1
0
mirror of https://github.com/microsoft/DirectXMath synced 2024-11-09 14:10:09 +00:00
DirectXMath/Inc/DirectXMathConvert.inl
2022-11-09 13:53:54 -08:00

2192 lines
78 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXMathConvert.inl -- SIMD C++ Math library
//
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkID=615560
//-------------------------------------------------------------------------------------
#pragma once
/****************************************************************************
*
* Data conversion
*
****************************************************************************/
//------------------------------------------------------------------------------
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4701)
// C4701: false positives
#endif
inline XMVECTOR XM_CALLCONV XMConvertVectorIntToFloat
(
FXMVECTOR VInt,
uint32_t DivExponent
) noexcept
{
assert(DivExponent < 32);
#if defined(_XM_NO_INTRINSICS_)
float fScale = 1.0f / static_cast<float>(1U << DivExponent);
uint32_t ElementIndex = 0;
XMVECTOR Result;
do {
auto iTemp = static_cast<int32_t>(VInt.vector4_u32[ElementIndex]);
Result.vector4_f32[ElementIndex] = static_cast<float>(iTemp)* fScale;
} while (++ElementIndex < 4);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float fScale = 1.0f / static_cast<float>(1U << DivExponent);
float32x4_t vResult = vcvtq_f32_s32(vreinterpretq_s32_f32(VInt));
return vmulq_n_f32(vResult, fScale);
#else // _XM_SSE_INTRINSICS_
// Convert to floats
XMVECTOR vResult = _mm_cvtepi32_ps(_mm_castps_si128(VInt));
// Convert DivExponent into 1.0f/(1<<DivExponent)
uint32_t uScale = 0x3F800000U - (DivExponent << 23);
// Splat the scalar value
__m128i vScale = _mm_set1_epi32(static_cast<int>(uScale));
vResult = _mm_mul_ps(vResult, _mm_castsi128_ps(vScale));
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMConvertVectorFloatToInt
(
FXMVECTOR VFloat,
uint32_t MulExponent
) noexcept
{
assert(MulExponent < 32);
#if defined(_XM_NO_INTRINSICS_)
// Get the scalar factor.
auto fScale = static_cast<float>(1U << MulExponent);
uint32_t ElementIndex = 0;
XMVECTOR Result;
do {
int32_t iResult;
float fTemp = VFloat.vector4_f32[ElementIndex] * fScale;
if (fTemp <= -(65536.0f * 32768.0f))
{
iResult = (-0x7FFFFFFF) - 1;
}
else if (fTemp > (65536.0f * 32768.0f) - 128.0f)
{
iResult = 0x7FFFFFFF;
}
else {
iResult = static_cast<int32_t>(fTemp);
}
Result.vector4_u32[ElementIndex] = static_cast<uint32_t>(iResult);
} while (++ElementIndex < 4);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t vResult = vmulq_n_f32(VFloat, static_cast<float>(1U << MulExponent));
// In case of positive overflow, detect it
uint32x4_t vOverflow = vcgtq_f32(vResult, g_XMMaxInt);
// Float to int conversion
int32x4_t vResulti = vcvtq_s32_f32(vResult);
// If there was positive overflow, set to 0x7FFFFFFF
vResult = vreinterpretq_f32_u32(vandq_u32(vOverflow, g_XMAbsMask));
vOverflow = vbicq_u32(vreinterpretq_u32_s32(vResulti), vOverflow);
vOverflow = vorrq_u32(vOverflow, vreinterpretq_u32_f32(vResult));
return vreinterpretq_f32_u32(vOverflow);
#else // _XM_SSE_INTRINSICS_
XMVECTOR vResult = _mm_set_ps1(static_cast<float>(1U << MulExponent));
vResult = _mm_mul_ps(vResult, VFloat);
// In case of positive overflow, detect it
XMVECTOR vOverflow = _mm_cmpgt_ps(vResult, g_XMMaxInt);
// Float to int conversion
__m128i vResulti = _mm_cvttps_epi32(vResult);
// If there was positive overflow, set to 0x7FFFFFFF
vResult = _mm_and_ps(vOverflow, g_XMAbsMask);
vOverflow = _mm_andnot_ps(vOverflow, _mm_castsi128_ps(vResulti));
vOverflow = _mm_or_ps(vOverflow, vResult);
return vOverflow;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMConvertVectorUIntToFloat
(
FXMVECTOR VUInt,
uint32_t DivExponent
) noexcept
{
assert(DivExponent < 32);
#if defined(_XM_NO_INTRINSICS_)
float fScale = 1.0f / static_cast<float>(1U << DivExponent);
uint32_t ElementIndex = 0;
XMVECTOR Result;
do {
Result.vector4_f32[ElementIndex] = static_cast<float>(VUInt.vector4_u32[ElementIndex])* fScale;
} while (++ElementIndex < 4);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float fScale = 1.0f / static_cast<float>(1U << DivExponent);
float32x4_t vResult = vcvtq_f32_u32(vreinterpretq_u32_f32(VUInt));
return vmulq_n_f32(vResult, fScale);
#else // _XM_SSE_INTRINSICS_
// For the values that are higher than 0x7FFFFFFF, a fixup is needed
// Determine which ones need the fix.
XMVECTOR vMask = _mm_and_ps(VUInt, g_XMNegativeZero);
// Force all values positive
XMVECTOR vResult = _mm_xor_ps(VUInt, vMask);
// Convert to floats
vResult = _mm_cvtepi32_ps(_mm_castps_si128(vResult));
// Convert 0x80000000 -> 0xFFFFFFFF
__m128i iMask = _mm_srai_epi32(_mm_castps_si128(vMask), 31);
// For only the ones that are too big, add the fixup
vMask = _mm_and_ps(_mm_castsi128_ps(iMask), g_XMFixUnsigned);
vResult = _mm_add_ps(vResult, vMask);
// Convert DivExponent into 1.0f/(1<<DivExponent)
uint32_t uScale = 0x3F800000U - (DivExponent << 23);
// Splat
iMask = _mm_set1_epi32(static_cast<int>(uScale));
vResult = _mm_mul_ps(vResult, _mm_castsi128_ps(iMask));
return vResult;
#endif
}
//------------------------------------------------------------------------------
inline XMVECTOR XM_CALLCONV XMConvertVectorFloatToUInt
(
FXMVECTOR VFloat,
uint32_t MulExponent
) noexcept
{
assert(MulExponent < 32);
#if defined(_XM_NO_INTRINSICS_)
// Get the scalar factor.
auto fScale = static_cast<float>(1U << MulExponent);
uint32_t ElementIndex = 0;
XMVECTOR Result;
do {
uint32_t uResult;
float fTemp = VFloat.vector4_f32[ElementIndex] * fScale;
if (fTemp <= 0.0f)
{
uResult = 0;
}
else if (fTemp >= (65536.0f * 65536.0f))
{
uResult = 0xFFFFFFFFU;
}
else {
uResult = static_cast<uint32_t>(fTemp);
}
Result.vector4_u32[ElementIndex] = uResult;
} while (++ElementIndex < 4);
return Result;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t vResult = vmulq_n_f32(VFloat, static_cast<float>(1U << MulExponent));
// In case of overflow, detect it
uint32x4_t vOverflow = vcgtq_f32(vResult, g_XMMaxUInt);
// Float to int conversion
uint32x4_t vResulti = vcvtq_u32_f32(vResult);
// If there was overflow, set to 0xFFFFFFFFU
vResult = vreinterpretq_f32_u32(vbicq_u32(vResulti, vOverflow));
vOverflow = vorrq_u32(vOverflow, vreinterpretq_u32_f32(vResult));
return vreinterpretq_f32_u32(vOverflow);
#else // _XM_SSE_INTRINSICS_
XMVECTOR vResult = _mm_set_ps1(static_cast<float>(1U << MulExponent));
vResult = _mm_mul_ps(vResult, VFloat);
// Clamp to >=0
vResult = _mm_max_ps(vResult, g_XMZero);
// Any numbers that are too big, set to 0xFFFFFFFFU
XMVECTOR vOverflow = _mm_cmpgt_ps(vResult, g_XMMaxUInt);
XMVECTOR vValue = g_XMUnsignedFix;
// Too large for a signed integer?
XMVECTOR vMask = _mm_cmpge_ps(vResult, vValue);
// Zero for number's lower than 0x80000000, 32768.0f*65536.0f otherwise
vValue = _mm_and_ps(vValue, vMask);
// Perform fixup only on numbers too large (Keeps low bit precision)
vResult = _mm_sub_ps(vResult, vValue);
__m128i vResulti = _mm_cvttps_epi32(vResult);
// Convert from signed to unsigned pnly if greater than 0x80000000
vMask = _mm_and_ps(vMask, g_XMNegativeZero);
vResult = _mm_xor_ps(_mm_castsi128_ps(vResulti), vMask);
// On those that are too large, set to 0xFFFFFFFF
vResult = _mm_or_ps(vResult, vOverflow);
return vResult;
#endif
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
/****************************************************************************
*
* Vector and matrix load operations
*
****************************************************************************/
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadInt(const uint32_t* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_u32[0] = *pSource;
V.vector4_u32[1] = 0;
V.vector4_u32[2] = 0;
V.vector4_u32[3] = 0;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t zero = vdupq_n_u32(0);
return vreinterpretq_f32_u32(vld1q_lane_u32(pSource, zero, 0));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_load_ss(reinterpret_cast<const float*>(pSource));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadFloat(const float* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = *pSource;
V.vector4_f32[1] = 0.f;
V.vector4_f32[2] = 0.f;
V.vector4_f32[3] = 0.f;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t zero = vdupq_n_f32(0);
return vld1q_lane_f32(pSource, zero, 0);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_load_ss(pSource);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadInt2(const uint32_t* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_u32[0] = pSource[0];
V.vector4_u32[1] = pSource[1];
V.vector4_u32[2] = 0;
V.vector4_u32[3] = 0;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t x = vld1_u32(pSource);
uint32x2_t zero = vdup_n_u32(0);
return vreinterpretq_f32_u32(vcombine_u32(x, zero));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadInt2A(const uint32_t* pSource) noexcept
{
assert(pSource);
assert((reinterpret_cast<uintptr_t>(pSource) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_u32[0] = pSource[0];
V.vector4_u32[1] = pSource[1];
V.vector4_u32[2] = 0;
V.vector4_u32[3] = 0;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
uint32x2_t x = vld1_u32_ex(pSource, 64);
#else
uint32x2_t x = vld1_u32(pSource);
#endif
uint32x2_t zero = vdup_n_u32(0);
return vreinterpretq_f32_u32(vcombine_u32(x, zero));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadFloat2(const XMFLOAT2* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = pSource->x;
V.vector4_f32[1] = pSource->y;
V.vector4_f32[2] = 0.f;
V.vector4_f32[3] = 0.f;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t x = vld1_f32(reinterpret_cast<const float*>(pSource));
float32x2_t zero = vdup_n_f32(0);
return vcombine_f32(x, zero);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadFloat2A(const XMFLOAT2A* pSource) noexcept
{
assert(pSource);
assert((reinterpret_cast<uintptr_t>(pSource) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = pSource->x;
V.vector4_f32[1] = pSource->y;
V.vector4_f32[2] = 0.f;
V.vector4_f32[3] = 0.f;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
float32x2_t x = vld1_f32_ex(reinterpret_cast<const float*>(pSource), 64);
#else
float32x2_t x = vld1_f32(reinterpret_cast<const float*>(pSource));
#endif
float32x2_t zero = vdup_n_f32(0);
return vcombine_f32(x, zero);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadSInt2(const XMINT2* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = static_cast<float>(pSource->x);
V.vector4_f32[1] = static_cast<float>(pSource->y);
V.vector4_f32[2] = 0.f;
V.vector4_f32[3] = 0.f;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
int32x2_t x = vld1_s32(reinterpret_cast<const int32_t*>(pSource));
float32x2_t v = vcvt_f32_s32(x);
float32x2_t zero = vdup_n_f32(0);
return vcombine_f32(v, zero);
#elif defined(_XM_SSE_INTRINSICS_)
__m128 V = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
return _mm_cvtepi32_ps(_mm_castps_si128(V));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadUInt2(const XMUINT2* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = static_cast<float>(pSource->x);
V.vector4_f32[1] = static_cast<float>(pSource->y);
V.vector4_f32[2] = 0.f;
V.vector4_f32[3] = 0.f;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t x = vld1_u32(reinterpret_cast<const uint32_t*>(pSource));
float32x2_t v = vcvt_f32_u32(x);
float32x2_t zero = vdup_n_f32(0);
return vcombine_f32(v, zero);
#elif defined(_XM_SSE_INTRINSICS_)
__m128 V = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
// For the values that are higher than 0x7FFFFFFF, a fixup is needed
// Determine which ones need the fix.
XMVECTOR vMask = _mm_and_ps(V, g_XMNegativeZero);
// Force all values positive
XMVECTOR vResult = _mm_xor_ps(V, vMask);
// Convert to floats
vResult = _mm_cvtepi32_ps(_mm_castps_si128(vResult));
// Convert 0x80000000 -> 0xFFFFFFFF
__m128i iMask = _mm_srai_epi32(_mm_castps_si128(vMask), 31);
// For only the ones that are too big, add the fixup
vMask = _mm_and_ps(_mm_castsi128_ps(iMask), g_XMFixUnsigned);
vResult = _mm_add_ps(vResult, vMask);
return vResult;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadInt3(const uint32_t* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_u32[0] = pSource[0];
V.vector4_u32[1] = pSource[1];
V.vector4_u32[2] = pSource[2];
V.vector4_u32[3] = 0;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t x = vld1_u32(pSource);
uint32x2_t zero = vdup_n_u32(0);
uint32x2_t y = vld1_lane_u32(pSource + 2, zero, 0);
return vreinterpretq_f32_u32(vcombine_u32(x, y));
#elif defined(_XM_SSE4_INTRINSICS_)
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
__m128 z = _mm_load_ss(reinterpret_cast<const float*>(pSource + 2));
return _mm_insert_ps(xy, z, 0x20);
#elif defined(_XM_SSE_INTRINSICS_)
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
__m128 z = _mm_load_ss(reinterpret_cast<const float*>(pSource + 2));
return _mm_movelh_ps(xy, z);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadInt3A(const uint32_t* pSource) noexcept
{
assert(pSource);
assert((reinterpret_cast<uintptr_t>(pSource) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_u32[0] = pSource[0];
V.vector4_u32[1] = pSource[1];
V.vector4_u32[2] = pSource[2];
V.vector4_u32[3] = 0;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Reads an extra integer which is zero'd
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
uint32x4_t V = vld1q_u32_ex(pSource, 128);
#else
uint32x4_t V = vld1q_u32(pSource);
#endif
return vreinterpretq_f32_u32(vsetq_lane_u32(0, V, 3));
#elif defined(_XM_SSE4_INTRINSICS_)
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
__m128 z = _mm_load_ss(reinterpret_cast<const float*>(pSource + 2));
return _mm_insert_ps(xy, z, 0x20);
#elif defined(_XM_SSE_INTRINSICS_)
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
__m128 z = _mm_load_ss(reinterpret_cast<const float*>(pSource + 2));
return _mm_movelh_ps(xy, z);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadFloat3(const XMFLOAT3* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = pSource->x;
V.vector4_f32[1] = pSource->y;
V.vector4_f32[2] = pSource->z;
V.vector4_f32[3] = 0.f;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t x = vld1_f32(reinterpret_cast<const float*>(pSource));
float32x2_t zero = vdup_n_f32(0);
float32x2_t y = vld1_lane_f32(reinterpret_cast<const float*>(pSource) + 2, zero, 0);
return vcombine_f32(x, y);
#elif defined(_XM_SSE4_INTRINSICS_)
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
__m128 z = _mm_load_ss(&pSource->z);
return _mm_insert_ps(xy, z, 0x20);
#elif defined(_XM_SSE_INTRINSICS_)
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
__m128 z = _mm_load_ss(&pSource->z);
return _mm_movelh_ps(xy, z);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadFloat3A(const XMFLOAT3A* pSource) noexcept
{
assert(pSource);
assert((reinterpret_cast<uintptr_t>(pSource) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = pSource->x;
V.vector4_f32[1] = pSource->y;
V.vector4_f32[2] = pSource->z;
V.vector4_f32[3] = 0.f;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
// Reads an extra float which is zero'd
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
float32x4_t V = vld1q_f32_ex(reinterpret_cast<const float*>(pSource), 128);
#else
float32x4_t V = vld1q_f32(reinterpret_cast<const float*>(pSource));
#endif
return vsetq_lane_f32(0, V, 3);
#elif defined(_XM_SSE_INTRINSICS_)
// Reads an extra float which is zero'd
__m128 V = _mm_load_ps(&pSource->x);
return _mm_and_ps(V, g_XMMask3);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadSInt3(const XMINT3* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = static_cast<float>(pSource->x);
V.vector4_f32[1] = static_cast<float>(pSource->y);
V.vector4_f32[2] = static_cast<float>(pSource->z);
V.vector4_f32[3] = 0.f;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
int32x2_t x = vld1_s32(reinterpret_cast<const int32_t*>(pSource));
int32x2_t zero = vdup_n_s32(0);
int32x2_t y = vld1_lane_s32(reinterpret_cast<const int32_t*>(pSource) + 2, zero, 0);
int32x4_t v = vcombine_s32(x, y);
return vcvtq_f32_s32(v);
#elif defined(_XM_SSE_INTRINSICS_)
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
__m128 z = _mm_load_ss(reinterpret_cast<const float*>(&pSource->z));
__m128 V = _mm_movelh_ps(xy, z);
return _mm_cvtepi32_ps(_mm_castps_si128(V));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadUInt3(const XMUINT3* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = static_cast<float>(pSource->x);
V.vector4_f32[1] = static_cast<float>(pSource->y);
V.vector4_f32[2] = static_cast<float>(pSource->z);
V.vector4_f32[3] = 0.f;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t x = vld1_u32(reinterpret_cast<const uint32_t*>(pSource));
uint32x2_t zero = vdup_n_u32(0);
uint32x2_t y = vld1_lane_u32(reinterpret_cast<const uint32_t*>(pSource) + 2, zero, 0);
uint32x4_t v = vcombine_u32(x, y);
return vcvtq_f32_u32(v);
#elif defined(_XM_SSE_INTRINSICS_)
__m128 xy = _mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(pSource)));
__m128 z = _mm_load_ss(reinterpret_cast<const float*>(&pSource->z));
__m128 V = _mm_movelh_ps(xy, z);
// For the values that are higher than 0x7FFFFFFF, a fixup is needed
// Determine which ones need the fix.
XMVECTOR vMask = _mm_and_ps(V, g_XMNegativeZero);
// Force all values positive
XMVECTOR vResult = _mm_xor_ps(V, vMask);
// Convert to floats
vResult = _mm_cvtepi32_ps(_mm_castps_si128(vResult));
// Convert 0x80000000 -> 0xFFFFFFFF
__m128i iMask = _mm_srai_epi32(_mm_castps_si128(vMask), 31);
// For only the ones that are too big, add the fixup
vMask = _mm_and_ps(_mm_castsi128_ps(iMask), g_XMFixUnsigned);
vResult = _mm_add_ps(vResult, vMask);
return vResult;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadInt4(const uint32_t* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_u32[0] = pSource[0];
V.vector4_u32[1] = pSource[1];
V.vector4_u32[2] = pSource[2];
V.vector4_u32[3] = pSource[3];
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vreinterpretq_f32_u32(vld1q_u32(pSource));
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pSource));
return _mm_castsi128_ps(V);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadInt4A(const uint32_t* pSource) noexcept
{
assert(pSource);
assert((reinterpret_cast<uintptr_t>(pSource) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_u32[0] = pSource[0];
V.vector4_u32[1] = pSource[1];
V.vector4_u32[2] = pSource[2];
V.vector4_u32[3] = pSource[3];
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
return vld1q_u32_ex(pSource, 128);
#else
return vreinterpretq_f32_u32(vld1q_u32(pSource));
#endif
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_load_si128(reinterpret_cast<const __m128i*>(pSource));
return _mm_castsi128_ps(V);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadFloat4(const XMFLOAT4* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = pSource->x;
V.vector4_f32[1] = pSource->y;
V.vector4_f32[2] = pSource->z;
V.vector4_f32[3] = pSource->w;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
return vld1q_f32(reinterpret_cast<const float*>(pSource));
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_loadu_ps(&pSource->x);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadFloat4A(const XMFLOAT4A* pSource) noexcept
{
assert(pSource);
assert((reinterpret_cast<uintptr_t>(pSource) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = pSource->x;
V.vector4_f32[1] = pSource->y;
V.vector4_f32[2] = pSource->z;
V.vector4_f32[3] = pSource->w;
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
return vld1q_f32_ex(reinterpret_cast<const float*>(pSource), 128);
#else
return vld1q_f32(reinterpret_cast<const float*>(pSource));
#endif
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_load_ps(&pSource->x);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadSInt4(const XMINT4* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = static_cast<float>(pSource->x);
V.vector4_f32[1] = static_cast<float>(pSource->y);
V.vector4_f32[2] = static_cast<float>(pSource->z);
V.vector4_f32[3] = static_cast<float>(pSource->w);
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
int32x4_t v = vld1q_s32(reinterpret_cast<const int32_t*>(pSource));
return vcvtq_f32_s32(v);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pSource));
return _mm_cvtepi32_ps(V);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMVECTOR XM_CALLCONV XMLoadUInt4(const XMUINT4* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
V.vector4_f32[0] = static_cast<float>(pSource->x);
V.vector4_f32[1] = static_cast<float>(pSource->y);
V.vector4_f32[2] = static_cast<float>(pSource->z);
V.vector4_f32[3] = static_cast<float>(pSource->w);
return V;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t v = vld1q_u32(reinterpret_cast<const uint32_t*>(pSource));
return vcvtq_f32_u32(v);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pSource));
// For the values that are higher than 0x7FFFFFFF, a fixup is needed
// Determine which ones need the fix.
XMVECTOR vMask = _mm_and_ps(_mm_castsi128_ps(V), g_XMNegativeZero);
// Force all values positive
XMVECTOR vResult = _mm_xor_ps(_mm_castsi128_ps(V), vMask);
// Convert to floats
vResult = _mm_cvtepi32_ps(_mm_castps_si128(vResult));
// Convert 0x80000000 -> 0xFFFFFFFF
__m128i iMask = _mm_srai_epi32(_mm_castps_si128(vMask), 31);
// For only the ones that are too big, add the fixup
vMask = _mm_and_ps(_mm_castsi128_ps(iMask), g_XMFixUnsigned);
vResult = _mm_add_ps(vResult, vMask);
return vResult;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMMATRIX XM_CALLCONV XMLoadFloat3x3(const XMFLOAT3X3* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX M;
M.r[0].vector4_f32[0] = pSource->m[0][0];
M.r[0].vector4_f32[1] = pSource->m[0][1];
M.r[0].vector4_f32[2] = pSource->m[0][2];
M.r[0].vector4_f32[3] = 0.0f;
M.r[1].vector4_f32[0] = pSource->m[1][0];
M.r[1].vector4_f32[1] = pSource->m[1][1];
M.r[1].vector4_f32[2] = pSource->m[1][2];
M.r[1].vector4_f32[3] = 0.0f;
M.r[2].vector4_f32[0] = pSource->m[2][0];
M.r[2].vector4_f32[1] = pSource->m[2][1];
M.r[2].vector4_f32[2] = pSource->m[2][2];
M.r[2].vector4_f32[3] = 0.0f;
M.r[3].vector4_f32[0] = 0.0f;
M.r[3].vector4_f32[1] = 0.0f;
M.r[3].vector4_f32[2] = 0.0f;
M.r[3].vector4_f32[3] = 1.0f;
return M;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t v0 = vld1q_f32(&pSource->m[0][0]);
float32x4_t v1 = vld1q_f32(&pSource->m[1][1]);
float32x2_t v2 = vcreate_f32(static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(&pSource->m[2][2])));
float32x4_t T = vextq_f32(v0, v1, 3);
XMMATRIX M;
M.r[0] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(v0), g_XMMask3));
M.r[1] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T), g_XMMask3));
M.r[2] = vcombine_f32(vget_high_f32(v1), v2);
M.r[3] = g_XMIdentityR3;
return M;
#elif defined(_XM_SSE_INTRINSICS_)
__m128 Z = _mm_setzero_ps();
__m128 V1 = _mm_loadu_ps(&pSource->m[0][0]);
__m128 V2 = _mm_loadu_ps(&pSource->m[1][1]);
__m128 V3 = _mm_load_ss(&pSource->m[2][2]);
__m128 T1 = _mm_unpackhi_ps(V1, Z);
__m128 T2 = _mm_unpacklo_ps(V2, Z);
__m128 T3 = _mm_shuffle_ps(V3, T2, _MM_SHUFFLE(0, 1, 0, 0));
__m128 T4 = _mm_movehl_ps(T2, T3);
__m128 T5 = _mm_movehl_ps(Z, T1);
XMMATRIX M;
M.r[0] = _mm_movelh_ps(V1, T1);
M.r[1] = _mm_add_ps(T4, T5);
M.r[2] = _mm_shuffle_ps(V2, V3, _MM_SHUFFLE(1, 0, 3, 2));
M.r[3] = g_XMIdentityR3;
return M;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMMATRIX XM_CALLCONV XMLoadFloat4x3(const XMFLOAT4X3* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX M;
M.r[0].vector4_f32[0] = pSource->m[0][0];
M.r[0].vector4_f32[1] = pSource->m[0][1];
M.r[0].vector4_f32[2] = pSource->m[0][2];
M.r[0].vector4_f32[3] = 0.0f;
M.r[1].vector4_f32[0] = pSource->m[1][0];
M.r[1].vector4_f32[1] = pSource->m[1][1];
M.r[1].vector4_f32[2] = pSource->m[1][2];
M.r[1].vector4_f32[3] = 0.0f;
M.r[2].vector4_f32[0] = pSource->m[2][0];
M.r[2].vector4_f32[1] = pSource->m[2][1];
M.r[2].vector4_f32[2] = pSource->m[2][2];
M.r[2].vector4_f32[3] = 0.0f;
M.r[3].vector4_f32[0] = pSource->m[3][0];
M.r[3].vector4_f32[1] = pSource->m[3][1];
M.r[3].vector4_f32[2] = pSource->m[3][2];
M.r[3].vector4_f32[3] = 1.0f;
return M;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t v0 = vld1q_f32(&pSource->m[0][0]);
float32x4_t v1 = vld1q_f32(&pSource->m[1][1]);
float32x4_t v2 = vld1q_f32(&pSource->m[2][2]);
float32x4_t T1 = vextq_f32(v0, v1, 3);
float32x4_t T2 = vcombine_f32(vget_high_f32(v1), vget_low_f32(v2));
float32x4_t T3 = vextq_f32(v2, v2, 1);
XMMATRIX M;
M.r[0] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(v0), g_XMMask3));
M.r[1] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T1), g_XMMask3));
M.r[2] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T2), g_XMMask3));
M.r[3] = vsetq_lane_f32(1.f, T3, 3);
return M;
#elif defined(_XM_SSE_INTRINSICS_)
// Use unaligned load instructions to
// load the 12 floats
// vTemp1 = x1,y1,z1,x2
XMVECTOR vTemp1 = _mm_loadu_ps(&pSource->m[0][0]);
// vTemp2 = y2,z2,x3,y3
XMVECTOR vTemp2 = _mm_loadu_ps(&pSource->m[1][1]);
// vTemp4 = z3,x4,y4,z4
XMVECTOR vTemp4 = _mm_loadu_ps(&pSource->m[2][2]);
// vTemp3 = x3,y3,z3,z3
XMVECTOR vTemp3 = _mm_shuffle_ps(vTemp2, vTemp4, _MM_SHUFFLE(0, 0, 3, 2));
// vTemp2 = y2,z2,x2,x2
vTemp2 = _mm_shuffle_ps(vTemp2, vTemp1, _MM_SHUFFLE(3, 3, 1, 0));
// vTemp2 = x2,y2,z2,z2
vTemp2 = XM_PERMUTE_PS(vTemp2, _MM_SHUFFLE(1, 1, 0, 2));
// vTemp1 = x1,y1,z1,0
vTemp1 = _mm_and_ps(vTemp1, g_XMMask3);
// vTemp2 = x2,y2,z2,0
vTemp2 = _mm_and_ps(vTemp2, g_XMMask3);
// vTemp3 = x3,y3,z3,0
vTemp3 = _mm_and_ps(vTemp3, g_XMMask3);
// vTemp4i = x4,y4,z4,0
__m128i vTemp4i = _mm_srli_si128(_mm_castps_si128(vTemp4), 32 / 8);
// vTemp4i = x4,y4,z4,1.0f
vTemp4i = _mm_or_si128(vTemp4i, g_XMIdentityR3);
XMMATRIX M(vTemp1,
vTemp2,
vTemp3,
_mm_castsi128_ps(vTemp4i));
return M;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMMATRIX XM_CALLCONV XMLoadFloat4x3A(const XMFLOAT4X3A* pSource) noexcept
{
assert(pSource);
assert((reinterpret_cast<uintptr_t>(pSource) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX M;
M.r[0].vector4_f32[0] = pSource->m[0][0];
M.r[0].vector4_f32[1] = pSource->m[0][1];
M.r[0].vector4_f32[2] = pSource->m[0][2];
M.r[0].vector4_f32[3] = 0.0f;
M.r[1].vector4_f32[0] = pSource->m[1][0];
M.r[1].vector4_f32[1] = pSource->m[1][1];
M.r[1].vector4_f32[2] = pSource->m[1][2];
M.r[1].vector4_f32[3] = 0.0f;
M.r[2].vector4_f32[0] = pSource->m[2][0];
M.r[2].vector4_f32[1] = pSource->m[2][1];
M.r[2].vector4_f32[2] = pSource->m[2][2];
M.r[2].vector4_f32[3] = 0.0f;
M.r[3].vector4_f32[0] = pSource->m[3][0];
M.r[3].vector4_f32[1] = pSource->m[3][1];
M.r[3].vector4_f32[2] = pSource->m[3][2];
M.r[3].vector4_f32[3] = 1.0f;
return M;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
float32x4_t v0 = vld1q_f32_ex(&pSource->m[0][0], 128);
float32x4_t v1 = vld1q_f32_ex(&pSource->m[1][1], 128);
float32x4_t v2 = vld1q_f32_ex(&pSource->m[2][2], 128);
#else
float32x4_t v0 = vld1q_f32(&pSource->m[0][0]);
float32x4_t v1 = vld1q_f32(&pSource->m[1][1]);
float32x4_t v2 = vld1q_f32(&pSource->m[2][2]);
#endif
float32x4_t T1 = vextq_f32(v0, v1, 3);
float32x4_t T2 = vcombine_f32(vget_high_f32(v1), vget_low_f32(v2));
float32x4_t T3 = vextq_f32(v2, v2, 1);
XMMATRIX M;
M.r[0] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(v0), g_XMMask3));
M.r[1] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T1), g_XMMask3));
M.r[2] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T2), g_XMMask3));
M.r[3] = vsetq_lane_f32(1.f, T3, 3);
return M;
#elif defined(_XM_SSE_INTRINSICS_)
// Use aligned load instructions to
// load the 12 floats
// vTemp1 = x1,y1,z1,x2
XMVECTOR vTemp1 = _mm_load_ps(&pSource->m[0][0]);
// vTemp2 = y2,z2,x3,y3
XMVECTOR vTemp2 = _mm_load_ps(&pSource->m[1][1]);
// vTemp4 = z3,x4,y4,z4
XMVECTOR vTemp4 = _mm_load_ps(&pSource->m[2][2]);
// vTemp3 = x3,y3,z3,z3
XMVECTOR vTemp3 = _mm_shuffle_ps(vTemp2, vTemp4, _MM_SHUFFLE(0, 0, 3, 2));
// vTemp2 = y2,z2,x2,x2
vTemp2 = _mm_shuffle_ps(vTemp2, vTemp1, _MM_SHUFFLE(3, 3, 1, 0));
// vTemp2 = x2,y2,z2,z2
vTemp2 = XM_PERMUTE_PS(vTemp2, _MM_SHUFFLE(1, 1, 0, 2));
// vTemp1 = x1,y1,z1,0
vTemp1 = _mm_and_ps(vTemp1, g_XMMask3);
// vTemp2 = x2,y2,z2,0
vTemp2 = _mm_and_ps(vTemp2, g_XMMask3);
// vTemp3 = x3,y3,z3,0
vTemp3 = _mm_and_ps(vTemp3, g_XMMask3);
// vTemp4i = x4,y4,z4,0
__m128i vTemp4i = _mm_srli_si128(_mm_castps_si128(vTemp4), 32 / 8);
// vTemp4i = x4,y4,z4,1.0f
vTemp4i = _mm_or_si128(vTemp4i, g_XMIdentityR3);
XMMATRIX M(vTemp1,
vTemp2,
vTemp3,
_mm_castsi128_ps(vTemp4i));
return M;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMMATRIX XM_CALLCONV XMLoadFloat3x4(const XMFLOAT3X4* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX M;
M.r[0].vector4_f32[0] = pSource->m[0][0];
M.r[0].vector4_f32[1] = pSource->m[1][0];
M.r[0].vector4_f32[2] = pSource->m[2][0];
M.r[0].vector4_f32[3] = 0.0f;
M.r[1].vector4_f32[0] = pSource->m[0][1];
M.r[1].vector4_f32[1] = pSource->m[1][1];
M.r[1].vector4_f32[2] = pSource->m[2][1];
M.r[1].vector4_f32[3] = 0.0f;
M.r[2].vector4_f32[0] = pSource->m[0][2];
M.r[2].vector4_f32[1] = pSource->m[1][2];
M.r[2].vector4_f32[2] = pSource->m[2][2];
M.r[2].vector4_f32[3] = 0.0f;
M.r[3].vector4_f32[0] = pSource->m[0][3];
M.r[3].vector4_f32[1] = pSource->m[1][3];
M.r[3].vector4_f32[2] = pSource->m[2][3];
M.r[3].vector4_f32[3] = 1.0f;
return M;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2x4_t vTemp0 = vld4_f32(&pSource->_11);
float32x4_t vTemp1 = vld1q_f32(&pSource->_31);
float32x2_t l = vget_low_f32(vTemp1);
float32x4_t T0 = vcombine_f32(vTemp0.val[0], l);
float32x2_t rl = vrev64_f32(l);
float32x4_t T1 = vcombine_f32(vTemp0.val[1], rl);
float32x2_t h = vget_high_f32(vTemp1);
float32x4_t T2 = vcombine_f32(vTemp0.val[2], h);
float32x2_t rh = vrev64_f32(h);
float32x4_t T3 = vcombine_f32(vTemp0.val[3], rh);
XMMATRIX M = {};
M.r[0] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T0), g_XMMask3));
M.r[1] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T1), g_XMMask3));
M.r[2] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T2), g_XMMask3));
M.r[3] = vsetq_lane_f32(1.f, T3, 3);
return M;
#elif defined(_XM_SSE_INTRINSICS_)
XMMATRIX M;
M.r[0] = _mm_loadu_ps(&pSource->_11);
M.r[1] = _mm_loadu_ps(&pSource->_21);
M.r[2] = _mm_loadu_ps(&pSource->_31);
M.r[3] = g_XMIdentityR3;
// x.x,x.y,y.x,y.y
XMVECTOR vTemp1 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(1, 0, 1, 0));
// x.z,x.w,y.z,y.w
XMVECTOR vTemp3 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(3, 2, 3, 2));
// z.x,z.y,w.x,w.y
XMVECTOR vTemp2 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(1, 0, 1, 0));
// z.z,z.w,w.z,w.w
XMVECTOR vTemp4 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(3, 2, 3, 2));
XMMATRIX mResult;
// x.x,y.x,z.x,w.x
mResult.r[0] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(2, 0, 2, 0));
// x.y,y.y,z.y,w.y
mResult.r[1] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(3, 1, 3, 1));
// x.z,y.z,z.z,w.z
mResult.r[2] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(2, 0, 2, 0));
// x.w,y.w,z.w,w.w
mResult.r[3] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(3, 1, 3, 1));
return mResult;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMMATRIX XM_CALLCONV XMLoadFloat3x4A(const XMFLOAT3X4A* pSource) noexcept
{
assert(pSource);
assert((reinterpret_cast<uintptr_t>(pSource) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX M;
M.r[0].vector4_f32[0] = pSource->m[0][0];
M.r[0].vector4_f32[1] = pSource->m[1][0];
M.r[0].vector4_f32[2] = pSource->m[2][0];
M.r[0].vector4_f32[3] = 0.0f;
M.r[1].vector4_f32[0] = pSource->m[0][1];
M.r[1].vector4_f32[1] = pSource->m[1][1];
M.r[1].vector4_f32[2] = pSource->m[2][1];
M.r[1].vector4_f32[3] = 0.0f;
M.r[2].vector4_f32[0] = pSource->m[0][2];
M.r[2].vector4_f32[1] = pSource->m[1][2];
M.r[2].vector4_f32[2] = pSource->m[2][2];
M.r[2].vector4_f32[3] = 0.0f;
M.r[3].vector4_f32[0] = pSource->m[0][3];
M.r[3].vector4_f32[1] = pSource->m[1][3];
M.r[3].vector4_f32[2] = pSource->m[2][3];
M.r[3].vector4_f32[3] = 1.0f;
return M;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
float32x2x4_t vTemp0 = vld4_f32_ex(&pSource->_11, 128);
float32x4_t vTemp1 = vld1q_f32_ex(&pSource->_31, 128);
#else
float32x2x4_t vTemp0 = vld4_f32(&pSource->_11);
float32x4_t vTemp1 = vld1q_f32(&pSource->_31);
#endif
float32x2_t l = vget_low_f32(vTemp1);
float32x4_t T0 = vcombine_f32(vTemp0.val[0], l);
float32x2_t rl = vrev64_f32(l);
float32x4_t T1 = vcombine_f32(vTemp0.val[1], rl);
float32x2_t h = vget_high_f32(vTemp1);
float32x4_t T2 = vcombine_f32(vTemp0.val[2], h);
float32x2_t rh = vrev64_f32(h);
float32x4_t T3 = vcombine_f32(vTemp0.val[3], rh);
XMMATRIX M = {};
M.r[0] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T0), g_XMMask3));
M.r[1] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T1), g_XMMask3));
M.r[2] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(T2), g_XMMask3));
M.r[3] = vsetq_lane_f32(1.f, T3, 3);
return M;
#elif defined(_XM_SSE_INTRINSICS_)
XMMATRIX M;
M.r[0] = _mm_load_ps(&pSource->_11);
M.r[1] = _mm_load_ps(&pSource->_21);
M.r[2] = _mm_load_ps(&pSource->_31);
M.r[3] = g_XMIdentityR3;
// x.x,x.y,y.x,y.y
XMVECTOR vTemp1 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(1, 0, 1, 0));
// x.z,x.w,y.z,y.w
XMVECTOR vTemp3 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(3, 2, 3, 2));
// z.x,z.y,w.x,w.y
XMVECTOR vTemp2 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(1, 0, 1, 0));
// z.z,z.w,w.z,w.w
XMVECTOR vTemp4 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(3, 2, 3, 2));
XMMATRIX mResult;
// x.x,y.x,z.x,w.x
mResult.r[0] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(2, 0, 2, 0));
// x.y,y.y,z.y,w.y
mResult.r[1] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(3, 1, 3, 1));
// x.z,y.z,z.z,w.z
mResult.r[2] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(2, 0, 2, 0));
// x.w,y.w,z.w,w.w
mResult.r[3] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(3, 1, 3, 1));
return mResult;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMMATRIX XM_CALLCONV XMLoadFloat4x4(const XMFLOAT4X4* pSource) noexcept
{
assert(pSource);
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX M;
M.r[0].vector4_f32[0] = pSource->m[0][0];
M.r[0].vector4_f32[1] = pSource->m[0][1];
M.r[0].vector4_f32[2] = pSource->m[0][2];
M.r[0].vector4_f32[3] = pSource->m[0][3];
M.r[1].vector4_f32[0] = pSource->m[1][0];
M.r[1].vector4_f32[1] = pSource->m[1][1];
M.r[1].vector4_f32[2] = pSource->m[1][2];
M.r[1].vector4_f32[3] = pSource->m[1][3];
M.r[2].vector4_f32[0] = pSource->m[2][0];
M.r[2].vector4_f32[1] = pSource->m[2][1];
M.r[2].vector4_f32[2] = pSource->m[2][2];
M.r[2].vector4_f32[3] = pSource->m[2][3];
M.r[3].vector4_f32[0] = pSource->m[3][0];
M.r[3].vector4_f32[1] = pSource->m[3][1];
M.r[3].vector4_f32[2] = pSource->m[3][2];
M.r[3].vector4_f32[3] = pSource->m[3][3];
return M;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMMATRIX M;
M.r[0] = vld1q_f32(reinterpret_cast<const float*>(&pSource->_11));
M.r[1] = vld1q_f32(reinterpret_cast<const float*>(&pSource->_21));
M.r[2] = vld1q_f32(reinterpret_cast<const float*>(&pSource->_31));
M.r[3] = vld1q_f32(reinterpret_cast<const float*>(&pSource->_41));
return M;
#elif defined(_XM_SSE_INTRINSICS_)
XMMATRIX M;
M.r[0] = _mm_loadu_ps(&pSource->_11);
M.r[1] = _mm_loadu_ps(&pSource->_21);
M.r[2] = _mm_loadu_ps(&pSource->_31);
M.r[3] = _mm_loadu_ps(&pSource->_41);
return M;
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline XMMATRIX XM_CALLCONV XMLoadFloat4x4A(const XMFLOAT4X4A* pSource) noexcept
{
assert(pSource);
assert((reinterpret_cast<uintptr_t>(pSource) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX M;
M.r[0].vector4_f32[0] = pSource->m[0][0];
M.r[0].vector4_f32[1] = pSource->m[0][1];
M.r[0].vector4_f32[2] = pSource->m[0][2];
M.r[0].vector4_f32[3] = pSource->m[0][3];
M.r[1].vector4_f32[0] = pSource->m[1][0];
M.r[1].vector4_f32[1] = pSource->m[1][1];
M.r[1].vector4_f32[2] = pSource->m[1][2];
M.r[1].vector4_f32[3] = pSource->m[1][3];
M.r[2].vector4_f32[0] = pSource->m[2][0];
M.r[2].vector4_f32[1] = pSource->m[2][1];
M.r[2].vector4_f32[2] = pSource->m[2][2];
M.r[2].vector4_f32[3] = pSource->m[2][3];
M.r[3].vector4_f32[0] = pSource->m[3][0];
M.r[3].vector4_f32[1] = pSource->m[3][1];
M.r[3].vector4_f32[2] = pSource->m[3][2];
M.r[3].vector4_f32[3] = pSource->m[3][3];
return M;
#elif defined(_XM_ARM_NEON_INTRINSICS_)
XMMATRIX M;
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
M.r[0] = vld1q_f32_ex(reinterpret_cast<const float*>(&pSource->_11), 128);
M.r[1] = vld1q_f32_ex(reinterpret_cast<const float*>(&pSource->_21), 128);
M.r[2] = vld1q_f32_ex(reinterpret_cast<const float*>(&pSource->_31), 128);
M.r[3] = vld1q_f32_ex(reinterpret_cast<const float*>(&pSource->_41), 128);
#else
M.r[0] = vld1q_f32(reinterpret_cast<const float*>(&pSource->_11));
M.r[1] = vld1q_f32(reinterpret_cast<const float*>(&pSource->_21));
M.r[2] = vld1q_f32(reinterpret_cast<const float*>(&pSource->_31));
M.r[3] = vld1q_f32(reinterpret_cast<const float*>(&pSource->_41));
#endif
return M;
#elif defined(_XM_SSE_INTRINSICS_)
XMMATRIX M;
M.r[0] = _mm_load_ps(&pSource->_11);
M.r[1] = _mm_load_ps(&pSource->_21);
M.r[2] = _mm_load_ps(&pSource->_31);
M.r[3] = _mm_load_ps(&pSource->_41);
return M;
#endif
}
/****************************************************************************
*
* Vector and matrix store operations
*
****************************************************************************/
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreInt
(
uint32_t* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
*pDestination = XMVectorGetIntX(V);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_lane_u32(pDestination, *reinterpret_cast<const uint32x4_t*>(&V), 0);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_ss(reinterpret_cast<float*>(pDestination), V);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat
(
float* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
*pDestination = XMVectorGetX(V);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_lane_f32(pDestination, V, 0);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_ss(pDestination, V);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreInt2
(
uint32_t* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination[0] = V.vector4_u32[0];
pDestination[1] = V.vector4_u32[1];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t VL = vget_low_u32(vreinterpretq_u32_f32(V));
vst1_u32(pDestination, VL);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(V));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreInt2A
(
uint32_t* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
assert((reinterpret_cast<uintptr_t>(pDestination) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
pDestination[0] = V.vector4_u32[0];
pDestination[1] = V.vector4_u32[1];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t VL = vget_low_u32(vreinterpretq_u32_f32(V));
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
vst1_u32_ex(pDestination, VL, 64);
#else
vst1_u32(pDestination, VL);
#endif
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(V));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat2
(
XMFLOAT2* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = V.vector4_f32[0];
pDestination->y = V.vector4_f32[1];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
vst1_f32(reinterpret_cast<float*>(pDestination), VL);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(V));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat2A
(
XMFLOAT2A* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
assert((reinterpret_cast<uintptr_t>(pDestination) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = V.vector4_f32[0];
pDestination->y = V.vector4_f32[1];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
vst1_f32_ex(reinterpret_cast<float*>(pDestination), VL, 64);
#else
vst1_f32(reinterpret_cast<float*>(pDestination), VL);
#endif
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(V));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreSInt2
(
XMINT2* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = static_cast<int32_t>(V.vector4_f32[0]);
pDestination->y = static_cast<int32_t>(V.vector4_f32[1]);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t v = vget_low_f32(V);
int32x2_t iv = vcvt_s32_f32(v);
vst1_s32(reinterpret_cast<int32_t*>(pDestination), iv);
#elif defined(_XM_SSE_INTRINSICS_)
// In case of positive overflow, detect it
XMVECTOR vOverflow = _mm_cmpgt_ps(V, g_XMMaxInt);
// Float to int conversion
__m128i vResulti = _mm_cvttps_epi32(V);
// If there was positive overflow, set to 0x7FFFFFFF
XMVECTOR vResult = _mm_and_ps(vOverflow, g_XMAbsMask);
vOverflow = _mm_andnot_ps(vOverflow, _mm_castsi128_ps(vResulti));
vOverflow = _mm_or_ps(vOverflow, vResult);
// Write two ints
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(vOverflow));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreUInt2
(
XMUINT2* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = static_cast<uint32_t>(V.vector4_f32[0]);
pDestination->y = static_cast<uint32_t>(V.vector4_f32[1]);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t v = vget_low_f32(V);
uint32x2_t iv = vcvt_u32_f32(v);
vst1_u32(reinterpret_cast<uint32_t*>(pDestination), iv);
#elif defined(_XM_SSE_INTRINSICS_)
// Clamp to >=0
XMVECTOR vResult = _mm_max_ps(V, g_XMZero);
// Any numbers that are too big, set to 0xFFFFFFFFU
XMVECTOR vOverflow = _mm_cmpgt_ps(vResult, g_XMMaxUInt);
XMVECTOR vValue = g_XMUnsignedFix;
// Too large for a signed integer?
XMVECTOR vMask = _mm_cmpge_ps(vResult, vValue);
// Zero for number's lower than 0x80000000, 32768.0f*65536.0f otherwise
vValue = _mm_and_ps(vValue, vMask);
// Perform fixup only on numbers too large (Keeps low bit precision)
vResult = _mm_sub_ps(vResult, vValue);
__m128i vResulti = _mm_cvttps_epi32(vResult);
// Convert from signed to unsigned pnly if greater than 0x80000000
vMask = _mm_and_ps(vMask, g_XMNegativeZero);
vResult = _mm_xor_ps(_mm_castsi128_ps(vResulti), vMask);
// On those that are too large, set to 0xFFFFFFFF
vResult = _mm_or_ps(vResult, vOverflow);
// Write two uints
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(vResult));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreInt3
(
uint32_t* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination[0] = V.vector4_u32[0];
pDestination[1] = V.vector4_u32[1];
pDestination[2] = V.vector4_u32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t VL = vget_low_u32(vreinterpretq_u32_f32(V));
vst1_u32(pDestination, VL);
vst1q_lane_u32(pDestination + 2, *reinterpret_cast<const uint32x4_t*>(&V), 2);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(V));
__m128 z = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
_mm_store_ss(reinterpret_cast<float*>(&pDestination[2]), z);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreInt3A
(
uint32_t* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
assert((reinterpret_cast<uintptr_t>(pDestination) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
pDestination[0] = V.vector4_u32[0];
pDestination[1] = V.vector4_u32[1];
pDestination[2] = V.vector4_u32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x2_t VL = vget_low_u32(vreinterpretq_u32_f32(V));
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
vst1_u32_ex(pDestination, VL, 64);
#else
vst1_u32(pDestination, VL);
#endif
vst1q_lane_u32(pDestination + 2, *reinterpret_cast<const uint32x4_t*>(&V), 2);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(V));
__m128 z = _mm_movehl_ps(V, V);
_mm_store_ss(reinterpret_cast<float*>(&pDestination[2]), z);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat3
(
XMFLOAT3* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = V.vector4_f32[0];
pDestination->y = V.vector4_f32[1];
pDestination->z = V.vector4_f32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
vst1_f32(reinterpret_cast<float*>(pDestination), VL);
vst1q_lane_f32(reinterpret_cast<float*>(pDestination) + 2, V, 2);
#elif defined(_XM_SSE4_INTRINSICS_)
* reinterpret_cast<int*>(&pDestination->x) = _mm_extract_ps(V, 0);
*reinterpret_cast<int*>(&pDestination->y) = _mm_extract_ps(V, 1);
*reinterpret_cast<int*>(&pDestination->z) = _mm_extract_ps(V, 2);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(V));
__m128 z = XM_PERMUTE_PS(V, _MM_SHUFFLE(2, 2, 2, 2));
_mm_store_ss(&pDestination->z, z);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat3A
(
XMFLOAT3A* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
assert((reinterpret_cast<uintptr_t>(pDestination) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = V.vector4_f32[0];
pDestination->y = V.vector4_f32[1];
pDestination->z = V.vector4_f32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x2_t VL = vget_low_f32(V);
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
vst1_f32_ex(reinterpret_cast<float*>(pDestination), VL, 64);
#else
vst1_f32(reinterpret_cast<float*>(pDestination), VL);
#endif
vst1q_lane_f32(reinterpret_cast<float*>(pDestination) + 2, V, 2);
#elif defined(_XM_SSE4_INTRINSICS_)
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(V));
*reinterpret_cast<int*>(&pDestination->z) = _mm_extract_ps(V, 2);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(V));
__m128 z = _mm_movehl_ps(V, V);
_mm_store_ss(&pDestination->z, z);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreSInt3
(
XMINT3* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = static_cast<int32_t>(V.vector4_f32[0]);
pDestination->y = static_cast<int32_t>(V.vector4_f32[1]);
pDestination->z = static_cast<int32_t>(V.vector4_f32[2]);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
int32x4_t v = vcvtq_s32_f32(V);
int32x2_t vL = vget_low_s32(v);
vst1_s32(reinterpret_cast<int32_t*>(pDestination), vL);
vst1q_lane_s32(reinterpret_cast<int32_t*>(pDestination) + 2, v, 2);
#elif defined(_XM_SSE_INTRINSICS_)
// In case of positive overflow, detect it
XMVECTOR vOverflow = _mm_cmpgt_ps(V, g_XMMaxInt);
// Float to int conversion
__m128i vResulti = _mm_cvttps_epi32(V);
// If there was positive overflow, set to 0x7FFFFFFF
XMVECTOR vResult = _mm_and_ps(vOverflow, g_XMAbsMask);
vOverflow = _mm_andnot_ps(vOverflow, _mm_castsi128_ps(vResulti));
vOverflow = _mm_or_ps(vOverflow, vResult);
// Write 3 uints
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(vOverflow));
__m128 z = XM_PERMUTE_PS(vOverflow, _MM_SHUFFLE(2, 2, 2, 2));
_mm_store_ss(reinterpret_cast<float*>(&pDestination->z), z);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreUInt3
(
XMUINT3* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = static_cast<uint32_t>(V.vector4_f32[0]);
pDestination->y = static_cast<uint32_t>(V.vector4_f32[1]);
pDestination->z = static_cast<uint32_t>(V.vector4_f32[2]);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t v = vcvtq_u32_f32(V);
uint32x2_t vL = vget_low_u32(v);
vst1_u32(reinterpret_cast<uint32_t*>(pDestination), vL);
vst1q_lane_u32(reinterpret_cast<uint32_t*>(pDestination) + 2, v, 2);
#elif defined(_XM_SSE_INTRINSICS_)
// Clamp to >=0
XMVECTOR vResult = _mm_max_ps(V, g_XMZero);
// Any numbers that are too big, set to 0xFFFFFFFFU
XMVECTOR vOverflow = _mm_cmpgt_ps(vResult, g_XMMaxUInt);
XMVECTOR vValue = g_XMUnsignedFix;
// Too large for a signed integer?
XMVECTOR vMask = _mm_cmpge_ps(vResult, vValue);
// Zero for number's lower than 0x80000000, 32768.0f*65536.0f otherwise
vValue = _mm_and_ps(vValue, vMask);
// Perform fixup only on numbers too large (Keeps low bit precision)
vResult = _mm_sub_ps(vResult, vValue);
__m128i vResulti = _mm_cvttps_epi32(vResult);
// Convert from signed to unsigned pnly if greater than 0x80000000
vMask = _mm_and_ps(vMask, g_XMNegativeZero);
vResult = _mm_xor_ps(_mm_castsi128_ps(vResulti), vMask);
// On those that are too large, set to 0xFFFFFFFF
vResult = _mm_or_ps(vResult, vOverflow);
// Write 3 uints
_mm_store_sd(reinterpret_cast<double*>(pDestination), _mm_castps_pd(vResult));
__m128 z = XM_PERMUTE_PS(vResult, _MM_SHUFFLE(2, 2, 2, 2));
_mm_store_ss(reinterpret_cast<float*>(&pDestination->z), z);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreInt4
(
uint32_t* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination[0] = V.vector4_u32[0];
pDestination[1] = V.vector4_u32[1];
pDestination[2] = V.vector4_u32[2];
pDestination[3] = V.vector4_u32[3];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_u32(pDestination, vreinterpretq_u32_f32(V));
#elif defined(_XM_SSE_INTRINSICS_)
_mm_storeu_si128(reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(V));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreInt4A
(
uint32_t* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
assert((reinterpret_cast<uintptr_t>(pDestination) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
pDestination[0] = V.vector4_u32[0];
pDestination[1] = V.vector4_u32[1];
pDestination[2] = V.vector4_u32[2];
pDestination[3] = V.vector4_u32[3];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
vst1q_u32_ex(pDestination, V, 128);
#else
vst1q_u32(pDestination, vreinterpretq_u32_f32(V));
#endif
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_si128(reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(V));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat4
(
XMFLOAT4* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = V.vector4_f32[0];
pDestination->y = V.vector4_f32[1];
pDestination->z = V.vector4_f32[2];
pDestination->w = V.vector4_f32[3];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_f32(reinterpret_cast<float*>(pDestination), V);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_storeu_ps(&pDestination->x, V);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat4A
(
XMFLOAT4A* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
assert((reinterpret_cast<uintptr_t>(pDestination) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = V.vector4_f32[0];
pDestination->y = V.vector4_f32[1];
pDestination->z = V.vector4_f32[2];
pDestination->w = V.vector4_f32[3];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
vst1q_f32_ex(reinterpret_cast<float*>(pDestination), V, 128);
#else
vst1q_f32(reinterpret_cast<float*>(pDestination), V);
#endif
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_ps(&pDestination->x, V);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreSInt4
(
XMINT4* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = static_cast<int32_t>(V.vector4_f32[0]);
pDestination->y = static_cast<int32_t>(V.vector4_f32[1]);
pDestination->z = static_cast<int32_t>(V.vector4_f32[2]);
pDestination->w = static_cast<int32_t>(V.vector4_f32[3]);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
int32x4_t v = vcvtq_s32_f32(V);
vst1q_s32(reinterpret_cast<int32_t*>(pDestination), v);
#elif defined(_XM_SSE_INTRINSICS_)
// In case of positive overflow, detect it
XMVECTOR vOverflow = _mm_cmpgt_ps(V, g_XMMaxInt);
// Float to int conversion
__m128i vResulti = _mm_cvttps_epi32(V);
// If there was positive overflow, set to 0x7FFFFFFF
XMVECTOR vResult = _mm_and_ps(vOverflow, g_XMAbsMask);
vOverflow = _mm_andnot_ps(vOverflow, _mm_castsi128_ps(vResulti));
vOverflow = _mm_or_ps(vOverflow, vResult);
_mm_storeu_si128(reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(vOverflow));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreUInt4
(
XMUINT4* pDestination,
FXMVECTOR V
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->x = static_cast<uint32_t>(V.vector4_f32[0]);
pDestination->y = static_cast<uint32_t>(V.vector4_f32[1]);
pDestination->z = static_cast<uint32_t>(V.vector4_f32[2]);
pDestination->w = static_cast<uint32_t>(V.vector4_f32[3]);
#elif defined(_XM_ARM_NEON_INTRINSICS_)
uint32x4_t v = vcvtq_u32_f32(V);
vst1q_u32(reinterpret_cast<uint32_t*>(pDestination), v);
#elif defined(_XM_SSE_INTRINSICS_)
// Clamp to >=0
XMVECTOR vResult = _mm_max_ps(V, g_XMZero);
// Any numbers that are too big, set to 0xFFFFFFFFU
XMVECTOR vOverflow = _mm_cmpgt_ps(vResult, g_XMMaxUInt);
XMVECTOR vValue = g_XMUnsignedFix;
// Too large for a signed integer?
XMVECTOR vMask = _mm_cmpge_ps(vResult, vValue);
// Zero for number's lower than 0x80000000, 32768.0f*65536.0f otherwise
vValue = _mm_and_ps(vValue, vMask);
// Perform fixup only on numbers too large (Keeps low bit precision)
vResult = _mm_sub_ps(vResult, vValue);
__m128i vResulti = _mm_cvttps_epi32(vResult);
// Convert from signed to unsigned pnly if greater than 0x80000000
vMask = _mm_and_ps(vMask, g_XMNegativeZero);
vResult = _mm_xor_ps(_mm_castsi128_ps(vResulti), vMask);
// On those that are too large, set to 0xFFFFFFFF
vResult = _mm_or_ps(vResult, vOverflow);
_mm_storeu_si128(reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(vResult));
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat3x3
(
XMFLOAT3X3* pDestination,
FXMMATRIX M
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->m[0][0] = M.r[0].vector4_f32[0];
pDestination->m[0][1] = M.r[0].vector4_f32[1];
pDestination->m[0][2] = M.r[0].vector4_f32[2];
pDestination->m[1][0] = M.r[1].vector4_f32[0];
pDestination->m[1][1] = M.r[1].vector4_f32[1];
pDestination->m[1][2] = M.r[1].vector4_f32[2];
pDestination->m[2][0] = M.r[2].vector4_f32[0];
pDestination->m[2][1] = M.r[2].vector4_f32[1];
pDestination->m[2][2] = M.r[2].vector4_f32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t T1 = vextq_f32(M.r[0], M.r[1], 1);
float32x4_t T2 = vbslq_f32(g_XMMask3, M.r[0], T1);
vst1q_f32(&pDestination->m[0][0], T2);
T1 = vextq_f32(M.r[1], M.r[1], 1);
T2 = vcombine_f32(vget_low_f32(T1), vget_low_f32(M.r[2]));
vst1q_f32(&pDestination->m[1][1], T2);
vst1q_lane_f32(&pDestination->m[2][2], M.r[2], 2);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp1 = M.r[0];
XMVECTOR vTemp2 = M.r[1];
XMVECTOR vTemp3 = M.r[2];
XMVECTOR vWork = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(0, 0, 2, 2));
vTemp1 = _mm_shuffle_ps(vTemp1, vWork, _MM_SHUFFLE(2, 0, 1, 0));
_mm_storeu_ps(&pDestination->m[0][0], vTemp1);
vTemp2 = _mm_shuffle_ps(vTemp2, vTemp3, _MM_SHUFFLE(1, 0, 2, 1));
_mm_storeu_ps(&pDestination->m[1][1], vTemp2);
vTemp3 = XM_PERMUTE_PS(vTemp3, _MM_SHUFFLE(2, 2, 2, 2));
_mm_store_ss(&pDestination->m[2][2], vTemp3);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat4x3
(
XMFLOAT4X3* pDestination,
FXMMATRIX M
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->m[0][0] = M.r[0].vector4_f32[0];
pDestination->m[0][1] = M.r[0].vector4_f32[1];
pDestination->m[0][2] = M.r[0].vector4_f32[2];
pDestination->m[1][0] = M.r[1].vector4_f32[0];
pDestination->m[1][1] = M.r[1].vector4_f32[1];
pDestination->m[1][2] = M.r[1].vector4_f32[2];
pDestination->m[2][0] = M.r[2].vector4_f32[0];
pDestination->m[2][1] = M.r[2].vector4_f32[1];
pDestination->m[2][2] = M.r[2].vector4_f32[2];
pDestination->m[3][0] = M.r[3].vector4_f32[0];
pDestination->m[3][1] = M.r[3].vector4_f32[1];
pDestination->m[3][2] = M.r[3].vector4_f32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4_t T1 = vextq_f32(M.r[0], M.r[1], 1);
float32x4_t T2 = vbslq_f32(g_XMMask3, M.r[0], T1);
vst1q_f32(&pDestination->m[0][0], T2);
T1 = vextq_f32(M.r[1], M.r[1], 1);
T2 = vcombine_f32(vget_low_f32(T1), vget_low_f32(M.r[2]));
vst1q_f32(&pDestination->m[1][1], T2);
T1 = vdupq_lane_f32(vget_high_f32(M.r[2]), 0);
T2 = vextq_f32(T1, M.r[3], 3);
vst1q_f32(&pDestination->m[2][2], T2);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp1 = M.r[0];
XMVECTOR vTemp2 = M.r[1];
XMVECTOR vTemp3 = M.r[2];
XMVECTOR vTemp4 = M.r[3];
XMVECTOR vTemp2x = _mm_shuffle_ps(vTemp2, vTemp3, _MM_SHUFFLE(1, 0, 2, 1));
vTemp2 = _mm_shuffle_ps(vTemp2, vTemp1, _MM_SHUFFLE(2, 2, 0, 0));
vTemp1 = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(0, 2, 1, 0));
vTemp3 = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(0, 0, 2, 2));
vTemp3 = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(2, 1, 2, 0));
_mm_storeu_ps(&pDestination->m[0][0], vTemp1);
_mm_storeu_ps(&pDestination->m[1][1], vTemp2x);
_mm_storeu_ps(&pDestination->m[2][2], vTemp3);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat4x3A
(
XMFLOAT4X3A* pDestination,
FXMMATRIX M
) noexcept
{
assert(pDestination);
assert((reinterpret_cast<uintptr_t>(pDestination) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
pDestination->m[0][0] = M.r[0].vector4_f32[0];
pDestination->m[0][1] = M.r[0].vector4_f32[1];
pDestination->m[0][2] = M.r[0].vector4_f32[2];
pDestination->m[1][0] = M.r[1].vector4_f32[0];
pDestination->m[1][1] = M.r[1].vector4_f32[1];
pDestination->m[1][2] = M.r[1].vector4_f32[2];
pDestination->m[2][0] = M.r[2].vector4_f32[0];
pDestination->m[2][1] = M.r[2].vector4_f32[1];
pDestination->m[2][2] = M.r[2].vector4_f32[2];
pDestination->m[3][0] = M.r[3].vector4_f32[0];
pDestination->m[3][1] = M.r[3].vector4_f32[1];
pDestination->m[3][2] = M.r[3].vector4_f32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
float32x4_t T1 = vextq_f32(M.r[0], M.r[1], 1);
float32x4_t T2 = vbslq_f32(g_XMMask3, M.r[0], T1);
vst1q_f32_ex(&pDestination->m[0][0], T2, 128);
T1 = vextq_f32(M.r[1], M.r[1], 1);
T2 = vcombine_f32(vget_low_f32(T1), vget_low_f32(M.r[2]));
vst1q_f32_ex(&pDestination->m[1][1], T2, 128);
T1 = vdupq_lane_f32(vget_high_f32(M.r[2]), 0);
T2 = vextq_f32(T1, M.r[3], 3);
vst1q_f32_ex(&pDestination->m[2][2], T2, 128);
#else
float32x4_t T1 = vextq_f32(M.r[0], M.r[1], 1);
float32x4_t T2 = vbslq_f32(g_XMMask3, M.r[0], T1);
vst1q_f32(&pDestination->m[0][0], T2);
T1 = vextq_f32(M.r[1], M.r[1], 1);
T2 = vcombine_f32(vget_low_f32(T1), vget_low_f32(M.r[2]));
vst1q_f32(&pDestination->m[1][1], T2);
T1 = vdupq_lane_f32(vget_high_f32(M.r[2]), 0);
T2 = vextq_f32(T1, M.r[3], 3);
vst1q_f32(&pDestination->m[2][2], T2);
#endif
#elif defined(_XM_SSE_INTRINSICS_)
// x1,y1,z1,w1
XMVECTOR vTemp1 = M.r[0];
// x2,y2,z2,w2
XMVECTOR vTemp2 = M.r[1];
// x3,y3,z3,w3
XMVECTOR vTemp3 = M.r[2];
// x4,y4,z4,w4
XMVECTOR vTemp4 = M.r[3];
// z1,z1,x2,y2
XMVECTOR vTemp = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(1, 0, 2, 2));
// y2,z2,x3,y3 (Final)
vTemp2 = _mm_shuffle_ps(vTemp2, vTemp3, _MM_SHUFFLE(1, 0, 2, 1));
// x1,y1,z1,x2 (Final)
vTemp1 = _mm_shuffle_ps(vTemp1, vTemp, _MM_SHUFFLE(2, 0, 1, 0));
// z3,z3,x4,x4
vTemp3 = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(0, 0, 2, 2));
// z3,x4,y4,z4 (Final)
vTemp3 = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(2, 1, 2, 0));
// Store in 3 operations
_mm_store_ps(&pDestination->m[0][0], vTemp1);
_mm_store_ps(&pDestination->m[1][1], vTemp2);
_mm_store_ps(&pDestination->m[2][2], vTemp3);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat3x4
(
XMFLOAT3X4* pDestination,
FXMMATRIX M
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->m[0][0] = M.r[0].vector4_f32[0];
pDestination->m[0][1] = M.r[1].vector4_f32[0];
pDestination->m[0][2] = M.r[2].vector4_f32[0];
pDestination->m[0][3] = M.r[3].vector4_f32[0];
pDestination->m[1][0] = M.r[0].vector4_f32[1];
pDestination->m[1][1] = M.r[1].vector4_f32[1];
pDestination->m[1][2] = M.r[2].vector4_f32[1];
pDestination->m[1][3] = M.r[3].vector4_f32[1];
pDestination->m[2][0] = M.r[0].vector4_f32[2];
pDestination->m[2][1] = M.r[1].vector4_f32[2];
pDestination->m[2][2] = M.r[2].vector4_f32[2];
pDestination->m[2][3] = M.r[3].vector4_f32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4x2_t P0 = vzipq_f32(M.r[0], M.r[2]);
float32x4x2_t P1 = vzipq_f32(M.r[1], M.r[3]);
float32x4x2_t T0 = vzipq_f32(P0.val[0], P1.val[0]);
float32x4x2_t T1 = vzipq_f32(P0.val[1], P1.val[1]);
vst1q_f32(&pDestination->m[0][0], T0.val[0]);
vst1q_f32(&pDestination->m[1][0], T0.val[1]);
vst1q_f32(&pDestination->m[2][0], T1.val[0]);
#elif defined(_XM_SSE_INTRINSICS_)
// x.x,x.y,y.x,y.y
XMVECTOR vTemp1 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(1, 0, 1, 0));
// x.z,x.w,y.z,y.w
XMVECTOR vTemp3 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(3, 2, 3, 2));
// z.x,z.y,w.x,w.y
XMVECTOR vTemp2 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(1, 0, 1, 0));
// z.z,z.w,w.z,w.w
XMVECTOR vTemp4 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(3, 2, 3, 2));
// x.x,y.x,z.x,w.x
XMVECTOR r0 = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(2, 0, 2, 0));
// x.y,y.y,z.y,w.y
XMVECTOR r1 = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(3, 1, 3, 1));
// x.z,y.z,z.z,w.z
XMVECTOR r2 = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(2, 0, 2, 0));
_mm_storeu_ps(&pDestination->m[0][0], r0);
_mm_storeu_ps(&pDestination->m[1][0], r1);
_mm_storeu_ps(&pDestination->m[2][0], r2);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat3x4A
(
XMFLOAT3X4A* pDestination,
FXMMATRIX M
) noexcept
{
assert(pDestination);
assert((reinterpret_cast<uintptr_t>(pDestination) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
pDestination->m[0][0] = M.r[0].vector4_f32[0];
pDestination->m[0][1] = M.r[1].vector4_f32[0];
pDestination->m[0][2] = M.r[2].vector4_f32[0];
pDestination->m[0][3] = M.r[3].vector4_f32[0];
pDestination->m[1][0] = M.r[0].vector4_f32[1];
pDestination->m[1][1] = M.r[1].vector4_f32[1];
pDestination->m[1][2] = M.r[2].vector4_f32[1];
pDestination->m[1][3] = M.r[3].vector4_f32[1];
pDestination->m[2][0] = M.r[0].vector4_f32[2];
pDestination->m[2][1] = M.r[1].vector4_f32[2];
pDestination->m[2][2] = M.r[2].vector4_f32[2];
pDestination->m[2][3] = M.r[3].vector4_f32[2];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
float32x4x2_t P0 = vzipq_f32(M.r[0], M.r[2]);
float32x4x2_t P1 = vzipq_f32(M.r[1], M.r[3]);
float32x4x2_t T0 = vzipq_f32(P0.val[0], P1.val[0]);
float32x4x2_t T1 = vzipq_f32(P0.val[1], P1.val[1]);
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
vst1q_f32_ex(&pDestination->m[0][0], T0.val[0], 128);
vst1q_f32_ex(&pDestination->m[1][0], T0.val[1], 128);
vst1q_f32_ex(&pDestination->m[2][0], T1.val[0], 128);
#else
vst1q_f32(&pDestination->m[0][0], T0.val[0]);
vst1q_f32(&pDestination->m[1][0], T0.val[1]);
vst1q_f32(&pDestination->m[2][0], T1.val[0]);
#endif
#elif defined(_XM_SSE_INTRINSICS_)
// x.x,x.y,y.x,y.y
XMVECTOR vTemp1 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(1, 0, 1, 0));
// x.z,x.w,y.z,y.w
XMVECTOR vTemp3 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(3, 2, 3, 2));
// z.x,z.y,w.x,w.y
XMVECTOR vTemp2 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(1, 0, 1, 0));
// z.z,z.w,w.z,w.w
XMVECTOR vTemp4 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(3, 2, 3, 2));
// x.x,y.x,z.x,w.x
XMVECTOR r0 = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(2, 0, 2, 0));
// x.y,y.y,z.y,w.y
XMVECTOR r1 = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(3, 1, 3, 1));
// x.z,y.z,z.z,w.z
XMVECTOR r2 = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(2, 0, 2, 0));
_mm_store_ps(&pDestination->m[0][0], r0);
_mm_store_ps(&pDestination->m[1][0], r1);
_mm_store_ps(&pDestination->m[2][0], r2);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat4x4
(
XMFLOAT4X4* pDestination,
FXMMATRIX M
) noexcept
{
assert(pDestination);
#if defined(_XM_NO_INTRINSICS_)
pDestination->m[0][0] = M.r[0].vector4_f32[0];
pDestination->m[0][1] = M.r[0].vector4_f32[1];
pDestination->m[0][2] = M.r[0].vector4_f32[2];
pDestination->m[0][3] = M.r[0].vector4_f32[3];
pDestination->m[1][0] = M.r[1].vector4_f32[0];
pDestination->m[1][1] = M.r[1].vector4_f32[1];
pDestination->m[1][2] = M.r[1].vector4_f32[2];
pDestination->m[1][3] = M.r[1].vector4_f32[3];
pDestination->m[2][0] = M.r[2].vector4_f32[0];
pDestination->m[2][1] = M.r[2].vector4_f32[1];
pDestination->m[2][2] = M.r[2].vector4_f32[2];
pDestination->m[2][3] = M.r[2].vector4_f32[3];
pDestination->m[3][0] = M.r[3].vector4_f32[0];
pDestination->m[3][1] = M.r[3].vector4_f32[1];
pDestination->m[3][2] = M.r[3].vector4_f32[2];
pDestination->m[3][3] = M.r[3].vector4_f32[3];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
vst1q_f32(reinterpret_cast<float*>(&pDestination->_11), M.r[0]);
vst1q_f32(reinterpret_cast<float*>(&pDestination->_21), M.r[1]);
vst1q_f32(reinterpret_cast<float*>(&pDestination->_31), M.r[2]);
vst1q_f32(reinterpret_cast<float*>(&pDestination->_41), M.r[3]);
#elif defined(_XM_SSE_INTRINSICS_)
_mm_storeu_ps(&pDestination->_11, M.r[0]);
_mm_storeu_ps(&pDestination->_21, M.r[1]);
_mm_storeu_ps(&pDestination->_31, M.r[2]);
_mm_storeu_ps(&pDestination->_41, M.r[3]);
#endif
}
//------------------------------------------------------------------------------
_Use_decl_annotations_
inline void XM_CALLCONV XMStoreFloat4x4A
(
XMFLOAT4X4A* pDestination,
FXMMATRIX M
) noexcept
{
assert(pDestination);
assert((reinterpret_cast<uintptr_t>(pDestination) & 0xF) == 0);
#if defined(_XM_NO_INTRINSICS_)
pDestination->m[0][0] = M.r[0].vector4_f32[0];
pDestination->m[0][1] = M.r[0].vector4_f32[1];
pDestination->m[0][2] = M.r[0].vector4_f32[2];
pDestination->m[0][3] = M.r[0].vector4_f32[3];
pDestination->m[1][0] = M.r[1].vector4_f32[0];
pDestination->m[1][1] = M.r[1].vector4_f32[1];
pDestination->m[1][2] = M.r[1].vector4_f32[2];
pDestination->m[1][3] = M.r[1].vector4_f32[3];
pDestination->m[2][0] = M.r[2].vector4_f32[0];
pDestination->m[2][1] = M.r[2].vector4_f32[1];
pDestination->m[2][2] = M.r[2].vector4_f32[2];
pDestination->m[2][3] = M.r[2].vector4_f32[3];
pDestination->m[3][0] = M.r[3].vector4_f32[0];
pDestination->m[3][1] = M.r[3].vector4_f32[1];
pDestination->m[3][2] = M.r[3].vector4_f32[2];
pDestination->m[3][3] = M.r[3].vector4_f32[3];
#elif defined(_XM_ARM_NEON_INTRINSICS_)
#if defined(_MSC_VER) && !defined(__clang__) && !defined(_ARM64_DISTINCT_NEON_TYPES)
vst1q_f32_ex(reinterpret_cast<float*>(&pDestination->_11), M.r[0], 128);
vst1q_f32_ex(reinterpret_cast<float*>(&pDestination->_21), M.r[1], 128);
vst1q_f32_ex(reinterpret_cast<float*>(&pDestination->_31), M.r[2], 128);
vst1q_f32_ex(reinterpret_cast<float*>(&pDestination->_41), M.r[3], 128);
#else
vst1q_f32(reinterpret_cast<float*>(&pDestination->_11), M.r[0]);
vst1q_f32(reinterpret_cast<float*>(&pDestination->_21), M.r[1]);
vst1q_f32(reinterpret_cast<float*>(&pDestination->_31), M.r[2]);
vst1q_f32(reinterpret_cast<float*>(&pDestination->_41), M.r[3]);
#endif
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_ps(&pDestination->_11, M.r[0]);
_mm_store_ps(&pDestination->_21, M.r[1]);
_mm_store_ps(&pDestination->_31, M.r[2]);
_mm_store_ps(&pDestination->_41, M.r[3]);
#endif
}