OpenSubdiv/opensubdiv/vtr/triRefinement.cpp

931 lines
37 KiB
C++
Raw Normal View History

//
// Copyright 2014 DreamWorks Animation LLC.
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../sdc/crease.h"
#include "../vtr/types.h"
#include "../vtr/level.h"
#include "../vtr/triRefinement.h"
#include <cassert>
#include <cstdio>
#include <utility>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Vtr {
namespace internal {
//
// Simple constructor, destructor and basic initializers:
//
TriRefinement::TriRefinement(Level const & parentArg, Level & childArg, Sdc::Options const & optionsArg) :
Refinement(parentArg, childArg, optionsArg) {
_splitType = Sdc::SPLIT_TO_TRIS;
_regFaceSize = 3;
}
TriRefinement::~TriRefinement() {
}
//
// Methods to construct the parent-to-child mapping
//
void
TriRefinement::allocateParentChildIndices() {
//
// Initialize the vectors of indices mapping parent components to those child components
// that will originate from each.
//
//
// Beware these child-counts when Loop subdivision supports N-sided faces in the cage
// - there will 2*(N-2) additional face-child-faces for each N-sided face
// - there will 2*(N-2)+1 additional face-child-edges for each N-sided face
// - there will 1 face-child-vertex for each N-sided face
// Can consider these reasonable estimates and grow as needed later -- but be clear
// about it if so.
//
int faceChildFaceCount = _parent->getNumFaces() * 4;
int faceChildEdgeCount = (int) _parent->_faceEdgeIndices.size();
int edgeChildEdgeCount = (int) _parent->_edgeVertIndices.size();
int faceChildVertCount = 0;
int edgeChildVertCount = _parent->getNumEdges();
int vertChildVertCount = _parent->getNumVertices();
//
// First initialize the count/offset vectors for the child-faces and child-edges of
// parent faces. For now we can use the parent's face-vert counts for the child-edges
// of faces, but we must use a local vector for the child-faces.
//
// This will be more necessary (and need adjustment) when N-sided faces are supported.
//
_localFaceChildFaceCountsAndOffsets.resize(_parent->getNumFaces() * 2, 4);
for (int i = 0; i < _parent->getNumFaces(); ++i) {
_localFaceChildFaceCountsAndOffsets[i*2 + 1] = 4 * i;
}
_faceChildFaceCountsAndOffsets = IndexArray(&_localFaceChildFaceCountsAndOffsets[0],
(int)_localFaceChildFaceCountsAndOffsets.size());
_faceChildEdgeCountsAndOffsets = _parent->shareFaceVertCountsAndOffsets();
//
// Given we will be ignoring initial values with uniform refinement and assigning all
// directly, initializing here is a waste...
//
Index initValue = 0;
_faceChildFaceIndices.resize(faceChildFaceCount, initValue);
_faceChildEdgeIndices.resize(faceChildEdgeCount, initValue);
_edgeChildEdgeIndices.resize(edgeChildEdgeCount, initValue);
_faceChildVertIndex.resize(faceChildVertCount, initValue);
_edgeChildVertIndex.resize(edgeChildVertCount, initValue);
_vertChildVertIndex.resize(vertChildVertCount, initValue);
}
//
// Methods to populate the face-vertex relation of the child Level:
// - child faces only originate from parent faces
//
void
TriRefinement::populateFaceVertexRelation() {
// Both face-vertex and face-edge share the face-vertex counts/offsets within a
// Level, so be sure not to re-initialize it if already done:
//
if (_child->_faceVertCountsAndOffsets.size() == 0) {
populateFaceVertexCountsAndOffsets();
}
_child->_faceVertIndices.resize(_child->getNumFaces() * 3);
populateFaceVerticesFromParentFaces();
}
void
TriRefinement::populateFaceVertexCountsAndOffsets() {
_child->_faceVertCountsAndOffsets.resize(_child->getNumFaces() * 2, 3);
for (int i = 0; i < _child->getNumFaces(); ++i) {
_child->_faceVertCountsAndOffsets[i*2 + 1] = i * 3;
}
}
void
TriRefinement::populateFaceVerticesFromParentFaces() {
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
ConstIndexArray pFaceVerts = _parent->getFaceVertices(pFace),
pFaceEdges = _parent->getFaceEdges(pFace),
pFaceChildren = getFaceChildFaces(pFace);
assert(pFaceVerts.size() == 3);
assert(pFaceChildren.size() == 4);
Index cVertsOfPEdges[3];
cVertsOfPEdges[0] = _edgeChildVertIndex[pFaceEdges[0]];
cVertsOfPEdges[1] = _edgeChildVertIndex[pFaceEdges[1]];
cVertsOfPEdges[2] = _edgeChildVertIndex[pFaceEdges[2]];
//
// For the child face at vertex I (where I is 0..2), the child vertex
// of vertex I becomes the I'th vertex of its child face. This matches
// the pattern for quads of irregular faces for Catmark.
//
// The orientation for the 4th "interior" face is unclear -- it begins
// with the child vertex of the 2nd edge of the triangle. According
// to the notes with the Hbr implementation "the ordering of vertices
// here is done to preserve parametric space as best we can."
//
if (IndexIsValid(pFaceChildren[0])) {
IndexArray cFaceVerts = _child->getFaceVertices(pFaceChildren[0]);
cFaceVerts[0] = _vertChildVertIndex[pFaceVerts[0]];
cFaceVerts[1] = cVertsOfPEdges[0];
cFaceVerts[2] = cVertsOfPEdges[2];
}
if (IndexIsValid(pFaceChildren[1])) {
IndexArray cFaceVerts = _child->getFaceVertices(pFaceChildren[1]);
cFaceVerts[0] = cVertsOfPEdges[0];
cFaceVerts[1] = _vertChildVertIndex[pFaceVerts[1]];
cFaceVerts[2] = cVertsOfPEdges[1];
}
if (IndexIsValid(pFaceChildren[2])) {
IndexArray cFaceVerts = _child->getFaceVertices(pFaceChildren[2]);
cFaceVerts[0] = cVertsOfPEdges[2];
cFaceVerts[1] = cVertsOfPEdges[1];
cFaceVerts[2] = _vertChildVertIndex[pFaceVerts[2]];
}
if (IndexIsValid(pFaceChildren[3])) {
IndexArray cFaceVerts = _child->getFaceVertices(pFaceChildren[3]);
cFaceVerts[0] = cVertsOfPEdges[1];
cFaceVerts[1] = cVertsOfPEdges[2];
cFaceVerts[2] = cVertsOfPEdges[0];
}
}
}
//
// Methods to populate the face-vertex relation of the child Level:
// - child faces only originate from parent faces
//
void
TriRefinement::populateFaceEdgeRelation() {
// Both face-vertex and face-edge share the face-vertex counts/offsets, so be sure
// not to re-initialize it if already done:
//
if (_child->_faceVertCountsAndOffsets.size() == 0) {
populateFaceVertexCountsAndOffsets();
}
_child->_faceEdgeIndices.resize(_child->getNumFaces() * 3);
populateFaceEdgesFromParentFaces();
}
void
TriRefinement::populateFaceEdgesFromParentFaces() {
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
ConstIndexArray pFaceVerts = _parent->getFaceVertices(pFace),
pFaceEdges = _parent->getFaceEdges(pFace),
pFaceChildFaces = getFaceChildFaces(pFace),
pFaceChildEdges = getFaceChildEdges(pFace);
assert(pFaceChildFaces.size() == 4);
assert(pFaceChildEdges.size() == 3);
Index pEdgeChildEdges[3][2];
for (int i = 0; i < 3; ++i) {
Index pEdge = pFaceEdges[i];
ConstIndexArray cEdges = getEdgeChildEdges(pEdge);
ConstIndexArray pEdgeVerts = _parent->getEdgeVertices(pEdge);
// Be careful to consider degenerate edge when orienting here:
bool edgeReversedWrtFace = (pEdgeVerts[0] != pEdgeVerts[1]) &&
(pFaceVerts[i] != pEdgeVerts[0]);
pEdgeChildEdges[i][0] = cEdges[edgeReversedWrtFace];
pEdgeChildEdges[i][1] = cEdges[!edgeReversedWrtFace];
}
if (IndexIsValid(pFaceChildFaces[0])) {
IndexArray cFaceEdges = _child->getFaceEdges(pFaceChildFaces[0]);
cFaceEdges[0] = pEdgeChildEdges[0][0];
cFaceEdges[1] = pFaceChildEdges[0];
cFaceEdges[2] = pEdgeChildEdges[2][1];
}
if (IndexIsValid(pFaceChildFaces[1])) {
IndexArray cFaceEdges = _child->getFaceEdges(pFaceChildFaces[1]);
cFaceEdges[0] = pEdgeChildEdges[0][1];
cFaceEdges[1] = pEdgeChildEdges[1][0];
cFaceEdges[2] = pFaceChildEdges[1];
}
if (IndexIsValid(pFaceChildFaces[2])) {
IndexArray cFaceEdges = _child->getFaceEdges(pFaceChildFaces[2]);
cFaceEdges[0] = pFaceChildEdges[2];
cFaceEdges[1] = pEdgeChildEdges[1][1];
cFaceEdges[2] = pEdgeChildEdges[2][0];
}
if (IndexIsValid(pFaceChildFaces[3])) {
IndexArray cFaceEdges = _child->getFaceEdges(pFaceChildFaces[3]);
cFaceEdges[0] = pFaceChildEdges[2];
cFaceEdges[1] = pFaceChildEdges[0];
cFaceEdges[2] = pFaceChildEdges[1];
}
}
}
//
// Methods to populate the edge-vertex relation of the child Level:
// - child edges originate from parent faces and edges
//
void
TriRefinement::populateEdgeVertexRelation() {
_child->_edgeVertIndices.resize(_child->getNumEdges() * 2);
populateEdgeVerticesFromParentFaces();
populateEdgeVerticesFromParentEdges();
}
void
TriRefinement::populateEdgeVerticesFromParentFaces() {
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
ConstIndexArray pFaceEdges = _parent->getFaceEdges(pFace),
pFaceChildEdges = getFaceChildEdges(pFace);
assert(pFaceEdges.size() == 3);
assert(pFaceChildEdges.size() == 3);
Index pEdgeChildVerts[3];
pEdgeChildVerts[0] = _edgeChildVertIndex[pFaceEdges[0]];
pEdgeChildVerts[1] = _edgeChildVertIndex[pFaceEdges[1]];
pEdgeChildVerts[2] = _edgeChildVertIndex[pFaceEdges[2]];
if (IndexIsValid(pFaceChildEdges[0])) {
IndexArray cEdgeVerts = _child->getEdgeVertices(pFaceChildEdges[0]);
cEdgeVerts[0] = pEdgeChildVerts[0];
cEdgeVerts[1] = pEdgeChildVerts[2];
}
if (IndexIsValid(pFaceChildEdges[1])) {
IndexArray cEdgeVerts = _child->getEdgeVertices(pFaceChildEdges[1]);
cEdgeVerts[0] = pEdgeChildVerts[1];
cEdgeVerts[1] = pEdgeChildVerts[0];
}
if (IndexIsValid(pFaceChildEdges[2])) {
IndexArray cEdgeVerts = _child->getEdgeVertices(pFaceChildEdges[2]);
cEdgeVerts[0] = pEdgeChildVerts[2];
cEdgeVerts[1] = pEdgeChildVerts[1];
}
}
}
void
TriRefinement::populateEdgeVerticesFromParentEdges() {
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
ConstIndexArray pEdgeVerts = _parent->getEdgeVertices(pEdge),
pEdgeChildEdges = getEdgeChildEdges(pEdge);
if (IndexIsValid(pEdgeChildEdges[0])) {
IndexArray cEdgeVerts = _child->getEdgeVertices(pEdgeChildEdges[0]);
cEdgeVerts[0] = _edgeChildVertIndex[pEdge];
cEdgeVerts[1] = _vertChildVertIndex[pEdgeVerts[0]];
}
if (IndexIsValid(pEdgeChildEdges[1])) {
IndexArray cEdgeVerts = _child->getEdgeVertices(pEdgeChildEdges[1]);
cEdgeVerts[0] = _edgeChildVertIndex[pEdge];
cEdgeVerts[1] = _vertChildVertIndex[pEdgeVerts[1]];
}
}
}
//
// Methods to populate the edge-face relation of the child Level:
// - child edges originate from parent faces and edges
// - sparse refinement poses challenges with allocation here
// - we need to update the counts/offsets as we populate
//
void
TriRefinement::populateEdgeFaceRelation() {
//
// This is essentially the same as the quad-split version except for the
// sizing estimates:
// - every child-edge within a face will have 2 incident faces
// - every child-edge from a edge may have N incident faces
// - use the parents edge-face count for this
//
int childEdgeFaceIndexSizeEstimate = (int)_faceChildEdgeIndices.size() * 2 +
(int)_parent->_edgeFaceIndices.size() * 2;
_child->_edgeFaceCountsAndOffsets.resize(_child->getNumEdges() * 2);
_child->_edgeFaceIndices.resize(childEdgeFaceIndexSizeEstimate);
_child->_edgeFaceLocalIndices.resize(childEdgeFaceIndexSizeEstimate);
// Update _maxEdgeFaces from the parent level before calling the
// populateEdgeFacesFromParent methods below, as these may further
// update _maxEdgeFaces.
_child->_maxEdgeFaces = _parent->_maxEdgeFaces;
populateEdgeFacesFromParentFaces();
populateEdgeFacesFromParentEdges();
// Revise the over-allocated estimate based on what is used (as indicated in the
// count/offset for the last vertex) and trim the index vector accordingly:
childEdgeFaceIndexSizeEstimate = _child->getNumEdgeFaces(_child->getNumEdges()-1) +
_child->getOffsetOfEdgeFaces(_child->getNumEdges()-1);
_child->_edgeFaceIndices.resize(childEdgeFaceIndexSizeEstimate);
_child->_edgeFaceLocalIndices.resize(childEdgeFaceIndexSizeEstimate);
}
void
TriRefinement::populateEdgeFacesFromParentFaces() {
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
ConstIndexArray pFaceChildFaces = getFaceChildFaces(pFace),
pFaceChildEdges = getFaceChildEdges(pFace);
assert(pFaceChildFaces.size() == 4);
assert(pFaceChildEdges.size() == 3);
// Every child-edge of a face potentially shares the middle child face:
Index cFaceMiddle = pFaceChildFaces[3];
bool isFaceMiddleValid = IndexIsValid(cFaceMiddle);
for (int j = 0; j < pFaceChildEdges.size(); ++j) {
Index cEdge = pFaceChildEdges[j];
if (IndexIsValid(cEdge)) {
// Reserve enough edge-faces, populate and trim as needed:
_child->resizeEdgeFaces(cEdge, 2);
IndexArray cEdgeFaces = _child->getEdgeFaces(cEdge);
LocalIndexArray cEdgeInFace = _child->getEdgeFaceLocalIndices(cEdge);
int cEdgeFaceCount = 0;
if (IndexIsValid(pFaceChildFaces[j])) {
cEdgeFaces[cEdgeFaceCount] = pFaceChildFaces[j];
cEdgeInFace[cEdgeFaceCount] = (LocalIndex) ((j + 1) % 3);
cEdgeFaceCount++;
}
if (isFaceMiddleValid) {
cEdgeFaces[cEdgeFaceCount] = cFaceMiddle;
cEdgeInFace[cEdgeFaceCount] = (LocalIndex) ((j + 1) % 3);
cEdgeFaceCount++;
}
_child->trimEdgeFaces(cEdge, cEdgeFaceCount);
}
}
}
}
void
TriRefinement::populateEdgeFacesFromParentEdges() {
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
ConstIndexArray pEdgeChildEdges = getEdgeChildEdges(pEdge);
if (!IndexIsValid(pEdgeChildEdges[0]) && !IndexIsValid(pEdgeChildEdges[1])) continue;
ConstIndexArray pEdgeFaces = _parent->getEdgeFaces(pEdge);
ConstLocalIndexArray pEdgeInFace = _parent->getEdgeFaceLocalIndices(pEdge);
ConstIndexArray pEdgeVerts = _parent->getEdgeVertices(pEdge);
for (int j = 0; j < 2; ++j) {
Index cEdge = pEdgeChildEdges[j];
if (!IndexIsValid(cEdge)) continue;
//
// Reserve enough edge-faces, populate and trim as needed:
//
_child->resizeEdgeFaces(cEdge, pEdgeFaces.size());
IndexArray cEdgeFaces = _child->getEdgeFaces(cEdge);
LocalIndexArray cEdgeInFace = _child->getEdgeFaceLocalIndices(cEdge);
//
// Each parent face may contribute an incident child face:
//
// For each incident face and local-index, we immediately know
// the two child faces that are associated with the two child edges.
// We just need to identify how to pair them based on edge direction.
//
// Note also here, that we could identify the pairs of child faces
// once for the parent before dealing with each child edge (we do the
// "find edge in face search" twice here as a result). We will
// generally have 2 or 1 incident face to the parent edge so we
// can put the child-pairs on the stack.
//
// Here's a more promising alternative -- instead of iterating
// through the child edges to "pull" data from the parent, iterate
// through the parent edges' faces and apply valid child faces to
// the appropriate child edge. We should be able to use end-verts
// of the parent edge to get the corresponding child face for each,
// but we can't avoid a vert-in-face search and a subsequent parity
// test of the end-vert.
//
int cEdgeFaceCount = 0;
for (int i = 0; i < pEdgeFaces.size(); ++i) {
Index pFace = pEdgeFaces[i];
int edgeInFace = pEdgeInFace[i];
ConstIndexArray pFaceVerts = _parent->getFaceVertices(pFace),
pFaceChildren = getFaceChildFaces(pFace);
// Inspect either this child of the face or the next -- be careful
// to consider degenerate edge when orienting here:
int childOfEdge = (pEdgeVerts[0] == pEdgeVerts[1]) ? j :
(pFaceVerts[edgeInFace] != pEdgeVerts[j]);
int childInFace = edgeInFace + childOfEdge;
if (childInFace == pFaceVerts.size()) childInFace = 0;
if (IndexIsValid(pFaceChildren[childInFace])) {
cEdgeFaces[cEdgeFaceCount] = pFaceChildren[childInFace];
cEdgeInFace[cEdgeFaceCount] = (LocalIndex) edgeInFace;
cEdgeFaceCount++;
}
}
_child->trimEdgeFaces(cEdge, cEdgeFaceCount);
}
}
}
//
// Methods to populate the vertex-face relation of the child Level:
// - child vertices originate from parent faces, edges and vertices
// - sparse refinement poses challenges with allocation here:
// - we need to update the counts/offsets as we populate
// - note this imposes ordering constraints and inhibits concurrency
//
void
TriRefinement::populateVertexFaceRelation() {
//
// Unlike quad-splitting, we don't have to consider vertices originating from
// faces. We also have to consider 3 faces for every incident face for vertices
// originating from edges.
//
int childVertFaceIndexSizeEstimate = (int)_parent->_edgeFaceIndices.size() * 3
+ (int)_parent->_vertFaceIndices.size();
_child->_vertFaceCountsAndOffsets.resize(_child->getNumVertices() * 2);
_child->_vertFaceIndices.resize( childVertFaceIndexSizeEstimate);
_child->_vertFaceLocalIndices.resize( childVertFaceIndexSizeEstimate);
// Remember -- no vertices-from-faces to consider here (until N-gon support)
if (getFirstChildVertexFromVertices() == 0) {
populateVertexFacesFromParentVertices();
populateVertexFacesFromParentEdges();
} else {
populateVertexFacesFromParentEdges();
populateVertexFacesFromParentVertices();
}
// Revise the over-allocated estimate based on what is used (as indicated in the
// count/offset for the last vertex) and trim the index vectors accordingly:
childVertFaceIndexSizeEstimate = _child->getNumVertexFaces(_child->getNumVertices()-1) +
_child->getOffsetOfVertexFaces(_child->getNumVertices()-1);
_child->_vertFaceIndices.resize( childVertFaceIndexSizeEstimate);
_child->_vertFaceLocalIndices.resize(childVertFaceIndexSizeEstimate);
}
void
TriRefinement::populateVertexFacesFromParentEdges() {
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
Index cVert = _edgeChildVertIndex[pEdge];
if (!IndexIsValid(cVert)) continue;
ConstIndexArray pEdgeFaces = _parent->getEdgeFaces(pEdge);
ConstLocalIndexArray pEdgeInFace = _parent->getEdgeFaceLocalIndices(pEdge);
//
// Reserve enough vert-faces, populate and trim to the actual size:
//
_child->resizeVertexFaces(cVert, 2 * pEdgeFaces.size());
IndexArray cVertFaces = _child->getVertexFaces(cVert);
LocalIndexArray cVertInFace = _child->getVertexFaceLocalIndices(cVert);
int cVertFaceCount = 0;
for (int i = 0; i < pEdgeFaces.size(); ++i) {
Index pFace = pEdgeFaces[i];
int edgeInFace = pEdgeInFace[i];
//
// Identify the corresponding three child faces for this parent face and
// their orientation wrt the child vertex to which they are incident --
// since we have the desired ordering of child faces from the parent face,
// we don't care about the orientation of the parent edge.
//
LocalIndex leadingFace = (LocalIndex) ((edgeInFace + 1) % 3);
LocalIndex middleFace = (LocalIndex) 3;
LocalIndex trailingFace = (LocalIndex) edgeInFace;
LocalIndex leadingLocalIndex = (LocalIndex) edgeInFace;
LocalIndex middleLocalIndex = (LocalIndex) ((edgeInFace + 2) % 3);
LocalIndex trailingLocalIndex = (LocalIndex) ((edgeInFace + 1) % 3);
//
// Now simply assign those of the three child faces that are valid:
//
ConstIndexArray pFaceChildFaces = getFaceChildFaces(pFace);
assert(pFaceChildFaces.size() == 4);
Index cFace = pFaceChildFaces[leadingFace];
if (IndexIsValid(cFace)) {
cVertFaces[cVertFaceCount] = cFace;
cVertInFace[cVertFaceCount] = leadingLocalIndex;
cVertFaceCount++;
}
cFace = pFaceChildFaces[middleFace];
if (IndexIsValid(cFace)) {
cVertFaces[cVertFaceCount] = cFace;
cVertInFace[cVertFaceCount] = middleLocalIndex;
cVertFaceCount++;
}
cFace = pFaceChildFaces[trailingFace];
if (IndexIsValid(cFace)) {
cVertFaces[cVertFaceCount] = cFace;
cVertInFace[cVertFaceCount] = trailingLocalIndex;
cVertFaceCount++;
}
}
_child->trimVertexFaces(cVert, cVertFaceCount);
}
}
void
TriRefinement::populateVertexFacesFromParentVertices() {
for (Index pVert = 0; pVert < _parent->getNumVertices(); ++pVert) {
Index cVert = _vertChildVertIndex[pVert];
if (!IndexIsValid(cVert)) continue;
//
// Inspect the parent vert's faces:
//
ConstIndexArray pVertFaces = _parent->getVertexFaces(pVert);
ConstLocalIndexArray pVertInFace = _parent->getVertexFaceLocalIndices(pVert);
//
// Reserve enough vert-faces, populate and trim to the actual size:
//
_child->resizeVertexFaces(cVert, pVertFaces.size());
IndexArray cVertFaces = _child->getVertexFaces(cVert);
LocalIndexArray cVertInFace = _child->getVertexFaceLocalIndices(cVert);
int cVertFaceCount = 0;
for (int i = 0; i < pVertFaces.size(); ++i) {
Index pFace = pVertFaces[i];
LocalIndex pFaceChild = pVertInFace[i];
Index cFace = getFaceChildFaces(pFace)[pFaceChild];
if (IndexIsValid(cFace)) {
cVertFaces[cVertFaceCount] = cFace;
cVertInFace[cVertFaceCount] = pFaceChild;
cVertFaceCount++;
}
}
_child->trimVertexFaces(cVert, cVertFaceCount);
}
}
//
// Methods to populate the vertex-edge relation of the child Level:
// - child vertices originate from parent faces, edges and vertices
// - sparse refinement poses challenges with allocation here:
// - we need to update the counts/offsets as we populate
// - note this imposes ordering constraints and inhibits concurrency
//
void
TriRefinement::populateVertexEdgeRelation() {
//
// Notes on allocating/initializing the vertex-edge counts/offsets vector:
//
// Be aware of scheme-specific decisions here, e.g.:
// - no verts from parent faces for Loop
// - more interior edges and faces for verts from parent edges for Loop
// - no guaranteed "neighborhood" around Bilinear verts from verts
//
// If uniform subdivision, vert-edge count will be:
// - 2 + 2*N faces incident parent edge for verts from parent edges
// - same as parent vert for verts from parent verts
// If sparse subdivision, vert-edge count will be:
// - non-trivial function of child faces in parent face
// - 1 child face will always result in 2 child edges
// * 2 child faces can mean 3 or 4 child edges
// - 3 child faces will always result in 4 child edges
// - 1 or 2 + N faces incident parent edge for verts from parent edges
// - where the 1 or 2 is number of child edges of parent edge
// - any end vertex will require all N child faces (catmark)
// - same as parent vert for verts from parent verts (catmark)
//
int childVertEdgeIndexSizeEstimate = (int)_parent->_edgeFaceIndices.size() * 2 + _parent->getNumEdges() * 2
+ (int)_parent->_vertEdgeIndices.size();
_child->_vertEdgeCountsAndOffsets.resize(_child->getNumVertices() * 2);
_child->_vertEdgeIndices.resize( childVertEdgeIndexSizeEstimate);
_child->_vertEdgeLocalIndices.resize( childVertEdgeIndexSizeEstimate);
if (getFirstChildVertexFromVertices() == 0) {
populateVertexEdgesFromParentVertices();
populateVertexEdgesFromParentEdges();
} else {
populateVertexEdgesFromParentEdges();
populateVertexEdgesFromParentVertices();
}
// Revise the over-allocated estimate based on what is used (as indicated in the
// count/offset for the last vertex) and trim the index vectors accordingly:
childVertEdgeIndexSizeEstimate = _child->getNumVertexEdges(_child->getNumVertices()-1) +
_child->getOffsetOfVertexEdges(_child->getNumVertices()-1);
_child->_vertEdgeIndices.resize( childVertEdgeIndexSizeEstimate);
_child->_vertEdgeLocalIndices.resize(childVertEdgeIndexSizeEstimate);
}
void
TriRefinement::populateVertexEdgesFromParentEdges() {
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
Index cVert = _edgeChildVertIndex[pEdge];
if (!IndexIsValid(cVert)) continue;
//
// First inspect the parent edge -- its parent faces then its child edges:
//
ConstIndexArray pEdgeFaces = _parent->getEdgeFaces(pEdge);
ConstLocalIndexArray pEdgeInFace = _parent->getEdgeFaceLocalIndices(pEdge);
ConstIndexArray pEdgeVerts = _parent->getEdgeVertices(pEdge),
pEdgeChildEdges = getEdgeChildEdges(pEdge);
//
// Reserve enough vert-edges, populate and trim to the actual size:
//
_child->resizeVertexEdges(cVert, pEdgeFaces.size() + 2);
IndexArray cVertEdges = _child->getVertexEdges(cVert);
LocalIndexArray cVertInEdge = _child->getVertexEdgeLocalIndices(cVert);
//
// We need to order the incident edges around the vertex appropriately:
// - one child edge of the parent edge ("leading" in face 0)
// - two child edges interior to face 0
// - one other child edge of the parent edge ("trailing" in face 0)
// - child edges of all remaining faces
// Be careful to place the leading/trailing child edges of the parent edge
// correctly -- edges are not directed their orientation may vary. The
// interior child edges are appropriately oriented wrt their parent face.
//
// Also need to consider no faces at all, in which case we just want the
// child edges of the parent edge.
//
int cVertEdgeCount = 0;
// We only care about edge reversal in the first iteration -- in which
// the child edges of the parent edges are assigned. Other iterations
// only assign the child edges from the incident parent face:
bool pEdgeReversed = false;
Index cEdgeOfEdge0 = INDEX_INVALID,
cEdgeOfEdge1 = INDEX_INVALID;
for (int i = 0; i < pEdgeFaces.size(); ++i) {
Index pFace = pEdgeFaces[i];
int edgeInFace = pEdgeInFace[i];
ConstIndexArray pFaceChildEdges = getFaceChildEdges(pFace);
// Test the orientation of a non-degenerate edge in the first face:
if (i == 0) {
if (pEdgeVerts[0] != pEdgeVerts[1]) {
pEdgeReversed = (_parent->getFaceVertices(pFace)[edgeInFace] != pEdgeVerts[0]);
}
cEdgeOfEdge0 = pEdgeChildEdges[!pEdgeReversed];
cEdgeOfEdge1 = pEdgeChildEdges[pEdgeReversed];
}
//
// Identify the two interior and incident child edges within the face --
// bracketed by the child edges of the parent edge when dealing with the
// first face:
//
Index cEdgeOfFace0 = pFaceChildEdges[(edgeInFace + 1) % 3];
Index cEdgeOfFace1 = pFaceChildEdges[edgeInFace];
if ((i == 0) && IndexIsValid(cEdgeOfEdge0)) {
cVertEdges[cVertEdgeCount] = cEdgeOfEdge0;
cVertInEdge[cVertEdgeCount] = 0;
cVertEdgeCount++;
}
if (IndexIsValid(cEdgeOfFace0)) {
cVertEdges[cVertEdgeCount] = cEdgeOfFace0;
cVertInEdge[cVertEdgeCount] = 1;
cVertEdgeCount++;
}
if (IndexIsValid(cEdgeOfFace1)) {
cVertEdges[cVertEdgeCount] = cEdgeOfFace1;
cVertInEdge[cVertEdgeCount] = 0;
cVertEdgeCount++;
}
if ((i == 0) && IndexIsValid(cEdgeOfEdge1)) {
cVertEdges[cVertEdgeCount] = cEdgeOfEdge1;
cVertInEdge[cVertEdgeCount] = 0;
cVertEdgeCount++;
}
}
_child->trimVertexEdges(cVert, cVertEdgeCount);
}
}
void
TriRefinement::populateVertexEdgesFromParentVertices() {
for (Index pVert = 0; pVert < _parent->getNumVertices(); ++pVert) {
Index cVert = _vertChildVertIndex[pVert];
if (!IndexIsValid(cVert)) continue;
//
// Inspect the parent vert's edges first:
//
ConstIndexArray pVertEdges = _parent->getVertexEdges(pVert);
ConstLocalIndexArray pVertInEdge = _parent->getVertexEdgeLocalIndices(pVert);
//
// Reserve enough vert-edges, populate and trim to the actual size:
//
_child->resizeVertexEdges(cVert, pVertEdges.size());
IndexArray cVertEdges = _child->getVertexEdges(cVert);
LocalIndexArray cVertInEdge = _child->getVertexEdgeLocalIndices(cVert);
int cVertEdgeCount = 0;
for (int i = 0; i < pVertEdges.size(); ++i) {
Index cEdge = getEdgeChildEdges(pVertEdges[i])[pVertInEdge[i]];
if (IndexIsValid(cEdge)) {
cVertEdges[cVertEdgeCount] = cEdge;
cVertInEdge[cVertEdgeCount] = 1;
cVertEdgeCount++;
}
}
_child->trimVertexEdges(cVert, cVertEdgeCount);
}
}
//
// Methods to populate child-component indices for sparse selection:
//
// Need to find a better place for these anon helper methods now that they are required
// both in the base class and the two subclasses for quad- and tri-splitting...
//
namespace {
Index const IndexSparseMaskNeighboring = (1 << 0);
Index const IndexSparseMaskSelected = (1 << 1);
inline void markSparseIndexNeighbor(Index& index) { index = IndexSparseMaskNeighboring; }
inline void markSparseIndexSelected(Index& index) { index = IndexSparseMaskSelected; }
}
void
TriRefinement::markSparseFaceChildren() {
assert(_parentFaceTag.size() > 0);
//
// For each parent face:
// All boundary edges will be adequately marked as a result of the pass over the
// edges above and boundary vertices marked by selection. So all that remains is to
// identify the child faces and interior child edges for a face requiring neighboring
// child faces.
// For each corner vertex selected, we need to mark the corresponding child face,
// the two interior child edges and shared child vertex in the middle.
//
for (Index pFace = 0; pFace < parent().getNumFaces(); ++pFace) {
//
// Mark all descending child components of a selected face. Otherwise inspect
// its incident vertices to see if anything neighboring has been selected --
// requiring partial refinement of this face.
//
// Remember that a selected face cannot be transitional, and that only a
// transitional face will be partially refined.
//
IndexArray fChildFaces = getFaceChildFaces(pFace);
IndexArray fChildEdges = getFaceChildEdges(pFace);
assert(fChildFaces.size() == 4);
assert(fChildEdges.size() == 3);
ConstIndexArray fVerts = parent().getFaceVertices(pFace);
SparseTag& pFaceTag = _parentFaceTag[pFace];
if (pFaceTag._selected) {
markSparseIndexSelected(fChildFaces[0]);
markSparseIndexSelected(fChildFaces[1]);
markSparseIndexSelected(fChildFaces[2]);
markSparseIndexSelected(fChildFaces[3]);
markSparseIndexSelected(fChildEdges[0]);
markSparseIndexSelected(fChildEdges[1]);
markSparseIndexSelected(fChildEdges[2]);
pFaceTag._transitional = 0;
} else {
int marked = _parentVertexTag[fVerts[0]]._selected
+ _parentVertexTag[fVerts[1]]._selected
+ _parentVertexTag[fVerts[2]]._selected;
if (marked) {
//
// If marked, see if we have any transitional edges, in which case we
// need to include the middle face:
//
ConstIndexArray fEdges = parent().getFaceEdges(pFace);
pFaceTag._transitional = (unsigned char)
((_parentEdgeTag[fEdges[0]]._transitional << 0) |
(_parentEdgeTag[fEdges[1]]._transitional << 1) |
(_parentEdgeTag[fEdges[2]]._transitional << 2));
// Now mark the child faces and their associated edges:
//
if (pFaceTag._transitional) {
markSparseIndexNeighbor(fChildFaces[3]);
markSparseIndexNeighbor(fChildEdges[0]);
markSparseIndexNeighbor(fChildEdges[1]);
markSparseIndexNeighbor(fChildEdges[2]);
}
if (_parentVertexTag[fVerts[0]]._selected) {
markSparseIndexNeighbor(fChildFaces[0]);
markSparseIndexNeighbor(fChildEdges[0]);
}
if (_parentVertexTag[fVerts[1]]._selected) {
markSparseIndexNeighbor(fChildFaces[1]);
markSparseIndexNeighbor(fChildEdges[1]);
}
if (_parentVertexTag[fVerts[2]]._selected) {
markSparseIndexNeighbor(fChildFaces[2]);
markSparseIndexNeighbor(fChildEdges[2]);
}
}
}
}
}
} // end namespace internal
} // end namespace Vtr
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv