OpenSubdiv/opensubdiv/osd/glslPatchCommon.glsl

1382 lines
45 KiB
Plaintext
Raw Normal View History

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
2013-07-18 21:19:50 +00:00
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
//
// typical shader composition ordering (see glDrawRegistry:_CompileShader)
//
//
// - glsl version string (#version 430)
//
// - common defines (#define OSD_ENABLE_PATCH_CULL, ...)
// - source defines (#define VERTEX_SHADER, ...)
//
// - osd headers (glslPatchCommon: varying structs,
// glslPtexCommon: ptex functions)
// - client header (Osd*Matrix(), displacement callback, ...)
//
// - osd shader source (glslPatchBSpline, glslPatchGregory, ...)
// or
// client shader source (vertex/geometry/fragment shader)
//
//----------------------------------------------------------
// Patches.Common
//----------------------------------------------------------
// XXXdyu all handling of varying data can be managed by client code
#ifndef OSD_USER_VARYING_DECLARE
#define OSD_USER_VARYING_DECLARE
// type var;
#endif
#ifndef OSD_USER_VARYING_ATTRIBUTE_DECLARE
#define OSD_USER_VARYING_ATTRIBUTE_DECLARE
// layout(location = loc) in type var;
#endif
#ifndef OSD_USER_VARYING_PER_VERTEX
#define OSD_USER_VARYING_PER_VERTEX()
// output.var = var;
#endif
#ifndef OSD_USER_VARYING_PER_CONTROL_POINT
#define OSD_USER_VARYING_PER_CONTROL_POINT(ID_OUT, ID_IN)
// output[ID_OUT].var = input[ID_IN].var
#endif
#ifndef OSD_USER_VARYING_PER_EVAL_POINT
#define OSD_USER_VARYING_PER_EVAL_POINT(UV, a, b, c, d)
// output.var =
// mix(mix(input[a].var, input[b].var, UV.x),
// mix(input[c].var, input[d].var, UV.x), UV.y)
#endif
// For now, fractional spacing is supported only with screen space tessellation
#ifndef OSD_ENABLE_SCREENSPACE_TESSELLATION
#undef OSD_FRACTIONAL_EVEN_SPACING
#undef OSD_FRACTIONAL_ODD_SPACING
#endif
#if defined OSD_FRACTIONAL_EVEN_SPACING
#define OSD_SPACING fractional_even_spacing
#elif defined OSD_FRACTIONAL_ODD_SPACING
#define OSD_SPACING fractional_odd_spacing
#else
#define OSD_SPACING equal_spacing
#endif
#if __VERSION__ < 420
#define centroid
#endif
struct ControlVertex {
vec4 position;
#ifdef OSD_ENABLE_PATCH_CULL
ivec3 clipFlag;
#endif
};
// XXXdyu all downstream data can be handled by client code
struct OutputVertex {
vec4 position;
vec3 normal;
vec3 tangent;
vec3 bitangent;
centroid vec4 patchCoord; // u, v, faceLevel, faceId
centroid vec2 tessCoord; // tesscoord.st
#if defined OSD_COMPUTE_NORMAL_DERIVATIVES
vec3 Nu;
vec3 Nv;
#endif
};
// osd shaders need following functions defined
mat4 OsdModelViewMatrix();
mat4 OsdProjectionMatrix();
mat4 OsdModelViewProjectionMatrix();
float OsdTessLevel();
int OsdGregoryQuadOffsetBase();
int OsdPrimitiveIdBase();
int OsdBaseVertex();
#ifndef OSD_DISPLACEMENT_CALLBACK
#define OSD_DISPLACEMENT_CALLBACK
#endif
// ----------------------------------------------------------------------------
// Patch Parameters
// ----------------------------------------------------------------------------
//
// Each patch has a corresponding patchParam. This is a set of three values
// specifying additional information about the patch:
//
// faceId -- topological face identifier (e.g. Ptex FaceId)
// bitfield -- refinement-level, non-quad, boundary, transition, uv-offset
// sharpness -- crease sharpness for single-crease patches
//
// These are stored in OsdPatchParamBuffer indexed by the value returned
// from OsdGetPatchIndex() which is a function of the current PrimitiveID
// along with an optional client provided offset.
//
uniform isamplerBuffer OsdPatchParamBuffer;
int OsdGetPatchIndex(int primitiveId)
{
return (primitiveId + OsdPrimitiveIdBase());
}
ivec3 OsdGetPatchParam(int patchIndex)
{
return texelFetch(OsdPatchParamBuffer, patchIndex).xyz;
}
int OsdGetPatchFaceId(ivec3 patchParam)
{
return (patchParam.x & 0xfffffff);
}
int OsdGetPatchFaceLevel(ivec3 patchParam)
{
return (1 << ((patchParam.y & 0xf) - ((patchParam.y >> 4) & 1)));
}
int OsdGetPatchRefinementLevel(ivec3 patchParam)
{
return (patchParam.y & 0xf);
}
int OsdGetPatchBoundaryMask(ivec3 patchParam)
{
return ((patchParam.y >> 7) & 0x1f);
}
int OsdGetPatchTransitionMask(ivec3 patchParam)
{
return ((patchParam.x >> 28) & 0xf);
}
ivec2 OsdGetPatchFaceUV(ivec3 patchParam)
{
int u = (patchParam.y >> 22) & 0x3ff;
int v = (patchParam.y >> 12) & 0x3ff;
return ivec2(u,v);
}
bool OsdGetPatchIsRegular(ivec3 patchParam)
{
return ((patchParam.y >> 5) & 0x1) != 0;
}
float OsdGetPatchSharpness(ivec3 patchParam)
{
return intBitsToFloat(patchParam.z);
}
float OsdGetPatchSingleCreaseSegmentParameter(ivec3 patchParam, vec2 uv)
{
int boundaryMask = OsdGetPatchBoundaryMask(patchParam);
float s = 0;
if ((boundaryMask & 1) != 0) {
s = 1 - uv.y;
} else if ((boundaryMask & 2) != 0) {
s = uv.x;
} else if ((boundaryMask & 4) != 0) {
s = uv.y;
} else if ((boundaryMask & 8) != 0) {
s = 1 - uv.x;
}
return s;
}
ivec4 OsdGetPatchCoord(ivec3 patchParam)
{
int faceId = OsdGetPatchFaceId(patchParam);
int faceLevel = OsdGetPatchFaceLevel(patchParam);
ivec2 faceUV = OsdGetPatchFaceUV(patchParam);
return ivec4(faceUV.x, faceUV.y, faceLevel, faceId);
}
vec4 OsdInterpolatePatchCoord(vec2 localUV, ivec3 patchParam)
{
ivec4 perPrimPatchCoord = OsdGetPatchCoord(patchParam);
int faceId = perPrimPatchCoord.w;
int faceLevel = perPrimPatchCoord.z;
vec2 faceUV = vec2(perPrimPatchCoord.x, perPrimPatchCoord.y);
vec2 uv = localUV/faceLevel + faceUV/faceLevel;
// add 0.5 to integer values for more robust interpolation
return vec4(uv.x, uv.y, faceLevel+0.5f, faceId+0.5f);
}
// ----------------------------------------------------------------------------
// patch culling
// ----------------------------------------------------------------------------
#ifdef OSD_ENABLE_PATCH_CULL
#define OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(P) \
vec4 clipPos = OsdModelViewProjectionMatrix() * P; \
bvec3 clip0 = lessThan(clipPos.xyz, vec3(clipPos.w)); \
bvec3 clip1 = greaterThan(clipPos.xyz, -vec3(clipPos.w)); \
outpt.v.clipFlag = ivec3(clip0) + 2*ivec3(clip1); \
#define OSD_PATCH_CULL(N) \
ivec3 clipFlag = ivec3(0); \
for(int i = 0; i < N; ++i) { \
clipFlag |= inpt[i].v.clipFlag; \
} \
if (clipFlag != ivec3(3) ) { \
gl_TessLevelInner[0] = 0; \
gl_TessLevelInner[1] = 0; \
gl_TessLevelOuter[0] = 0; \
gl_TessLevelOuter[1] = 0; \
gl_TessLevelOuter[2] = 0; \
gl_TessLevelOuter[3] = 0; \
return; \
}
#else
#define OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(P)
#define OSD_PATCH_CULL(N)
#endif
// ----------------------------------------------------------------------------
void
OsdUnivar4x4(in float u, out float B[4], out float D[4])
{
float t = u;
float s = 1.0f - u;
float A0 = s * s;
float A1 = 2 * s * t;
float A2 = t * t;
B[0] = s * A0;
B[1] = t * A0 + s * A1;
B[2] = t * A1 + s * A2;
B[3] = t * A2;
D[0] = - A0;
D[1] = A0 - A1;
D[2] = A1 - A2;
D[3] = A2;
}
void
OsdUnivar4x4(in float u, out float B[4], out float D[4], out float C[4])
{
float t = u;
float s = 1.0f - u;
float A0 = s * s;
float A1 = 2 * s * t;
float A2 = t * t;
B[0] = s * A0;
B[1] = t * A0 + s * A1;
B[2] = t * A1 + s * A2;
B[3] = t * A2;
D[0] = - A0;
D[1] = A0 - A1;
D[2] = A1 - A2;
D[3] = A2;
A0 = - s;
A1 = s - t;
A2 = t;
C[0] = - A0;
C[1] = A0 - A1;
C[2] = A1 - A2;
C[3] = A2;
}
// ----------------------------------------------------------------------------
struct OsdPerPatchVertexBezier {
ivec3 patchParam;
vec3 P;
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
vec3 P1;
vec3 P2;
vec2 vSegments;
#endif
};
vec3
OsdEvalBezier(vec3 cp[16], vec2 uv)
{
vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0));
float B[4], D[4];
OsdUnivar4x4(uv.x, B, D);
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
vec3 A = cp[4*i + j];
BUCP[i] += A * B[j];
}
}
vec3 P = vec3(0);
OsdUnivar4x4(uv.y, B, D);
for (int k=0; k<4; ++k) {
P += B[k] * BUCP[k];
}
return P;
}
// When OSD_PATCH_ENABLE_SINGLE_CREASE is defined,
// this function evaluates single-crease patch, which is segmented into
// 3 parts in the v-direction.
//
// v=0 vSegment.x vSegment.y v=1
// +------------------+-------------------+------------------+
// | cp 0 | cp 1 | cp 2 |
// | (infinite sharp) | (floor sharpness) | (ceil sharpness) |
// +------------------+-------------------+------------------+
//
vec3
OsdEvalBezier(OsdPerPatchVertexBezier cp[16], ivec3 patchParam, vec2 uv)
{
vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0));
float B[4], D[4];
float s = OsdGetPatchSingleCreaseSegmentParameter(patchParam, uv);
OsdUnivar4x4(uv.x, B, D);
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
vec2 vSegments = cp[0].vSegments;
if (s <= vSegments.x) {
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
vec3 A = cp[4*i + j].P;
BUCP[i] += A * B[j];
}
}
} else if (s <= vSegments.y) {
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
vec3 A = cp[4*i + j].P1;
BUCP[i] += A * B[j];
}
}
} else {
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
vec3 A = cp[4*i + j].P2;
BUCP[i] += A * B[j];
}
}
}
#else
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
vec3 A = cp[4*i + j].P;
BUCP[i] += A * B[j];
}
}
#endif
vec3 P = vec3(0);
OsdUnivar4x4(uv.y, B, D);
for (int k=0; k<4; ++k) {
P += B[k] * BUCP[k];
}
return P;
}
// ----------------------------------------------------------------------------
// Boundary Interpolation
// ----------------------------------------------------------------------------
void
OsdComputeBSplineBoundaryPoints(inout vec3 cpt[16], ivec3 patchParam)
{
int boundaryMask = OsdGetPatchBoundaryMask(patchParam);
if ((boundaryMask & 1) != 0) {
cpt[0] = 2*cpt[4] - cpt[8];
cpt[1] = 2*cpt[5] - cpt[9];
cpt[2] = 2*cpt[6] - cpt[10];
cpt[3] = 2*cpt[7] - cpt[11];
}
if ((boundaryMask & 2) != 0) {
cpt[3] = 2*cpt[2] - cpt[1];
cpt[7] = 2*cpt[6] - cpt[5];
cpt[11] = 2*cpt[10] - cpt[9];
cpt[15] = 2*cpt[14] - cpt[13];
}
if ((boundaryMask & 4) != 0) {
cpt[12] = 2*cpt[8] - cpt[4];
cpt[13] = 2*cpt[9] - cpt[5];
cpt[14] = 2*cpt[10] - cpt[6];
cpt[15] = 2*cpt[11] - cpt[7];
}
if ((boundaryMask & 8) != 0) {
cpt[0] = 2*cpt[1] - cpt[2];
cpt[4] = 2*cpt[5] - cpt[6];
cpt[8] = 2*cpt[9] - cpt[10];
cpt[12] = 2*cpt[13] - cpt[14];
}
}
// ----------------------------------------------------------------------------
// Tessellation
// ----------------------------------------------------------------------------
//
// Organization of B-spline and Bezier control points.
//
// Each patch is defined by 16 control points (labeled 0-15).
//
// The patch will be evaluated across the domain from (0,0) at
// the lower-left to (1,1) at the upper-right. When computing
// adaptive tessellation metrics, we consider refined vertex-vertex
// and edge-vertex points along the transition edges of the patch
// (labeled vv* and ev* respectively).
//
// The two segments of each transition edge are labeled Lo and Hi,
// with the Lo segment occurring before the Hi segment along the
// transition edge's domain parameterization. These Lo and Hi segment
// tessellation levels determine how domain evaluation coordinates
// are remapped along transition edges. The Hi segment value will
// be zero for a non-transition edge.
//
// (0,1) (1,1)
//
// vv3 ev23 vv2
// | Lo3 | Hi3 |
// --O-----------O-----+-----O-----------O--
// | 12 | 13 14 | 15 |
// | | | |
// | | | |
// Hi0 | | | | Hi2
// | | | |
// O-----------O-----------O-----------O
// | 8 | 9 10 | 11 |
// | | | |
// ev03 --+ | | +-- ev12
// | | | |
// | 4 | 5 6 | 7 |
// O-----------O-----------O-----------O
// | | | |
// Lo0 | | | | Lo2
// | | | |
// | | | |
// | 0 | 1 2 | 3 |
// --O-----------O-----+-----O-----------O--
// | Lo1 | Hi1 |
// vv0 ev01 vv1
//
// (0,0) (1,0)
//
#define OSD_MAX_TESS_LEVEL gl_MaxTessGenLevel
float OsdComputePostProjectionSphereExtent(vec3 center, float diameter)
{
vec4 p = OsdProjectionMatrix() * vec4(center, 1.0);
return abs(diameter * OsdProjectionMatrix()[1][1] / p.w);
}
float OsdComputeTessLevel(vec3 p0, vec3 p1)
{
// Adaptive factor can be any computation that depends only on arg values.
// Project the diameter of the edge's bounding sphere instead of using the
// length of the projected edge itself to avoid problems near silhouettes.
p0 = (OsdModelViewMatrix() * vec4(p0, 1.0)).xyz;
p1 = (OsdModelViewMatrix() * vec4(p1, 1.0)).xyz;
vec3 center = (p0 + p1) / 2.0;
float diameter = distance(p0, p1);
float projLength = OsdComputePostProjectionSphereExtent(center, diameter);
float tessLevel = max(1.0, OsdTessLevel() * projLength);
// We restrict adaptive tessellation levels to half of the device
// supported maximum because transition edges are split into two
// halves and the sum of the two corresponding levels must not exceed
// the device maximum. We impose this limit even for non-transition
// edges because a non-transition edge must be able to match up with
// one half of the transition edge of an adjacent transition patch.
return min(tessLevel, OSD_MAX_TESS_LEVEL / 2);
}
void
OsdGetTessLevelsUniform(ivec3 patchParam,
out vec4 tessOuterLo, out vec4 tessOuterHi)
{
// Uniform factors are simple powers of two for each level.
// The maximum here can be increased if we know the maximum
// refinement level of the mesh:
// min(OSD_MAX_TESS_LEVEL, pow(2, MaximumRefinementLevel-1)
int refinementLevel = OsdGetPatchRefinementLevel(patchParam);
float tessLevel = min(OsdTessLevel(), OSD_MAX_TESS_LEVEL) /
pow(2, refinementLevel-1);
// tessLevels of transition edge should be clamped to 2.
int transitionMask = OsdGetPatchTransitionMask(patchParam);
vec4 tessLevelMin = vec4(1) + vec4(((transitionMask & 8) >> 3),
((transitionMask & 1) >> 0),
((transitionMask & 2) >> 1),
((transitionMask & 4) >> 2));
tessOuterLo = max(vec4(tessLevel), tessLevelMin);
tessOuterHi = vec4(0);
}
void
OsdGetTessLevelsRefinedPoints(vec3 cp[16], ivec3 patchParam,
out vec4 tessOuterLo, out vec4 tessOuterHi)
{
// Each edge of a transition patch is adjacent to one or two patches
// at the next refined level of subdivision. We compute the corresponding
// vertex-vertex and edge-vertex refined points along the edges of the
// patch using Catmull-Clark subdivision stencil weights.
// For simplicity, we let the optimizer discard unused computation.
vec3 vv0 = (cp[0] + cp[2] + cp[8] + cp[10]) * 0.015625 +
(cp[1] + cp[4] + cp[6] + cp[9]) * 0.09375 + cp[5] * 0.5625;
vec3 ev01 = (cp[1] + cp[2] + cp[9] + cp[10]) * 0.0625 +
(cp[5] + cp[6]) * 0.375;
vec3 vv1 = (cp[1] + cp[3] + cp[9] + cp[11]) * 0.015625 +
(cp[2] + cp[5] + cp[7] + cp[10]) * 0.09375 + cp[6] * 0.5625;
vec3 ev12 = (cp[5] + cp[7] + cp[9] + cp[11]) * 0.0625 +
(cp[6] + cp[10]) * 0.375;
vec3 vv2 = (cp[5] + cp[7] + cp[13] + cp[15]) * 0.015625 +
(cp[6] + cp[9] + cp[11] + cp[14]) * 0.09375 + cp[10] * 0.5625;
vec3 ev23 = (cp[5] + cp[6] + cp[13] + cp[14]) * 0.0625 +
(cp[9] + cp[10]) * 0.375;
vec3 vv3 = (cp[4] + cp[6] + cp[12] + cp[14]) * 0.015625 +
(cp[5] + cp[8] + cp[10] + cp[13]) * 0.09375 + cp[9] * 0.5625;
vec3 ev03 = (cp[4] + cp[6] + cp[8] + cp[10]) * 0.0625 +
(cp[5] + cp[9]) * 0.375;
tessOuterLo = vec4(0);
tessOuterHi = vec4(0);
int transitionMask = OsdGetPatchTransitionMask(patchParam);
if ((transitionMask & 8) != 0) {
tessOuterLo[0] = OsdComputeTessLevel(vv0, ev03);
tessOuterHi[0] = OsdComputeTessLevel(vv3, ev03);
} else {
tessOuterLo[0] = OsdComputeTessLevel(cp[5], cp[9]);
}
if ((transitionMask & 1) != 0) {
tessOuterLo[1] = OsdComputeTessLevel(vv0, ev01);
tessOuterHi[1] = OsdComputeTessLevel(vv1, ev01);
} else {
tessOuterLo[1] = OsdComputeTessLevel(cp[5], cp[6]);
}
if ((transitionMask & 2) != 0) {
tessOuterLo[2] = OsdComputeTessLevel(vv1, ev12);
tessOuterHi[2] = OsdComputeTessLevel(vv2, ev12);
} else {
tessOuterLo[2] = OsdComputeTessLevel(cp[6], cp[10]);
}
if ((transitionMask & 4) != 0) {
tessOuterLo[3] = OsdComputeTessLevel(vv3, ev23);
tessOuterHi[3] = OsdComputeTessLevel(vv2, ev23);
} else {
tessOuterLo[3] = OsdComputeTessLevel(cp[9], cp[10]);
}
}
void
OsdGetTessLevelsLimitPoints(OsdPerPatchVertexBezier cpBezier[16],
ivec3 patchParam, out vec4 tessOuterLo, out vec4 tessOuterHi)
{
// Each edge of a transition patch is adjacent to one or two patches
// at the next refined level of subdivision. When the patch control
// points have been converted to the Bezier basis, the control points
// at the four corners are on the limit surface (since a Bezier patch
// interpolates its corner control points). We can compute an adaptive
// tessellation level for transition edges on the limit surface by
// evaluating a limit position at the mid point of each transition edge.
tessOuterLo = vec4(0);
tessOuterHi = vec4(0);
int transitionMask = OsdGetPatchTransitionMask(patchParam);
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
// PERFOMANCE: we just need to pick the correct corner points from P, P1, P2
vec3 p0 = OsdEvalBezier(cpBezier, patchParam, vec2(0.0, 0.0));
vec3 p3 = OsdEvalBezier(cpBezier, patchParam, vec2(1.0, 0.0));
vec3 p12 = OsdEvalBezier(cpBezier, patchParam, vec2(0.0, 1.0));
vec3 p15 = OsdEvalBezier(cpBezier, patchParam, vec2(1.0, 1.0));
if ((transitionMask & 8) != 0) {
vec3 ev03 = OsdEvalBezier(cpBezier, patchParam, vec2(0.0, 0.5));
tessOuterLo[0] = OsdComputeTessLevel(p0, ev03);
tessOuterHi[0] = OsdComputeTessLevel(p12, ev03);
} else {
tessOuterLo[0] = OsdComputeTessLevel(p0, p12);
}
if ((transitionMask & 1) != 0) {
vec3 ev01 = OsdEvalBezier(cpBezier, patchParam, vec2(0.5, 0.0));
tessOuterLo[1] = OsdComputeTessLevel(p0, ev01);
tessOuterHi[1] = OsdComputeTessLevel(p3, ev01);
} else {
tessOuterLo[1] = OsdComputeTessLevel(p0, p3);
}
if ((transitionMask & 2) != 0) {
vec3 ev12 = OsdEvalBezier(cpBezier, patchParam, vec2(1.0, 0.5));
tessOuterLo[2] = OsdComputeTessLevel(p3, ev12);
tessOuterHi[2] = OsdComputeTessLevel(p15, ev12);
} else {
tessOuterLo[2] = OsdComputeTessLevel(p3, p15);
}
if ((transitionMask & 4) != 0) {
vec3 ev23 = OsdEvalBezier(cpBezier, patchParam, vec2(0.5, 1.0));
tessOuterLo[3] = OsdComputeTessLevel(p12, ev23);
tessOuterHi[3] = OsdComputeTessLevel(p15, ev23);
} else {
tessOuterLo[3] = OsdComputeTessLevel(p12, p15);
}
#else
if ((transitionMask & 8) != 0) {
vec3 ev03 = OsdEvalBezier(cpBezier, patchParam, vec2(0.0, 0.5));
tessOuterLo[0] = OsdComputeTessLevel(cpBezier[0].P, ev03);
tessOuterHi[0] = OsdComputeTessLevel(cpBezier[12].P, ev03);
} else {
tessOuterLo[0] = OsdComputeTessLevel(cpBezier[0].P, cpBezier[12].P);
}
if ((transitionMask & 1) != 0) {
vec3 ev01 = OsdEvalBezier(cpBezier, patchParam, vec2(0.5, 0.0));
tessOuterLo[1] = OsdComputeTessLevel(cpBezier[0].P, ev01);
tessOuterHi[1] = OsdComputeTessLevel(cpBezier[3].P, ev01);
} else {
tessOuterLo[1] = OsdComputeTessLevel(cpBezier[0].P, cpBezier[3].P);
}
if ((transitionMask & 2) != 0) {
vec3 ev12 = OsdEvalBezier(cpBezier, patchParam, vec2(1.0, 0.5));
tessOuterLo[2] = OsdComputeTessLevel(cpBezier[3].P, ev12);
tessOuterHi[2] = OsdComputeTessLevel(cpBezier[15].P, ev12);
} else {
tessOuterLo[2] = OsdComputeTessLevel(cpBezier[3].P, cpBezier[15].P);
}
if ((transitionMask & 4) != 0) {
vec3 ev23 = OsdEvalBezier(cpBezier, patchParam, vec2(0.5, 1.0));
tessOuterLo[3] = OsdComputeTessLevel(cpBezier[12].P, ev23);
tessOuterHi[3] = OsdComputeTessLevel(cpBezier[15].P, ev23);
} else {
tessOuterLo[3] = OsdComputeTessLevel(cpBezier[12].P, cpBezier[15].P);
}
#endif
}
// Round up to the nearest even integer
float OsdRoundUpEven(float x) {
return 2*ceil(x/2);
}
// Round up to the nearest odd integer
float OsdRoundUpOdd(float x) {
return 2*ceil((x+1)/2)-1;
}
// Compute outer and inner tessellation levels taking into account the
// current tessellation spacing mode.
void
OsdComputeTessLevels(inout vec4 tessOuterLo, inout vec4 tessOuterHi,
out vec4 tessLevelOuter, out vec2 tessLevelInner)
{
// Outer levels are the sum of the Lo and Hi segments where the Hi
// segments will have lengths of zero for non-transition edges.
#if defined OSD_FRACTIONAL_EVEN_SPACING
// Combine fractional outer transition edge levels before rounding.
vec4 combinedOuter = tessOuterLo + tessOuterHi;
// Round the segments of transition edges separately. We will recover the
// fractional parameterization of transition edges after tessellation.
tessLevelOuter = combinedOuter;
if (tessOuterHi[0] > 0) {
tessLevelOuter[0] =
OsdRoundUpEven(tessOuterLo[0]) + OsdRoundUpEven(tessOuterHi[0]);
}
if (tessOuterHi[1] > 0) {
tessLevelOuter[1] =
OsdRoundUpEven(tessOuterLo[1]) + OsdRoundUpEven(tessOuterHi[1]);
}
if (tessOuterHi[2] > 0) {
tessLevelOuter[2] =
OsdRoundUpEven(tessOuterLo[2]) + OsdRoundUpEven(tessOuterHi[2]);
}
if (tessOuterHi[3] > 0) {
tessLevelOuter[3] =
OsdRoundUpEven(tessOuterLo[3]) + OsdRoundUpEven(tessOuterHi[3]);
}
#elif defined OSD_FRACTIONAL_ODD_SPACING
// Combine fractional outer transition edge levels before rounding.
vec4 combinedOuter = tessOuterLo + tessOuterHi;
// Round the segments of transition edges separately. We will recover the
// fractional parameterization of transition edges after tessellation.
//
// The sum of the two outer odd segment lengths will be an even number
// which the tessellator will increase by +1 so that there will be a
// total odd number of segments. We clamp the combinedOuter tess levels
// (used to compute the inner tess levels) so that the outer transition
// edges will be sampled without degenerate triangles.
tessLevelOuter = combinedOuter;
if (tessOuterHi[0] > 0) {
tessLevelOuter[0] =
OsdRoundUpOdd(tessOuterLo[0]) + OsdRoundUpOdd(tessOuterHi[0]);
combinedOuter = max(vec4(3), combinedOuter);
}
if (tessOuterHi[1] > 0) {
tessLevelOuter[1] =
OsdRoundUpOdd(tessOuterLo[1]) + OsdRoundUpOdd(tessOuterHi[1]);
combinedOuter = max(vec4(3), combinedOuter);
}
if (tessOuterHi[2] > 0) {
tessLevelOuter[2] =
OsdRoundUpOdd(tessOuterLo[2]) + OsdRoundUpOdd(tessOuterHi[2]);
combinedOuter = max(vec4(3), combinedOuter);
}
if (tessOuterHi[3] > 0) {
tessLevelOuter[3] =
OsdRoundUpOdd(tessOuterLo[3]) + OsdRoundUpOdd(tessOuterHi[3]);
combinedOuter = max(vec4(3), combinedOuter);
}
#else
// Round equally spaced transition edge levels before combining.
tessOuterLo = round(tessOuterLo);
tessOuterHi = round(tessOuterHi);
vec4 combinedOuter = tessOuterLo + tessOuterHi;
tessLevelOuter = combinedOuter;
#endif
// Inner levels are the averages the corresponding outer levels.
tessLevelInner[0] = (combinedOuter[1] + combinedOuter[3]) * 0.5;
tessLevelInner[1] = (combinedOuter[0] + combinedOuter[2]) * 0.5;
}
void
OsdGetTessLevelsUniform(ivec3 patchParam,
out vec4 tessLevelOuter, out vec2 tessLevelInner,
out vec4 tessOuterLo, out vec4 tessOuterHi)
{
// uniform tessellation
OsdGetTessLevelsUniform(patchParam, tessOuterLo, tessOuterHi);
OsdComputeTessLevels(tessOuterLo, tessOuterHi,
tessLevelOuter, tessLevelInner);
}
void
OsdGetTessLevelsAdaptiveRefinedPoints(vec3 cpRefined[16], ivec3 patchParam,
out vec4 tessLevelOuter, out vec2 tessLevelInner,
out vec4 tessOuterLo, out vec4 tessOuterHi)
{
OsdGetTessLevelsRefinedPoints(cpRefined, patchParam,
tessOuterLo, tessOuterHi);
OsdComputeTessLevels(tessOuterLo, tessOuterHi,
tessLevelOuter, tessLevelInner);
}
void
OsdGetTessLevelsAdaptiveLimitPoints(OsdPerPatchVertexBezier cpBezier[16],
ivec3 patchParam,
out vec4 tessLevelOuter, out vec2 tessLevelInner,
out vec4 tessOuterLo, out vec4 tessOuterHi)
{
OsdGetTessLevelsLimitPoints(cpBezier, patchParam,
tessOuterLo, tessOuterHi);
OsdComputeTessLevels(tessOuterLo, tessOuterHi,
tessLevelOuter, tessLevelInner);
}
void
OsdGetTessLevels(vec3 cp0, vec3 cp1, vec3 cp2, vec3 cp3,
ivec3 patchParam,
out vec4 tessLevelOuter, out vec2 tessLevelInner)
{
vec4 tessOuterLo = vec4(0);
vec4 tessOuterHi = vec4(0);
#if defined OSD_ENABLE_SCREENSPACE_TESSELLATION
tessOuterLo[0] = OsdComputeTessLevel(cp0, cp1);
tessOuterLo[1] = OsdComputeTessLevel(cp0, cp3);
tessOuterLo[2] = OsdComputeTessLevel(cp2, cp3);
tessOuterLo[3] = OsdComputeTessLevel(cp1, cp2);
tessOuterHi = vec4(0);
#else
OsdGetTessLevelsUniform(patchParam, tessOuterLo, tessOuterHi);
#endif
OsdComputeTessLevels(tessOuterLo, tessOuterHi,
tessLevelOuter, tessLevelInner);
}
#if defined OSD_FRACTIONAL_EVEN_SPACING || defined OSD_FRACTIONAL_ODD_SPACING
float
OsdGetTessFractionalSplit(float t, float level, float levelUp)
{
// Fractional tessellation of an edge will produce n segments where n
// is the tessellation level of the edge (level) rounded up to the
// nearest even or odd integer (levelUp). There will be n-2 segments of
// equal length (dx1) and two additional segments of equal length (dx0)
// that are typically shorter than the other segments. The two additional
// segments should be placed symmetrically on opposite sides of the
// edge (offset).
#if defined OSD_FRACTIONAL_EVEN_SPACING
if (level <= 2) return t;
float base = pow(2.0,floor(log2(levelUp)));
float offset = 1.0/(int(2*base-levelUp)/2 & int(base/2-1));
#elif defined OSD_FRACTIONAL_ODD_SPACING
if (level <= 1) return t;
float base = pow(2.0,floor(log2(levelUp)));
float offset = 1.0/(((int(2*base-levelUp)/2+1) & int(base/2-1))+1);
#endif
float dx0 = (1.0 - (levelUp-level)/2) / levelUp;
float dx1 = (1.0 - 2.0*dx0) / (levelUp - 2.0*ceil(dx0));
if (t < 0.5) {
float x = levelUp/2 - round(t*levelUp);
return 0.5 - (x*dx1 + int(x*offset > 1) * (dx0 - dx1));
} else if (t > 0.5) {
float x = round(t*levelUp) - levelUp/2;
return 0.5 + (x*dx1 + int(x*offset > 1) * (dx0 - dx1));
} else {
return t;
}
}
#endif
float
OsdGetTessTransitionSplit(float t, float lo, float hi)
{
#if defined OSD_FRACTIONAL_EVEN_SPACING
float loRoundUp = OsdRoundUpEven(lo);
float hiRoundUp = OsdRoundUpEven(hi);
// Convert the parametric t into a segment index along the combined edge.
float ti = round(t * (loRoundUp + hiRoundUp));
if (ti <= loRoundUp) {
float t0 = ti / loRoundUp;
return OsdGetTessFractionalSplit(t0, lo, loRoundUp) * 0.5;
} else {
float t1 = (ti - loRoundUp) / hiRoundUp;
return OsdGetTessFractionalSplit(t1, hi, hiRoundUp) * 0.5 + 0.5;
}
#elif defined OSD_FRACTIONAL_ODD_SPACING
float loRoundUp = OsdRoundUpOdd(lo);
float hiRoundUp = OsdRoundUpOdd(hi);
// Convert the parametric t into a segment index along the combined edge.
// The +1 below is to account for the extra segment produced by the
// tessellator since the sum of two odd tess levels will be rounded
// up by one to the next odd integer tess level.
float ti = round(t * (loRoundUp + hiRoundUp + 1));
if (ti <= loRoundUp) {
float t0 = ti / loRoundUp;
return OsdGetTessFractionalSplit(t0, lo, loRoundUp) * 0.5;
} else if (ti > (loRoundUp+1)) {
float t1 = (ti - (loRoundUp+1)) / hiRoundUp;
return OsdGetTessFractionalSplit(t1, hi, hiRoundUp) * 0.5 + 0.5;
} else {
return 0.5;
}
#else
// Convert the parametric t into a segment index along the combined edge.
float ti = round(t * (lo + hi));
if (ti <= lo) {
return (ti / lo) * 0.5;
} else {
return ((ti - lo) / hi) * 0.5 + 0.5;
}
#endif
}
vec2
OsdGetTessParameterization(vec2 uv, vec4 tessOuterLo, vec4 tessOuterHi)
{
vec2 UV = uv;
if (UV.x == 0 && tessOuterHi[0] > 0) {
UV.y = OsdGetTessTransitionSplit(UV.y, tessOuterLo[0], tessOuterHi[0]);
} else
if (UV.y == 0 && tessOuterHi[1] > 0) {
UV.x = OsdGetTessTransitionSplit(UV.x, tessOuterLo[1], tessOuterHi[1]);
} else
if (UV.x == 1 && tessOuterHi[2] > 0) {
UV.y = OsdGetTessTransitionSplit(UV.y, tessOuterLo[2], tessOuterHi[2]);
} else
if (UV.y == 1 && tessOuterHi[3] > 0) {
UV.x = OsdGetTessTransitionSplit(UV.x, tessOuterLo[3], tessOuterHi[3]);
}
return UV;
}
// ----------------------------------------------------------------------------
// BSpline
// ----------------------------------------------------------------------------
// compute single-crease patch matrix
mat4
OsdComputeMs(float sharpness)
{
float s = pow(2.0f, sharpness);
float s2 = s*s;
float s3 = s2*s;
mat4 m = mat4(
0, s + 1 + 3*s2 - s3, 7*s - 2 - 6*s2 + 2*s3, (1-s)*(s-1)*(s-1),
0, (1+s)*(1+s), 6*s - 2 - 2*s2, (s-1)*(s-1),
0, 1+s, 6*s - 2, 1-s,
0, 1, 6*s - 2, 1);
m /= (s*6.0);
m[0][0] = 1.0/6.0;
return m;
}
// flip matrix orientation
mat4
OsdFlipMatrix(mat4 m)
{
return mat4(m[3][3], m[3][2], m[3][1], m[3][0],
m[2][3], m[2][2], m[2][1], m[2][0],
m[1][3], m[1][2], m[1][1], m[1][0],
m[0][3], m[0][2], m[0][1], m[0][0]);
}
// Regular BSpline to Bezier
uniform mat4 Q = mat4(
1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f,
0.f, 4.f/6.f, 2.f/6.f, 0.f,
0.f, 2.f/6.f, 4.f/6.f, 0.f,
0.f, 1.f/6.f, 4.f/6.f, 1.f/6.f
);
// Infinitely Sharp (boundary)
uniform mat4 Mi = mat4(
1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f,
0.f, 4.f/6.f, 2.f/6.f, 0.f,
0.f, 2.f/6.f, 4.f/6.f, 0.f,
0.f, 0.f, 1.f, 0.f
);
// convert BSpline cv to Bezier cv
void
OsdComputePerPatchVertexBSpline(ivec3 patchParam, int ID, vec3 cv[16],
out OsdPerPatchVertexBezier result)
{
result.patchParam = patchParam;
int i = ID%4;
int j = ID/4;
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
vec3 P = vec3(0); // 0 to 1-2^(-Sf)
vec3 P1 = vec3(0); // 1-2^(-Sf) to 1-2^(-Sc)
vec3 P2 = vec3(0); // 1-2^(-Sc) to 1
float sharpness = OsdGetPatchSharpness(patchParam);
if (sharpness > 0) {
float Sf = floor(sharpness);
float Sc = ceil(sharpness);
float Sr = fract(sharpness);
mat4 Mf = OsdComputeMs(Sf);
mat4 Mc = OsdComputeMs(Sc);
mat4 Mj = (1-Sr) * Mf + Sr * Mi;
mat4 Ms = (1-Sr) * Mf + Sr * Mc;
float s0 = 1 - pow(2, -floor(sharpness));
float s1 = 1 - pow(2, -ceil(sharpness));
result.vSegments = vec2(s0, s1);
mat4 MUi = Q, MUj = Q, MUs = Q;
mat4 MVi = Q, MVj = Q, MVs = Q;
int boundaryMask = OsdGetPatchBoundaryMask(patchParam);
if ((boundaryMask & 1) != 0) {
MVi = OsdFlipMatrix(Mi);
MVj = OsdFlipMatrix(Mj);
MVs = OsdFlipMatrix(Ms);
}
if ((boundaryMask & 2) != 0) {
MUi = Mi;
MUj = Mj;
MUs = Ms;
}
if ((boundaryMask & 4) != 0) {
MVi = Mi;
MVj = Mj;
MVs = Ms;
}
if ((boundaryMask & 8) != 0) {
MUi = OsdFlipMatrix(Mi);
MUj = OsdFlipMatrix(Mj);
MUs = OsdFlipMatrix(Ms);
}
vec3 Hi[4], Hj[4], Hs[4];
for (int l=0; l<4; ++l) {
Hi[l] = Hj[l] = Hs[l] = vec3(0);
for (int k=0; k<4; ++k) {
Hi[l] += MUi[i][k] * cv[l*4 + k];
Hj[l] += MUj[i][k] * cv[l*4 + k];
Hs[l] += MUs[i][k] * cv[l*4 + k];
}
}
for (int k=0; k<4; ++k) {
P += MVi[j][k]*Hi[k];
P1 += MVj[j][k]*Hj[k];
P2 += MVs[j][k]*Hs[k];
}
result.P = P;
result.P1 = P1;
result.P2 = P2;
} else {
result.vSegments = vec2(0);
OsdComputeBSplineBoundaryPoints(cv, patchParam);
vec3 Hi[4];
for (int l=0; l<4; ++l) {
Hi[l] = vec3(0);
for (int k=0; k<4; ++k) {
Hi[l] += Q[i][k] * cv[l*4 + k];
}
}
for (int k=0; k<4; ++k) {
P += Q[j][k]*Hi[k];
}
result.P = P;
result.P1 = P;
result.P2 = P;
}
#else
OsdComputeBSplineBoundaryPoints(cv, patchParam);
vec3 H[4];
for (int l=0; l<4; ++l) {
H[l] = vec3(0);
for (int k=0; k<4; ++k) {
H[l] += Q[i][k] * cv[l*4 + k];
}
}
{
result.P = vec3(0);
for (int k=0; k<4; ++k) {
result.P += Q[j][k]*H[k];
}
}
#endif
}
void
OsdEvalPatchBezier(ivec3 patchParam, vec2 UV,
OsdPerPatchVertexBezier cv[16],
out vec3 P, out vec3 dPu, out vec3 dPv,
out vec3 N, out vec3 dNu, out vec3 dNv)
{
//
// Use the recursive nature of the basis functions to compute a 2x2 set
// of intermediate points (via repeated linear interpolation). These
// points define a bilinear surface tangent to the desired surface at P
// and so containing dPu and dPv. The cost of computing P, dPu and dPv
// this way is comparable to that of typical tensor product evaluation
// (if not faster).
//
// If N = dPu X dPv degenerates, it often results from an edge of the
// 2x2 bilinear hull collapsing or two adjacent edges colinear. In both
// cases, the expected non-planar quad degenerates into a triangle, and
// the tangent plane of that triangle provides the desired normal N.
//
// Reduce 4x4 points to 2x4 -- two levels of linear interpolation in U
// and so 3 original rows contributing to each of the 2 resulting rows:
float u = UV.x;
float uinv = 1.0f - u;
float u0 = uinv * uinv;
float u1 = u * uinv * 2.0f;
float u2 = u * u;
vec3 LROW[4], RROW[4];
#ifndef OSD_PATCH_ENABLE_SINGLE_CREASE
LROW[0] = u0 * cv[ 0].P + u1 * cv[ 1].P + u2 * cv[ 2].P;
LROW[1] = u0 * cv[ 4].P + u1 * cv[ 5].P + u2 * cv[ 6].P;
LROW[2] = u0 * cv[ 8].P + u1 * cv[ 9].P + u2 * cv[10].P;
LROW[3] = u0 * cv[12].P + u1 * cv[13].P + u2 * cv[14].P;
RROW[0] = u0 * cv[ 1].P + u1 * cv[ 2].P + u2 * cv[ 3].P;
RROW[1] = u0 * cv[ 5].P + u1 * cv[ 6].P + u2 * cv[ 7].P;
RROW[2] = u0 * cv[ 9].P + u1 * cv[10].P + u2 * cv[11].P;
RROW[3] = u0 * cv[13].P + u1 * cv[14].P + u2 * cv[15].P;
#else
vec2 vSegments = cv[0].vSegments;
float s = OsdGetPatchSingleCreaseSegmentParameter(patchParam, UV);
for (int i = 0; i < 4; ++i) {
int j = i*4;
if (s <= vSegments.x) {
LROW[i] = u0 * cv[ j ].P + u1 * cv[j+1].P + u2 * cv[j+2].P;
RROW[i] = u0 * cv[j+1].P + u1 * cv[j+2].P + u2 * cv[j+3].P;
} else if (s <= vSegments.y) {
LROW[i] = u0 * cv[ j ].P1 + u1 * cv[j+1].P1 + u2 * cv[j+2].P1;
RROW[i] = u0 * cv[j+1].P1 + u1 * cv[j+2].P1 + u2 * cv[j+3].P1;
} else {
LROW[i] = u0 * cv[ j ].P2 + u1 * cv[j+1].P2 + u2 * cv[j+2].P2;
RROW[i] = u0 * cv[j+1].P2 + u1 * cv[j+2].P2 + u2 * cv[j+3].P2;
}
}
#endif
// Reduce 2x4 points to 2x2 -- two levels of linear interpolation in V
// and so 3 original pairs contributing to each of the 2 resulting:
float v = UV.y;
float vinv = 1.0f - v;
float v0 = vinv * vinv;
float v1 = v * vinv * 2.0f;
float v2 = v * v;
vec3 LPAIR[2], RPAIR[2];
LPAIR[0] = v0 * LROW[0] + v1 * LROW[1] + v2 * LROW[2];
RPAIR[0] = v0 * RROW[0] + v1 * RROW[1] + v2 * RROW[2];
LPAIR[1] = v0 * LROW[1] + v1 * LROW[2] + v2 * LROW[3];
RPAIR[1] = v0 * RROW[1] + v1 * RROW[2] + v2 * RROW[3];
// Interpolate points on the edges of the 2x2 bilinear hull from which
// both position and partials are trivially determined:
vec3 DU0 = vinv * LPAIR[0] + v * LPAIR[1];
vec3 DU1 = vinv * RPAIR[0] + v * RPAIR[1];
vec3 DV0 = uinv * LPAIR[0] + u * RPAIR[0];
vec3 DV1 = uinv * LPAIR[1] + u * RPAIR[1];
int level = OsdGetPatchFaceLevel(patchParam);
dPu = (DU1 - DU0) * 3 * level;
dPv = (DV1 - DV0) * 3 * level;
P = u * DU1 + uinv * DU0;
// Compute the normal and test for degeneracy:
//
// We need a geometric measure of the size of the patch for a suitable
// tolerance. Magnitudes of the partials are generally proportional to
// that size -- the sum of the partials is readily available, cheap to
// compute, and has proved effective in most cases (though not perfect).
// The size of the bounding box of the patch, or some approximation to
// it, would be better but more costly to compute.
//
float proportionalNormalTolerance = 0.00001f;
float nEpsilon = (length(dPu) + length(dPv)) * proportionalNormalTolerance;
N = cross(dPu, dPv);
float nLength = length(N);
if (nLength > nEpsilon) {
N = N / nLength;
} else {
vec3 diagCross = cross(RPAIR[1] - LPAIR[0], LPAIR[1] - RPAIR[0]);
float diagCrossLength = length(diagCross);
if (diagCrossLength > nEpsilon) {
N = diagCross / diagCrossLength;
}
}
#ifndef OSD_COMPUTE_NORMAL_DERIVATIVES
dNu = vec3(0);
dNv = vec3(0);
#else
//
// Compute 2nd order partials of P(u,v) in order to compute 1st order partials
// for the un-normalized n(u,v) = dPu X dPv, then project into the tangent
// plane of normalized N. With resulting dNu and dNv we can make another
// attempt to resolve a still-degenerate normal.
//
// We don't use the Weingarten equations here as they require N != 0 and also
// are a little less numerically stable/accurate in single precision.
//
float B0u[4], B1u[4], B2u[4];
float B0v[4], B1v[4], B2v[4];
OsdUnivar4x4(UV.x, B0u, B1u, B2u);
OsdUnivar4x4(UV.y, B0v, B1v, B2v);
vec3 dUU = vec3(0);
vec3 dVV = vec3(0);
vec3 dUV = vec3(0);
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
#ifdef OSD_PATCH_ENABLE_SINGLE_CREASE
int k = 4*i + j;
vec3 CV = (s <= vSegments.x) ? cv[k].P
: ((s <= vSegments.y) ? cv[k].P1
: cv[k].P2);
#else
vec3 CV = cv[4*i + j].P;
#endif
dUU += (B0v[i] * B2u[j]) * CV;
dVV += (B2v[i] * B0u[j]) * CV;
dUV += (B1v[i] * B1u[j]) * CV;
}
}
dUU *= 6 * level;
dVV *= 6 * level;
dUV *= 9 * level;
dNu = cross(dUU, dPv) + cross(dPu, dUV);
dNv = cross(dUV, dPv) + cross(dPu, dVV);
float nLengthInv = 1.0;
if (nLength > nEpsilon) {
nLengthInv = 1.0 / nLength;
} else {
// N may have been resolved above if degenerate, but if N was resolved
// we don't have an accurate length for its un-normalized value, and that
// length is needed to project the un-normalized dNu and dNv into the
// tangent plane of N.
//
// So compute N more accurately with available second derivatives, i.e.
// with a 1st order Taylor approximation to un-normalized N(u,v).
float DU = (UV.x == 1.0f) ? -1.0f : 1.0f;
float DV = (UV.y == 1.0f) ? -1.0f : 1.0f;
N = DU * dNu + DV * dNv;
nLength = length(N);
if (nLength > nEpsilon) {
nLengthInv = 1.0f / nLength;
N = N * nLengthInv;
}
}
// Project derivatives of non-unit normals into tangent plane of N:
dNu = (dNu - dot(dNu,N) * N) * nLengthInv;
dNv = (dNv - dot(dNv,N) * N) * nLengthInv;
#endif
}
// ----------------------------------------------------------------------------
// Gregory Basis
// ----------------------------------------------------------------------------
struct OsdPerPatchVertexGregoryBasis {
ivec3 patchParam;
vec3 P;
};
void
OsdComputePerPatchVertexGregoryBasis(ivec3 patchParam, int ID, vec3 cv,
out OsdPerPatchVertexGregoryBasis result)
{
result.patchParam = patchParam;
result.P = cv;
}
void
OsdEvalPatchGregory(ivec3 patchParam, vec2 UV, vec3 cv[20],
out vec3 P, out vec3 dPu, out vec3 dPv,
out vec3 N, out vec3 dNu, out vec3 dNv)
{
float u = UV.x, v = UV.y;
float U = 1-u, V = 1-v;
//(0,1) (1,1)
// P3 e3- e2+ P2
// 15------17-------11-------10
// | | | |
// | | | |
// | | f3- | f2+ |
// | 19 13 |
// e3+ 16-----18 14-----12 e2-
// | f3+ f2- |
// | |
// | |
// | f0- f1+ |
// e0- 2------4 8------6 e1+
// | 3 f0+ 9 |
// | | | f1- |
// | | | |
// | | | |
// 0--------1--------7--------5
// P0 e0+ e1- P1
//(0,0) (1,0)
float d11 = u+v;
float d12 = U+v;
float d21 = u+V;
float d22 = U+V;
OsdPerPatchVertexBezier bezcv[16];
bezcv[ 5].P = (d11 == 0.0) ? cv[3] : (u*cv[3] + v*cv[4])/d11;
bezcv[ 6].P = (d12 == 0.0) ? cv[8] : (U*cv[9] + v*cv[8])/d12;
bezcv[ 9].P = (d21 == 0.0) ? cv[18] : (u*cv[19] + V*cv[18])/d21;
bezcv[10].P = (d22 == 0.0) ? cv[13] : (U*cv[13] + V*cv[14])/d22;
bezcv[ 0].P = cv[0];
bezcv[ 1].P = cv[1];
bezcv[ 2].P = cv[7];
bezcv[ 3].P = cv[5];
bezcv[ 4].P = cv[2];
bezcv[ 7].P = cv[6];
bezcv[ 8].P = cv[16];
bezcv[11].P = cv[12];
bezcv[12].P = cv[15];
bezcv[13].P = cv[17];
bezcv[14].P = cv[11];
bezcv[15].P = cv[10];
OsdEvalPatchBezier(patchParam, UV, bezcv, P, dPu, dPv, N, dNu, dNv);
}