OpenSubdiv/examples/vtrViewer/hbr_refine.cpp

1333 lines
46 KiB
C++
Raw Normal View History

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "hbr_refine.h"
#include <version.h>
#include <far/patchTables.h>
// !!! WARNING !!!
//
// The Far::PatchTablesFactory code duplicated in this file is for debugging
// puproses only !
//
// Do *NOT* use, duplicate or rely on this code.
//------------------------------------------------------------------------------
//
// refine the Hbr mesh uniformly
//
void
RefineUniform(Hmesh & mesh, int maxlevel,
std::vector<Hface const *> & refinedFaces) {
int nfaces = mesh.GetNumFaces();
for (int level=0, firstface=0; level<=maxlevel; ++level ) {
if (level==maxlevel) {
refinedFaces.resize(nfaces-firstface);
for (int i=firstface, ofs=0; i<nfaces; ++i) {
refinedFaces[ofs++]=mesh.GetFace(i);
}
} else {
for (int i=firstface; i<nfaces; ++i) {
Hface * f = mesh.GetFace(i);
assert(f->GetDepth()==level);
if (not f->IsHole()) {
f->Refine();
}
}
}
// Hbr allocates faces sequentially, skip faces that have
// already been refined.
firstface = nfaces;
nfaces = mesh.GetNumFaces();
}
}
//------------------------------------------------------------------------------
struct VertCompare {
bool operator() (Hvertex const * v1, Hvertex const * v2 ) const {
//return v1->GetID() < v2->GetID();
return (void*)(v1) < (void*)(v2);
}
};
//------------------------------------------------------------------------------
// True if the vertex can be incorporated into a B-spline patch
bool
vertexIsBSpline(Hvertex * v, bool next) {
int valence = v->GetValence();
// Boundary & corner vertices
if (v->OnBoundary()) {
if (valence==2) {
// corner vertex
Hface * f = v->GetFace();
// the vertex may not need isolation depending on boundary
// interpolation rule (sharp vs. rounded corner)
Hmesh::InterpolateBoundaryMethod method =
f->GetMesh()->GetInterpolateBoundaryMethod();
if (method==Hmesh::k_InterpolateBoundaryEdgeAndCorner) {
if (not next) {
// if we are checking coarse vertices (next==false),
// count the number of corners in the face, because we
// can only have 1 corner vertex in a corner patch.
int nsharpboundaries=0;
for (int i=0; i<f->GetNumVertices(); ++i) {
Hhalfedge * e = f->GetEdge(i);
if (e->IsBoundary() and
e->GetSharpness()==Hhalfedge::k_InfinitelySharp) {
++nsharpboundaries;
}
}
return nsharpboundaries < 3 ? true: false;
} else
return true;
} else
return false;
} else if (valence>3) {
// extraordinary boundary vertex (high valence)
return false;
}
// regular boundary vertices have valence 3
return true;
}
// Extraordinary or creased vertices that aren't corner / boundaries
if (v->IsExtraordinary() or v->IsSharp(next))
return false;
return true;
}
//------------------------------------------------------------------------------
void
refineVertexNeighbors(Hvertex * v) {
assert(v);
Hhalfedge * start = v->GetIncidentEdge(),
* next=start;
do {
Hface * lft = next->GetLeftFace(),
* rgt = next->GetRightFace();
if (not ((lft and lft->IsHole()) and
(rgt and rgt->IsHole()) ) ) {
if (rgt)
rgt->_adaptiveFlags.isTagged=true;
if (lft)
lft->_adaptiveFlags.isTagged=true;
Hhalfedge * istart = next,
* inext = istart;
do {
if (not inext->IsInsideHole() )
inext->GetOrgVertex()->Refine();
inext = inext->GetNext();
} while (istart != inext);
}
next = v->GetNextEdge( next );
} while (next and next!=start);
}
//------------------------------------------------------------------------------
//
// refine the Hbr mesh adaptively
//
int
RefineAdaptive(Hmesh & mesh, int maxlevel,
std::vector<Hface const *> & refinedFaces) {
int ncoarsefaces = mesh.GetNumCoarseFaces(),
ncoarseverts = mesh.GetNumVertices(),
maxValence=0;
// First pass : tag coarse vertices & faces that need refinement
typedef std::set<Hvertex *, VertCompare> VertSet;
VertSet verts, nextverts;
for (int i=0; i<ncoarseverts; ++i) {
Hvertex * v = mesh.GetVertex(i);
// Non manifold topology may leave un-connected vertices that need to be skipped
if (not v->IsConnected()) {
continue;
}
// Tag non-BSpline vertices for refinement
if (not vertexIsBSpline(v, false)) {
v->_adaptiveFlags.isTagged=true;
nextverts.insert(v);
}
}
for (int i=0; i<ncoarsefaces; ++i) {
Hface * f = mesh.GetFace(i);
if (f->IsHole())
continue;
bool extraordinary = mesh.GetSubdivision()->FaceIsExtraordinary(&mesh,f);
int nv = f->GetNumVertices();
for (int j=0; j<nv; ++j) {
Hhalfedge * e = f->GetEdge(j);
assert(e);
// Tag sharp edges for refinement
if (e->IsSharp(true) and (not e->IsBoundary())) {
nextverts.insert(e->GetOrgVertex());
nextverts.insert(e->GetDestVertex());
e->GetOrgVertex()->_adaptiveFlags.isTagged=true;
e->GetDestVertex()->_adaptiveFlags.isTagged=true;
}
// Tag extraordinary (non-quad) faces for refinement
if (extraordinary or f->HasVertexEdits()) {
Hvertex * v = f->GetVertex(j);
v->_adaptiveFlags.isTagged=true;
nextverts.insert(v);
}
// Quad-faces with 2 non-consecutive boundaries need to be flagged
// for refinement as boundary patches.
//
// o ........ o ........ o ........ o
// . | | . ... boundary edge
// . | needs | .
// . | flag | . --- regular edge
// . | | .
// o ........ o ........ o ........ o
//
if ( e->IsBoundary() and (not f->_adaptiveFlags.isTagged) and nv==4 ) {
if (e->GetPrev() and (not e->GetPrev()->IsBoundary()) and
e->GetNext() and (not e->GetNext()->IsBoundary()) and
e->GetNext() and e->GetNext()->GetNext() and e->GetNext()->GetNext()->IsBoundary()) {
// Tag the face so that we don't check for this again
f->_adaptiveFlags.isTagged=true;
// Tag all 4 vertices of the face to make sure 4 boundary
// sub-patches are generated
for (int k=0; k<4; ++k) {
Hvertex * v = f->GetVertex(k);
v->_adaptiveFlags.isTagged=true;
nextverts.insert(v);
}
}
}
}
maxValence = std::max(maxValence, nv);
}
// Second pass : refine adaptively around singularities
for (int level=0; level<maxlevel; ++level) {
verts = nextverts;
nextverts.clear();
// Refine vertices
for (VertSet::iterator i=verts.begin(); i!=verts.end(); ++i) {
Hvertex * v = *i;
assert(v);
if (level>0)
v->_adaptiveFlags.isTagged=true;
else
v->_adaptiveFlags.wasTagged=true;
refineVertexNeighbors(v);
// Tag non-BSpline vertices for refinement
if (not vertexIsBSpline(v, true))
nextverts.insert(v->Subdivide());
// Refine edges with creases or edits
int valence = v->GetValence();
maxValence = std::max(maxValence, valence);
Hhalfedge * e = v->GetIncidentEdge();
for (int j=0; j<valence; ++j) {
// Skip edges that have already been processed (HasChild())
if ((not e->HasChild()) and e->IsSharp(false) and (not e->IsBoundary())) {
if (not e->IsInsideHole()) {
nextverts.insert( e->Subdivide() );
nextverts.insert( e->GetOrgVertex()->Subdivide() );
nextverts.insert( e->GetDestVertex()->Subdivide() );
}
}
Hhalfedge * next = v->GetNextEdge(e);
e = next ? next : e->GetPrev();
}
// Flag verts with hierarchical edits for neighbor refinement at the next level
Hvertex * childvert = v->Subdivide();
Hhalfedge * childedge = childvert->GetIncidentEdge();
assert( childvert->GetValence()==valence);
for (int j=0; j<valence; ++j) {
Hface * f = childedge->GetFace();
if (f->HasVertexEdits()) {
int nv = f->GetNumVertices();
for (int k=0; k<nv; ++k)
nextverts.insert( f->GetVertex(k) );
}
if ((childedge = childvert->GetNextEdge(childedge)) == NULL)
break;
}
}
// Add coarse verts from extraordinary faces
if (level==0) {
for (int i=0; i<ncoarsefaces; ++i) {
Hface * f = mesh.GetFace(i);
assert (f->IsCoarse());
if (mesh.GetSubdivision()->FaceIsExtraordinary(&mesh,f))
nextverts.insert( f->Subdivide() );
}
}
}
int nfaces = mesh.GetNumFaces();
// First pass : identify transition / watertight-critical
for (int i=0; i<nfaces; ++i) {
Hface * f = mesh.GetFace(i);
if (f->_adaptiveFlags.isTagged and (not f->IsHole())) {
Hvertex * v = f->Subdivide();
assert(v);
v->_adaptiveFlags.wasTagged=true;
}
int nv = f->GetNumVertices();
for (int j=0; j<nv; ++j) {
if (f->IsCoarse())
f->GetVertex(j)->_adaptiveFlags.wasTagged=true;
Hhalfedge * e = f->GetEdge(j);
// Flag transition edge that require a triangulated transition
if (f->_adaptiveFlags.isTagged) {
e->_adaptiveFlags.isTriangleHead=true;
// Both half-edges need to be tagged if an opposite exists
if (e->GetOpposite())
e->GetOpposite()->_adaptiveFlags.isTriangleHead=true;
}
Hface * left = e->GetLeftFace(),
* right = e->GetRightFace();
if (not (left and right))
continue;
// a tagged edge w/ no children is inside a hole
if (e->HasChild() and (left->_adaptiveFlags.isTagged ^ right->_adaptiveFlags.isTagged)) {
e->_adaptiveFlags.isTransition = true;
Hvertex * child = e->Subdivide();
assert(child);
// These edges will require extra rows of CVs to maintain water-tightness
// Note : vertices inside holes have no children
if (e->GetOrgVertex()->HasChild()) {
Hhalfedge * org = child->GetEdge(e->GetOrgVertex()->Subdivide());
if (org)
org->_adaptiveFlags.isWatertightCritical=true;
}
if (e->GetDestVertex()->HasChild()) {
Hhalfedge * dst = child->GetEdge(e->GetDestVertex()->Subdivide());
if (dst)
dst->_adaptiveFlags.isWatertightCritical=true;
}
}
}
}
refinedFaces.reserve(nfaces - ncoarsefaces);
for (int i=ncoarsefaces; i<nfaces; ++i) {
Hface const * f = mesh.GetFace(i);
if (f->_adaptiveFlags.isTagged) {
continue;
}
refinedFaces.push_back(mesh.GetFace(i));
}
return maxValence;
}
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
class Far::PatchTablesFactory {
public:
static Far::PatchTables const * Create(Hmesh & mesh, int maxvalence);
private:
typedef Far::PatchDescriptor Descriptor;
// Returns true if one of v's neighboring faces has vertices carrying the tag "wasTagged"
static bool vertexHasTaggedNeighbors(Hvertex * v);
// Returns the rotation for a boundary patch
static unsigned char computeBoundaryPatchRotation( Hface * f );
// Returns the rotation for a corner patch
static unsigned char computeCornerPatchRotation( Hface * f );
// Populates the patch parametrization descriptor 'coord' for the given face
// returns a pointer to the next descriptor
static OpenSubdiv::Far::PatchParam * computePatchParam(Hface const *f, OpenSubdiv::Far::PatchParam *coord);
// Populates an array of indices with the "one-ring" vertices for the given face
static Far::Index * getOneRing( Hface const * f, int ringsize, Far::Index const * remap, Far::Index * result );
// Populates the Gregory patch quad offsets table
static void getQuadOffsets( Hface const * f, unsigned int * result );
// The number of patches in the mesh
static int getNumPatches( Far::PatchTables::PatchArrayVector const & parrays );
// Reserves tables based on the contents of the PatchArrayVector
static void allocateTables( Far::PatchTables * tables, int nlevels, int fvarwidth );
// A convenience container for the different types of feature adaptive patches
template<class TYPE> struct PatchTypes {
static const int NUM_TRANSITIONS=6,
NUM_ROTATIONS=4;
TYPE R[NUM_TRANSITIONS], // regular patch
B[NUM_TRANSITIONS][NUM_ROTATIONS], // boundary patch (4 rotations)
C[NUM_TRANSITIONS][NUM_ROTATIONS], // corner patch (4 rotations)
G, // gregory patch
GB, // gregory boundary patch
GP; // gregory basis
PatchTypes() { memset(this, 0, sizeof(PatchTypes<TYPE>)); }
// Returns the number of patches based on the patch type in the descriptor
TYPE & getValue( Descriptor desc );
// Counts the number of arrays required to store each type of patch used
// in the primitive
int getNumPatchArrays() const;
};
typedef PatchTypes<OpenSubdiv::Far::PatchParam *> ParamPointers;
typedef PatchTypes<Far::Index*> CVPointers;
typedef PatchTypes<float *> FVarPointers;
typedef PatchTypes<int> Counter;
};
//------------------------------------------------------------------------------
template <class TYPE> TYPE &
Far::PatchTablesFactory::PatchTypes<TYPE>::getValue( Far::PatchDescriptor desc ) {
switch (desc.GetType()) {
case Far::PatchDescriptor::REGULAR : return R[desc.GetPattern()];
case Far::PatchDescriptor::SINGLE_CREASE : break;
case Far::PatchDescriptor::BOUNDARY : return B[desc.GetPattern()][desc.GetRotation()];
case Far::PatchDescriptor::CORNER : return C[desc.GetPattern()][desc.GetRotation()];
case Far::PatchDescriptor::GREGORY : return G;
case Far::PatchDescriptor::GREGORY_BOUNDARY : return GB;
case Far::PatchDescriptor::GREGORY_BASIS : return GP;
default : assert(0);
}
// can't be reached (suppress compiler warning)
return R[0];
}
template <class TYPE> int
Far::PatchTablesFactory::PatchTypes<TYPE>::getNumPatchArrays() const {
int result=0;
for (int i=0; i<6; ++i) {
if (R[i]) ++result;
for (int j=0; j<4; ++j) {
if (B[i][j]) ++result;
if (C[i][j]) ++result;
}
}
if (G) ++result;
if (GB) ++result;
return result;
}
//------------------------------------------------------------------------------
// True if the surrounding faces are "tagged" (unsupported feature : watertight
// critical patches)
bool
Far::PatchTablesFactory::vertexHasTaggedNeighbors(Hvertex * v) {
assert(v);
Hhalfedge * start = v->GetIncidentEdge(),
* next=start;
do {
Hface * right = next->GetRightFace(),
* left = next->GetLeftFace();
if (right and (not right->hasTaggedVertices()))
return true;
if (left and (not left->hasTaggedVertices()))
return true;
next = v->GetNextEdge(next);
} while (next and next!=start);
return false;
}
// Returns a rotation index for boundary patches (range [0-3])
unsigned char
Far::PatchTablesFactory::computeBoundaryPatchRotation( Hface * f ) {
unsigned char rot=0;
for (unsigned char i=0; i<4;++i) {
if (f->GetVertex(i)->OnBoundary() and
f->GetVertex((i+1)%4)->OnBoundary())
break;
++rot;
}
return rot;
}
// Returns a rotation index for corner patches (range [0-3])
unsigned char
Far::PatchTablesFactory::computeCornerPatchRotation( Hface * f ) {
unsigned char rot=0;
for (unsigned char i=0; i<4; ++i) {
if (not f->GetVertex((i+3)%4)->OnBoundary())
break;
++rot;
}
return rot;
}
/*
int
Far::PatchTablesFactory::getNumPatches( Far::PatchTables::PatchArrayVector const & parrays ) {
int result=0;
for (int i=0; i<(int)parrays.size(); ++i) {
result += parrays[i].GetNumPatches();
}
return result;
}
*/
//------------------------------------------------------------------------------
void
Far::PatchTablesFactory::allocateTables( Far::PatchTables * tables, int /* nlevels */, int fvarwidth ) {
int nverts = 0, npatches = 0;
for (int i=0; i<tables->GetNumPatchArrays(); ++i) {
npatches += tables->GetNumPatches(i);
nverts += tables->GetNumControlVertices(i);
}
if (nverts==0 or npatches==0)
return;
tables->_patchVerts.resize( nverts );
tables->_paramTable.resize( npatches );
if (fvarwidth>0) {
//Far::PatchTables::PatchArrayVector const & parrays = tables->GetPatchArrayVector();
//int nfvarverts = 0;
//for (int i=0; i<(int)parrays.size(); ++i) {
// nfvarverts += parrays[i].GetNumPatches() *
// (parrays[i].GetDescriptor().GetType() == Far::PatchTables::TRIANGLES ? 3 : 4);
//}
//tables->_fvarData._data.resize( nfvarverts * fvarwidth );
//if (nlevels >1) {
// tables->_fvarData._offsets.resize( nlevels );
//}
}
}
//------------------------------------------------------------------------------
Far::PatchTables const *
Far::PatchTablesFactory::Create(Hmesh & mesh, int maxvalence) {
int nfaces = mesh.GetNumFaces();
Counter patchCtr; // counters for full and transition patches
// Second pass : count boundaries / identify transition constellation
for (int i=0; i<nfaces; ++i) {
Hface * f = mesh.GetFace(i);
if (mesh.GetSubdivision()->FaceIsExtraordinary(&mesh,f))
continue;
if (f->IsHole())
continue;
bool isTagged=0, wasTagged=0, isConnected=0, isWatertightCritical=0, isExtraordinary=0;
int triangleHeads=0, boundaryVerts=0;
int nv = f->GetNumVertices();
for (int j=0; j<nv; ++j) {
Hvertex * v = f->GetVertex(j);
if (v->OnBoundary()) {
boundaryVerts++;
// Boundary vertices with valence higher than 3 aren't Full Boundary
// patches, they are Gregory Boundary patches.
if (v->IsSingular() or v->GetValence()>3)
isExtraordinary=true;
} else if (v->IsExtraordinary())
isExtraordinary=true;
if (f->GetParent() and (not isWatertightCritical))
isWatertightCritical = vertexHasTaggedNeighbors(v);
if (v->_adaptiveFlags.isTagged)
isTagged=1;
if (v->_adaptiveFlags.wasTagged)
wasTagged=1;
// Count the number of triangle heads to find which transition
// pattern to use.
Hhalfedge * e = f->GetEdge(j);
if (e->_adaptiveFlags.isTriangleHead) {
++triangleHeads;
if (f->GetEdge((j+1)%4)->_adaptiveFlags.isTriangleHead)
isConnected=true;
}
}
f->_adaptiveFlags.bverts=boundaryVerts;
f->_adaptiveFlags.isCritical=isWatertightCritical;
// Regular Boundary Patch
if (wasTagged)
// XXXX manuelk - need to implement end patches
f->_adaptiveFlags.patchType = Hface::kEnd;
if (f->_adaptiveFlags.isTagged)
continue;
assert(f->_adaptiveFlags.rots==0 and nv==4);
if (not isTagged and wasTagged) {
if (triangleHeads==0) {
if (not isExtraordinary and boundaryVerts!=1) {
// Full Patches
f->_adaptiveFlags.patchType = Hface::kFull;
switch (boundaryVerts) {
case 0 : { // Regular patch
patchCtr.R[Far::PatchDescriptor::NON_TRANSITION]++;
} break;
case 2 : { // Boundary patch
f->_adaptiveFlags.rots=computeBoundaryPatchRotation(f);
patchCtr.B[Far::PatchDescriptor::NON_TRANSITION][0]++;
} break;
case 3 : { // Corner patch
f->_adaptiveFlags.rots=computeCornerPatchRotation(f);
patchCtr.C[Far::PatchDescriptor::NON_TRANSITION][0]++;
} break;
default : break;
}
} else {
// Default to Gregory Patch
f->_adaptiveFlags.patchType = Hface::kGregory;
switch (boundaryVerts) {
case 0 : { // Regular Gregory patch
patchCtr.G++;
} break;
default : { // Boundary Gregory patch
patchCtr.GB++;
} break;
}
}
} else {
// Transition Patch
// Resolve transition constellation : 5 types (see p.5 fig. 7)
switch (triangleHeads) {
case 1 : { for (unsigned char j=0; j<4; ++j) {
if (f->GetEdge(j)->IsTriangleHead())
break;
f->_adaptiveFlags.rots++;
}
f->_adaptiveFlags.transitionType = Hface::kTransition0;
} break;
case 2 : { for (unsigned char j=0; j<4; ++j) {
if (isConnected) {
if (f->GetEdge(j)->IsTriangleHead() and
f->GetEdge((j+3)%4)->IsTriangleHead())
break;
} else {
if (f->GetEdge(j)->IsTriangleHead())
break;
}
f->_adaptiveFlags.rots++;
}
if (isConnected)
f->_adaptiveFlags.transitionType = Hface::kTransition1;
else
f->_adaptiveFlags.transitionType = Hface::kTransition4;
} break;
case 3 : { for (unsigned char j=0; j<4; ++j) {
if (not f->GetEdge(j)->IsTriangleHead())
break;
f->_adaptiveFlags.rots++;
}
f->_adaptiveFlags.transitionType = Hface::kTransition2;
} break;
case 4 : f->_adaptiveFlags.transitionType = Hface::kTransition3;
break;
default: break;
}
int pattern = f->_adaptiveFlags.transitionType;
assert(pattern>=0);
// Correct rotations for corners & boundaries
if (not isExtraordinary and boundaryVerts!=1) {
switch (boundaryVerts) {
case 0 : { // regular patch
patchCtr.R[pattern+1]++;
} break;
case 2 : { // boundary patch
unsigned char rot=computeBoundaryPatchRotation(f);
f->_adaptiveFlags.brots=(4-f->_adaptiveFlags.rots+rot)%4;
f->_adaptiveFlags.rots=rot; // override the transition rotation
patchCtr.B[pattern+1][f->_adaptiveFlags.brots]++;
} break;
case 3 : { // corner patch
unsigned char rot=computeCornerPatchRotation(f);
f->_adaptiveFlags.brots=(4-f->_adaptiveFlags.rots+rot)%4;
f->_adaptiveFlags.rots=rot; // override the transition rotation
patchCtr.C[pattern+1][f->_adaptiveFlags.brots]++;
} break;
default : assert(0); break;
}
} else {
// Use Gregory Patch transition ?
}
}
}
}
static const Far::Index remapRegular [16] = {5,6,10,9,4,0,1,2,3,7,11,15,14,13,12,8};
static const Far::Index remapRegularBoundary[12] = {1,2,6,5,0,3,7,11,10,9,8,4};
static const Far::Index remapRegularCorner [ 9] = {1,2,5,4,0,8,7,6,3};
int fvarwidth=0;
Far::PatchTables * result = new Far::PatchTables(maxvalence);
// Populate the patch array descriptors
result->reservePatchArrays(patchCtr.getNumPatchArrays());
typedef Far::PatchDescriptorVector DescVec;
DescVec const & catmarkDescs = Far::PatchDescriptor::GetAdaptivePatchDescriptors(Sdc::TYPE_CATMARK);
int voffset=0, poffset=0, qoffset=0;
for (DescVec::const_iterator it=catmarkDescs.begin(); it!=catmarkDescs.end(); ++it) {
result->pushPatchArray(*it, patchCtr.getValue(*it), &voffset, &poffset, &qoffset );
}
//result->_fvarData._fvarWidth = fvarwidth;
result->_numPtexFaces = 0;
// Allocate various tables
allocateTables( result, 0, fvarwidth );
if ((patchCtr.G > 0) or (patchCtr.GB > 0)) { // Quad-offsets tables (for Gregory patches)
result->_quadOffsetsTable.resize( patchCtr.G*4 + patchCtr.GB*4 );
}
// Setup convenience pointers at the beginning of each patch array for each
// table (patches, ptex, fvar)
CVPointers iptrs;
ParamPointers pptrs;
FVarPointers fptrs;
for (DescVec::const_iterator it=catmarkDescs.begin(); it!=catmarkDescs.end(); ++it) {
Index arrayIndex = result->findPatchArray(*it);
if (arrayIndex==Vtr::INDEX_INVALID) {
continue;
}
iptrs.getValue( *it ) = result->getPatchArrayVertices(arrayIndex).begin();
pptrs.getValue( *it ) = result->getPatchParams(arrayIndex).begin();
}
unsigned int * quad_G_C0_P = patchCtr.G>0 ? &result->_quadOffsetsTable[0] : 0,
* quad_G_C1_P = patchCtr.GB>0 ? &result->_quadOffsetsTable[patchCtr.G*4] : 0;
// Populate patch index tables with vertex indices
for (int i=0; i<nfaces; ++i) {
Hface * f = mesh.GetFace(i);
if (not f->isTransitionPatch() ) {
// Full / End patches
if (f->_adaptiveFlags.patchType==Hface::kFull) {
if (not f->_adaptiveFlags.isExtraordinary and f->_adaptiveFlags.bverts!=1) {
int pattern = Far::PatchDescriptor::NON_TRANSITION,
rot = 0;
switch (f->_adaptiveFlags.bverts) {
case 0 : { // Regular Patch (16 CVs)
iptrs.R[pattern] = getOneRing(f, 16, remapRegular, iptrs.R[0]);
pptrs.R[pattern] = computePatchParam(f, pptrs.R[0]);
//fptrs.R[pattern] = computeFVarData(f, fvarwidth, fptrs.R[0], /*isAdaptive=*/true);
} break;
case 2 : { // Boundary Patch (12 CVs)
f->_adaptiveFlags.brots = (f->_adaptiveFlags.rots+1)%4;
iptrs.B[pattern][rot] = getOneRing(f, 12, remapRegularBoundary, iptrs.B[0][0]);
pptrs.B[pattern][rot] = computePatchParam(f, pptrs.B[0][0]);
//fptrs.B[pattern][rot] = computeFVarData(f, fvarwidth, fptrs.B[0][0], /*isAdaptive=*/true);
} break;
case 3 : { // Corner Patch (9 CVs)
f->_adaptiveFlags.brots = (f->_adaptiveFlags.rots+1)%4;
iptrs.C[pattern][rot] = getOneRing(f, 9, remapRegularCorner, iptrs.C[0][0]);
pptrs.C[pattern][rot] = computePatchParam(f, pptrs.C[0][0]);
//fptrs.C[pattern][rot] = computeFVarData(f, fvarwidth, fptrs.C[0][0], /*isAdaptive=*/true);
} break;
default : assert(0);
}
}
} else if (f->_adaptiveFlags.patchType==Hface::kGregory) {
if (f->_adaptiveFlags.bverts==0) {
// Gregory Regular Patch (4 CVs + quad-offsets / valence tables)
for (int j=0; j<4; ++j)
iptrs.G[j] = f->GetVertex(j)->GetID();
iptrs.G+=4;
getQuadOffsets(f, quad_G_C0_P);
quad_G_C0_P += 4;
pptrs.G = computePatchParam(f, pptrs.G);
//fptrs.G = computeFVarData(f, fvarwidth, fptrs.G, /*isAdaptive=*/true);
} else {
// Gregory Boundary Patch (4 CVs + quad-offsets / valence tables)
for (int j=0; j<4; ++j)
iptrs.GB[j] = f->GetVertex(j)->GetID();
iptrs.GB+=4;
getQuadOffsets(f, quad_G_C1_P);
quad_G_C1_P += 4;
pptrs.GB = computePatchParam(f, pptrs.GB);
//fptrs.GB = computeFVarData(f, fvarwidth, fptrs.GB, /*isAdaptive=*/true);
}
} else {
// XXXX manuelk - end patches here
}
} else {
// Transition patches
int pattern = f->_adaptiveFlags.transitionType;
assert( pattern>=Hface::kTransition0 and pattern<=Hface::kTransition4 );
++pattern; // TransitionPattern begin with NON_TRANSITION
if (not f->_adaptiveFlags.isExtraordinary and f->_adaptiveFlags.bverts!=1) {
switch (f->_adaptiveFlags.bverts) {
case 0 : { // Regular Transition Patch (16 CVs)
iptrs.R[pattern] = getOneRing(f, 16, remapRegular, iptrs.R[pattern]);
pptrs.R[pattern] = computePatchParam(f, pptrs.R[pattern]);
//fptrs.R[pattern] = computeFVarData(f, fvarwidth, fptrs.R[pattern], /*isAdaptive=*/true);
} break;
case 2 : { // Boundary Transition Patch (12 CVs)
unsigned rot = f->_adaptiveFlags.brots;
iptrs.B[pattern][rot] = getOneRing(f, 12, remapRegularBoundary, iptrs.B[pattern][rot]);
pptrs.B[pattern][rot] = computePatchParam(f, pptrs.B[pattern][rot]);
//fptrs.B[pattern][rot] = computeFVarData(f, fvarwidth, fptrs.B[pattern][rot], /*isAdaptive=*/true);
} break;
case 3 : { // Corner Transition Patch (9 CVs)
unsigned rot = f->_adaptiveFlags.brots;
iptrs.C[pattern][rot] = getOneRing(f, 9, remapRegularCorner, iptrs.C[pattern][rot]);
pptrs.C[pattern][rot] = computePatchParam(f, pptrs.C[pattern][rot]);
//fptrs.C[pattern][rot] = computeFVarData(f, fvarwidth, fptrs.C[pattern][rot], /*isAdaptive=*/true);
} break;
}
} else
// No transition Gregory patches
assert(false);
}
}
// Build Gregory patches vertex valence indices table
if ((patchCtr.G > 0) or (patchCtr.GB > 0)) {
// MAX_VALENCE is a property of hardware shaders and needs to be matched in OSD
const int perVertexValenceSize = 2*maxvalence + 1;
const int nverts = mesh.GetNumVertices();
Far::PatchTables::VertexValenceTable & table = result->_vertexValenceTable;
table.resize(nverts * perVertexValenceSize);
class GatherNeighborsOperator : public OpenSubdiv::HbrVertexOperator<Vertex> {
public:
Hvertex * center;
Far::PatchTables::VertexValenceTable & table;
int offset, valence;
GatherNeighborsOperator(Far::PatchTables::VertexValenceTable & itable, int ioffset, Hvertex * v) :
center(v), table(itable), offset(ioffset), valence(0) { }
~GatherNeighborsOperator() { }
// Operator iterates over neighbor vertices of v and accumulates
// pairs of indices the neighbor and diagonal vertices
//
// Regular case
// Boundary case
// o ------- o D3 o
// D0 N0 | |
// | | o ------- o D2 o
// | | D0 N0 | |
// | | | |
// o ------- o ------- o | |
// N1 | V | N3 | |
// | | o ------- o ------- o
// | | N1 V N2
// | |
// o o ------- o
// D1 N2 D2
//
virtual void operator() (Hvertex &v) {
table[offset++] = v.GetID();
Hvertex * diagonal=&v;
Hhalfedge * e = center->GetEdge(&v);
if ( e ) {
// If v is on a boundary, there may not be a diagonal vertex
diagonal = e->GetNext()->GetDestVertex();
}
//else {
// diagonal = v.GetQEONext( center );
//}
table[offset++] = diagonal->GetID();
++valence;
}
};
for (int i=0; i<nverts; ++i) {
Hvertex * v = mesh.GetVertex(i);
int outputVertexID = v->GetID();
int offset = outputVertexID * perVertexValenceSize;
// feature adaptive refinement can generate un-connected face-vertices
// that have a valence of 0
if (not v->IsConnected()) {
//assert( v->GetParentFace() );
table[offset] = 0;
continue;
}
// "offset+1" : the first table entry is the vertex valence, which
// is gathered by the operator (see note below)
GatherNeighborsOperator op( table, offset+1, v );
v->ApplyOperatorSurroundingVertices( op );
// Valence sign bit used to mark boundary vertices
table[offset] = v->OnBoundary() ? -op.valence : op.valence;
// Note : some topologies can cause v to be singular at certain
// levels of adaptive refinement, which prevents us from using
// the GetValence() function. Fortunately, the GatherNeighbors
// operator above just performed a similar traversal, so it is
// very convenient to use it to accumulate the actionable valence.
}
} else {
result->_vertexValenceTable.clear();
}
return result;
}
//------------------------------------------------------------------------------
// The One Ring vertices to rule them all !
Far::Index *
Far::PatchTablesFactory::getOneRing(Hface const * f,
int ringsize, Far::Index const * remap, Far::Index * result) {
assert( f and f->GetNumVertices()==4 and ringsize >=4 );
int idx=0;
for (unsigned char i=0; i<4; ++i) {
result[remap[idx++ % ringsize]] =
f->GetVertex( (i+f->_adaptiveFlags.rots)%4 )->GetID();
}
if (ringsize==16) {
// Regular case
//
// | | | |
// | 4 | 15 | 14 | 13
// ---- o ---- o ---- o ---- o ----
// | | | |
// | 5 | 0 | 3 | 12
// ---- o ---- o ---- o ---- o ----
// | | | |
// | 6 | 1 | 2 | 11
// ---- o ---- o ---- o ---- o ----
// | | | |
// | 7 | 8 | 9 | 10
// ---- o ---- o ---- o ---- o ----
// | | | |
// | | | |
for (int i=0; i<4; ++i) {
int rot = i+f->_adaptiveFlags.rots;
Hvertex * v0 = f->GetVertex( rot % 4 ),
* v1 = f->GetVertex( (rot+1) % 4 );
Hhalfedge * e =
v0->GetNextEdge( v0->GetNextEdge( v0->GetEdge(v1) ) );
for (int j=0; j<3; ++j) {
e = e->GetNext();
result[remap[idx++ % ringsize]] = e->GetOrgVertex()->GetID();
}
}
result += 16;
} else if (ringsize==12) {
// Boundary case
//
// 4 0 3 5
// ---- o ---- o ---- o ---- o ----
// | | | |
// | 11 | 1 | 2 | 6
// ---- o ---- o ---- o ---- o ----
// | | | |
// | 10 | 9 | 8 | 7
// ---- o ---- o ---- o ---- o ----
// | | | |
// | | | |
Hvertex * v[4];
for (int i=0; i<4; ++i)
v[i] = f->GetVertex( (i+f->_adaptiveFlags.rots)%4 );
Hhalfedge * e;
e = v[0]->GetIncidentEdge()->GetPrev()->GetOpposite()->GetPrev();
result[remap[idx++ % ringsize]] = e->GetOrgVertex()->GetID();
e = v[1]->GetIncidentEdge();
result[remap[idx++ % ringsize]] = e->GetDestVertex()->GetID();
e = v[2]->GetNextEdge( v[2]->GetEdge(v[1]) );
for (int i=0; i<3; ++i) {
e = e->GetNext();
result[remap[idx++ % ringsize]] = e->GetOrgVertex()->GetID();
}
e = v[3]->GetNextEdge( v[3]->GetEdge(v[2]) );
for (int i=0; i<3; ++i) {
e = e->GetNext();
result[remap[idx++ % ringsize]] = e->GetOrgVertex()->GetID();
}
result += 12;
} else if (ringsize==9) {
// Corner case
//
// 0 1 4
// o ---- o ---- o ----
// | | |
// | 3 | 2 | 5
// o ---- o ---- o ----
// | | |
// | 8 | 7 | 6
// o ---- o ---- o ----
// | | |
// | | |
Hvertex * v0 = f->GetVertex( (0+f->_adaptiveFlags.rots)%4 ),
* v2 = f->GetVertex( (2+f->_adaptiveFlags.rots)%4 ),
* v3 = f->GetVertex( (3+f->_adaptiveFlags.rots)%4 );
Hhalfedge * e;
e = v0->GetIncidentEdge()->GetPrev()->GetOpposite()->GetPrev();
result[remap[idx++ % ringsize]] = e->GetOrgVertex()->GetID();
e = v2->GetIncidentEdge();
result[remap[idx++ % ringsize]] = e->GetDestVertex()->GetID();
e = v3->GetNextEdge( v3->GetEdge(v2) );
for (int i=0; i<3; ++i) {
e = e->GetNext();
result[remap[idx++ % ringsize]] = e->GetOrgVertex()->GetID();
}
result += 9;
}
assert(idx==ringsize);
return result;
}
//------------------------------------------------------------------------------
// Populate the quad-offsets table used by Gregory patches
void
Far::PatchTablesFactory::getQuadOffsets(Hface const * f, unsigned int * result) {
assert(result and f and f->GetNumVertices()==4);
// Builds a table of value pairs for each vertex of the patch.
//
// o
// N0 |
// |
// |
// o ------ o ------ o
// N1 V | .... M3
// | .......
// | .......
// o .......
// N2
//
// [...] [N2 - N3] [...]
//
// Each value pair is composed of 2 index values in range [0-4[ pointing
// to the 2 neighbor vertices to the vertex that belong to the Gregory patch.
// Neighbor ordering is valence counter-clockwise and must match the winding
// used to build the vertexValenceTable.
//
class GatherOffsetsOperator : public OpenSubdiv::HbrVertexOperator<Vertex> {
public:
Hvertex ** verts; int offsets[2]; int index; int count;
GatherOffsetsOperator(Hvertex ** iverts) : verts(iverts) { }
~GatherOffsetsOperator() { }
void reset() {
index=count=offsets[0]=offsets[1]=0;
}
virtual void operator() (Hvertex &v) {
// Resolve which 2 neighbor vertices of v belong to the Gregory patch
for (unsigned char i=0; i<4; ++i)
if (&v==verts[i]) {
assert(count<3);
offsets[count++]=index;
break;
}
++index;
}
};
// 4 central CVs of the Gregory patch
Hvertex * fvs[4] = { f->GetVertex(0),
f->GetVertex(1),
f->GetVertex(2),
f->GetVertex(3) };
// Hbr vertex operator that iterates over neighbor vertices
GatherOffsetsOperator op( fvs );
for (unsigned char i=0; i<4; ++i) {
op.reset();
fvs[i]->ApplyOperatorSurroundingVertices( op );
if (op.offsets[1] - op.offsets[0] != 1)
std::swap(op.offsets[0], op.offsets[1]);
// Pack the 2 indices in 16 bits
result[i] = (op.offsets[0] | (op.offsets[1] << 8));
}
}
//------------------------------------------------------------------------------
// Computes per-face or per-patch local ptex texture coordinates.
OpenSubdiv::Far::PatchParam *
Far::PatchTablesFactory::computePatchParam(Hface const * f, OpenSubdiv::Far::PatchParam *coord) {
unsigned short u, v, ofs = 1;
unsigned char depth;
bool nonquad = false;
if (coord == NULL) return NULL;
// save the rotation state of the coarse face
unsigned char rots = (unsigned char)f->_adaptiveFlags.rots;
// track upwards towards coarse parent face, accumulating u,v indices
Hface const * p = f->GetParent();
for ( u=v=depth=0; p!=NULL; depth++ ) {
int nverts = p->GetNumVertices();
if ( nverts != 4 ) { // non-quad coarse face : stop accumulating offsets
nonquad = true; // set non-quad bit
break;
}
for (unsigned char i=0; i<nverts; ++i) {
if ( p->GetChild( i )==f ) {
switch ( i ) {
case 0 : break;
case 1 : { u+=ofs; } break;
case 2 : { u+=ofs; v+=ofs; } break;
case 3 : { v+=ofs; } break;
}
break;
}
}
ofs = (unsigned short)(ofs << 1);
f = p;
p = f->GetParent();
}
coord->Set( f->GetPtexIndex(), u, v, rots, depth, nonquad );
return ++coord;
}
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
OpenSubdiv::Far::PatchTables const *
CreatePatchTables(Hmesh & mesh, int maxvalence) {
return OpenSubdiv::Far::PatchTablesFactory::Create(mesh, maxvalence);
}
//------------------------------------------------------------------------------