddC,GAddC);
|
|
GSubC = _mm_mul_ps(GSubC,GSubC);
|
|
GAddC = _mm_div_ps(GAddC,GSubC);
|
|
GAddC = _mm_add_ps(GAddC,g_XMOne);
|
|
// Multiply the two term parts
|
|
vResult = _mm_mul_ps(vResult,GAddC);
|
|
// Clamp to 0.0 - 1.0f
|
|
vResult = _mm_max_ps(vResult,g_XMZero);
|
|
vResult = _mm_min_ps(vResult,g_XMOne);
|
|
return vResult;
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline bool XMScalarNearEqual
|
|
(
|
|
float S1,
|
|
float S2,
|
|
float Epsilon
|
|
)
|
|
{
|
|
float Delta = S1 - S2;
|
|
return (fabsf(Delta) <= Epsilon);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Modulo the range of the given angle such that -XM_PI <= Angle < XM_PI
|
|
inline float XMScalarModAngle
|
|
(
|
|
float Angle
|
|
)
|
|
{
|
|
// Note: The modulo is performed with unsigned math only to work
|
|
// around a precision error on numbers that are close to PI
|
|
|
|
// Normalize the range from 0.0f to XM_2PI
|
|
Angle = Angle + XM_PI;
|
|
// Perform the modulo, unsigned
|
|
float fTemp = fabsf(Angle);
|
|
fTemp = fTemp - (XM_2PI * static_cast<float>(static_cast<int32_t>(fTemp/XM_2PI)));
|
|
// Restore the number to the range of -XM_PI to XM_PI-epsilon
|
|
fTemp = fTemp - XM_PI;
|
|
// If the modulo'd value was negative, restore negation
|
|
if (Angle<0.0f) {
|
|
fTemp = -fTemp;
|
|
}
|
|
return fTemp;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline float XMScalarSin
|
|
(
|
|
float Value
|
|
)
|
|
{
|
|
// Map Value to y in [-pi,pi], x = 2*pi*quotient + remainder.
|
|
float quotient = XM_1DIV2PI*Value;
|
|
if (Value >= 0.0f)
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient + 0.5f));
|
|
}
|
|
else
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient - 0.5f));
|
|
}
|
|
float y = Value - XM_2PI*quotient;
|
|
|
|
// Map y to [-pi/2,pi/2] with sin(y) = sin(Value).
|
|
if (y > XM_PIDIV2)
|
|
{
|
|
y = XM_PI - y;
|
|
}
|
|
else if (y < -XM_PIDIV2)
|
|
{
|
|
y = -XM_PI - y;
|
|
}
|
|
|
|
// 11-degree minimax approximation
|
|
float y2 = y * y;
|
|
return ( ( ( ( (-2.3889859e-08f * y2 + 2.7525562e-06f) * y2 - 0.00019840874f ) * y2 + 0.0083333310f ) * y2 - 0.16666667f ) * y2 + 1.0f ) * y;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline float XMScalarSinEst
|
|
(
|
|
float Value
|
|
)
|
|
{
|
|
// Map Value to y in [-pi,pi], x = 2*pi*quotient + remainder.
|
|
float quotient = XM_1DIV2PI*Value;
|
|
if (Value >= 0.0f)
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient + 0.5f));
|
|
}
|
|
else
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient - 0.5f));
|
|
}
|
|
float y = Value - XM_2PI*quotient;
|
|
|
|
// Map y to [-pi/2,pi/2] with sin(y) = sin(Value).
|
|
if (y > XM_PIDIV2)
|
|
{
|
|
y = XM_PI - y;
|
|
}
|
|
else if (y < -XM_PIDIV2)
|
|
{
|
|
y = -XM_PI - y;
|
|
}
|
|
|
|
// 7-degree minimax approximation
|
|
float y2 = y * y;
|
|
return ( ( ( -0.00018524670f * y2 + 0.0083139502f ) * y2 - 0.16665852f ) * y2 + 1.0f ) * y;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline float XMScalarCos
|
|
(
|
|
float Value
|
|
)
|
|
{
|
|
// Map Value to y in [-pi,pi], x = 2*pi*quotient + remainder.
|
|
float quotient = XM_1DIV2PI*Value;
|
|
if (Value >= 0.0f)
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient + 0.5f));
|
|
}
|
|
else
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient - 0.5f));
|
|
}
|
|
float y = Value - XM_2PI*quotient;
|
|
|
|
// Map y to [-pi/2,pi/2] with cos(y) = sign*cos(x).
|
|
float sign;
|
|
if (y > XM_PIDIV2)
|
|
{
|
|
y = XM_PI - y;
|
|
sign = -1.0f;
|
|
}
|
|
else if (y < -XM_PIDIV2)
|
|
{
|
|
y = -XM_PI - y;
|
|
sign = -1.0f;
|
|
}
|
|
else
|
|
{
|
|
sign = +1.0f;
|
|
}
|
|
|
|
// 10-degree minimax approximation
|
|
float y2 = y*y;
|
|
float p = ( ( ( ( -2.6051615e-07f * y2 + 2.4760495e-05f ) * y2 - 0.0013888378f ) * y2 + 0.041666638f ) * y2 - 0.5f ) * y2 + 1.0f;
|
|
return sign*p;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline float XMScalarCosEst
|
|
(
|
|
float Value
|
|
)
|
|
{
|
|
// Map Value to y in [-pi,pi], x = 2*pi*quotient + remainder.
|
|
float quotient = XM_1DIV2PI*Value;
|
|
if (Value >= 0.0f)
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient + 0.5f));
|
|
}
|
|
else
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient - 0.5f));
|
|
}
|
|
float y = Value - XM_2PI*quotient;
|
|
|
|
// Map y to [-pi/2,pi/2] with cos(y) = sign*cos(x).
|
|
float sign;
|
|
if (y > XM_PIDIV2)
|
|
{
|
|
y = XM_PI - y;
|
|
sign = -1.0f;
|
|
}
|
|
else if (y < -XM_PIDIV2)
|
|
{
|
|
y = -XM_PI - y;
|
|
sign = -1.0f;
|
|
}
|
|
else
|
|
{
|
|
sign = +1.0f;
|
|
}
|
|
|
|
// 6-degree minimax approximation
|
|
float y2 = y * y;
|
|
float p = ( ( -0.0012712436f * y2 + 0.041493919f ) * y2 - 0.49992746f ) * y2 + 1.0f;
|
|
return sign*p;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
_Use_decl_annotations_
|
|
inline void XMScalarSinCos
|
|
(
|
|
float* pSin,
|
|
float* pCos,
|
|
float Value
|
|
)
|
|
{
|
|
assert(pSin);
|
|
assert(pCos);
|
|
|
|
// Map Value to y in [-pi,pi], x = 2*pi*quotient + remainder.
|
|
float quotient = XM_1DIV2PI*Value;
|
|
if (Value >= 0.0f)
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient + 0.5f));
|
|
}
|
|
else
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient - 0.5f));
|
|
}
|
|
float y = Value - XM_2PI*quotient;
|
|
|
|
// Map y to [-pi/2,pi/2] with sin(y) = sin(Value).
|
|
float sign;
|
|
if (y > XM_PIDIV2)
|
|
{
|
|
y = XM_PI - y;
|
|
sign = -1.0f;
|
|
}
|
|
else if (y < -XM_PIDIV2)
|
|
{
|
|
y = -XM_PI - y;
|
|
sign = -1.0f;
|
|
}
|
|
else
|
|
{
|
|
sign = +1.0f;
|
|
}
|
|
|
|
float y2 = y * y;
|
|
|
|
// 11-degree minimax approximation
|
|
*pSin = ( ( ( ( (-2.3889859e-08f * y2 + 2.7525562e-06f) * y2 - 0.00019840874f ) * y2 + 0.0083333310f ) * y2 - 0.16666667f ) * y2 + 1.0f ) * y;
|
|
|
|
// 10-degree minimax approximation
|
|
float p = ( ( ( ( -2.6051615e-07f * y2 + 2.4760495e-05f ) * y2 - 0.0013888378f ) * y2 + 0.041666638f ) * y2 - 0.5f ) * y2 + 1.0f;
|
|
*pCos = sign*p;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
_Use_decl_annotations_
|
|
inline void XMScalarSinCosEst
|
|
(
|
|
float* pSin,
|
|
float* pCos,
|
|
float Value
|
|
)
|
|
{
|
|
assert(pSin);
|
|
assert(pCos);
|
|
|
|
// Map Value to y in [-pi,pi], x = 2*pi*quotient + remainder.
|
|
float quotient = XM_1DIV2PI*Value;
|
|
if (Value >= 0.0f)
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient + 0.5f));
|
|
}
|
|
else
|
|
{
|
|
quotient = static_cast<float>(static_cast<int>(quotient - 0.5f));
|
|
}
|
|
float y = Value - XM_2PI*quotient;
|
|
|
|
// Map y to [-pi/2,pi/2] with sin(y) = sin(Value).
|
|
float sign;
|
|
if (y > XM_PIDIV2)
|
|
{
|
|
y = XM_PI - y;
|
|
sign = -1.0f;
|
|
}
|
|
else if (y < -XM_PIDIV2)
|
|
{
|
|
y = -XM_PI - y;
|
|
sign = -1.0f;
|
|
}
|
|
else
|
|
{
|
|
sign = +1.0f;
|
|
}
|
|
|
|
float y2 = y * y;
|
|
|
|
// 7-degree minimax approximation
|
|
*pSin = ( ( ( -0.00018524670f * y2 + 0.0083139502f ) * y2 - 0.16665852f ) * y2 + 1.0f ) * y;
|
|
|
|
// 6-degree minimax approximation
|
|
float p = ( ( -0.0012712436f * y2 + 0.041493919f ) * y2 - 0.49992746f ) * y2 + 1.0f;
|
|
*pCos = sign*p;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline float XMScalarASin
|
|
(
|
|
float Value
|
|
)
|
|
{
|
|
// Clamp input to [-1,1].
|
|
bool nonnegative = (Value >= 0.0f);
|
|
float x = fabsf(Value);
|
|
float omx = 1.0f - x;
|
|
if (omx < 0.0f)
|
|
{
|
|
omx = 0.0f;
|
|
}
|
|
float root = sqrtf(omx);
|
|
|
|
// 7-degree minimax approximation
|
|
float result = ( ( ( ( ( ( -0.0012624911f * x + 0.0066700901f ) * x - 0.0170881256f ) * x + 0.0308918810f ) * x - 0.0501743046f ) * x + 0.0889789874f ) * x - 0.2145988016f ) * x + 1.5707963050f;
|
|
result *= root; // acos(|x|)
|
|
|
|
// acos(x) = pi - acos(-x) when x < 0, asin(x) = pi/2 - acos(x)
|
|
return (nonnegative ? XM_PIDIV2 - result : result - XM_PIDIV2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline float XMScalarASinEst
|
|
(
|
|
float Value
|
|
)
|
|
{
|
|
// Clamp input to [-1,1].
|
|
bool nonnegative = (Value >= 0.0f);
|
|
float x = fabsf(Value);
|
|
float omx = 1.0f - x;
|
|
if (omx < 0.0f)
|
|
{
|
|
omx = 0.0f;
|
|
}
|
|
float root = sqrtf(omx);
|
|
|
|
// 3-degree minimax approximation
|
|
float result = ((-0.0187293f*x+0.0742610f)*x-0.2121144f)*x+1.5707288f;
|
|
result *= root; // acos(|x|)
|
|
|
|
// acos(x) = pi - acos(-x) when x < 0, asin(x) = pi/2 - acos(x)
|
|
return (nonnegative ? XM_PIDIV2 - result : result - XM_PIDIV2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline float XMScalarACos
|
|
(
|
|
float Value
|
|
)
|
|
{
|
|
// Clamp input to [-1,1].
|
|
bool nonnegative = (Value >= 0.0f);
|
|
float x = fabsf(Value);
|
|
float omx = 1.0f - x;
|
|
if (omx < 0.0f)
|
|
{
|
|
omx = 0.0f;
|
|
}
|
|
float root = sqrtf(omx);
|
|
|
|
// 7-degree minimax approximation
|
|
float result = ( ( ( ( ( ( -0.0012624911f * x + 0.0066700901f ) * x - 0.0170881256f ) * x + 0.0308918810f ) * x - 0.0501743046f ) * x + 0.0889789874f ) * x - 0.2145988016f ) * x + 1.5707963050f;
|
|
result *= root;
|
|
|
|
// acos(x) = pi - acos(-x) when x < 0
|
|
return (nonnegative ? result : XM_PI - result);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
inline float XMScalarACosEst
|
|
(
|
|
float Value
|
|
)
|
|
{
|
|
// Clamp input to [-1,1].
|
|
bool nonnegative = (Value >= 0.0f);
|
|
float x = fabsf(Value);
|
|
float omx = 1.0f - x;
|
|
if (omx < 0.0f)
|
|
{
|
|
omx = 0.0f;
|
|
}
|
|
float root = sqrtf(omx);
|
|
|
|
// 3-degree minimax approximation
|
|
float result = ( ( -0.0187293f * x + 0.0742610f ) * x - 0.2121144f ) * x + 1.5707288f;
|
|
result *= root;
|
|
|
|
// acos(x) = pi - acos(-x) when x < 0
|
|
return (nonnegative ? result : XM_PI - result);
|
|
}
|
|
|