2013-02-05 05:10:58 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
#
|
2013-09-26 19:04:57 +00:00
|
|
|
# Copyright 2013 Pixar
|
2013-07-18 21:19:50 +00:00
|
|
|
#
|
2013-09-26 19:04:57 +00:00
|
|
|
# Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
|
|
# with the following modification; you may not use this file except in
|
|
|
|
# compliance with the Apache License and the following modification to it:
|
|
|
|
# Section 6. Trademarks. is deleted and replaced with:
|
2013-02-05 05:10:58 +00:00
|
|
|
#
|
2013-09-26 19:04:57 +00:00
|
|
|
# 6. Trademarks. This License does not grant permission to use the trade
|
|
|
|
# names, trademarks, service marks, or product names of the Licensor
|
|
|
|
# and its affiliates, except as required to comply with Section 4(c) of
|
|
|
|
# the License and to reproduce the content of the NOTICE file.
|
2013-02-05 05:10:58 +00:00
|
|
|
#
|
2013-09-26 19:04:57 +00:00
|
|
|
# You may obtain a copy of the Apache License at
|
2013-02-05 05:10:58 +00:00
|
|
|
#
|
2013-09-26 19:04:57 +00:00
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
2013-02-05 05:10:58 +00:00
|
|
|
#
|
2013-09-26 19:04:57 +00:00
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the Apache License with the above modification is
|
|
|
|
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
|
|
# KIND, either express or implied. See the Apache License for the specific
|
|
|
|
# language governing permissions and limitations under the Apache License.
|
2013-02-05 05:10:58 +00:00
|
|
|
#
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import unittest, sys
|
|
|
|
import osd
|
|
|
|
|
|
|
|
# Topology of a cube.
|
|
|
|
faces = [ (0,1,3,2),
|
|
|
|
(2,3,5,4),
|
|
|
|
(4,5,7,6),
|
|
|
|
(6,7,1,0),
|
|
|
|
(1,7,5,3),
|
|
|
|
(6,0,2,4) ]
|
|
|
|
|
|
|
|
# Vertex positions and "temperature" as an example of a custom
|
|
|
|
# attribute.
|
|
|
|
verts = [ 0.000000, -1.414214, 1.000000, 71,
|
|
|
|
1.414214, 0.000000, 1.000000, 82,
|
|
|
|
-1.414214, 0.000000, 1.000000, 95,
|
|
|
|
0.000000, 1.414214, 1.000000, 100,
|
|
|
|
-1.414214, 0.000000, -1.000000, 63,
|
|
|
|
0.000000, 1.414214, -1.000000, 77,
|
|
|
|
0.000000, -1.414214, -1.000000, 82,
|
|
|
|
1.414214, 0.000000, -1.000000, 32 ]
|
|
|
|
|
|
|
|
dtype = [('Px', np.float32),
|
|
|
|
('Py', np.float32),
|
|
|
|
('Pz', np.float32),
|
|
|
|
('temperature', np.float32)]
|
|
|
|
|
|
|
|
class SimpleTest(unittest.TestCase):
|
|
|
|
|
|
|
|
def test_usage(self):
|
|
|
|
mesh = osd.Topology(faces)
|
|
|
|
mesh.boundaryMode = osd.BoundaryMode.EDGE_ONLY
|
|
|
|
|
|
|
|
mesh.vertices[0].sharpness = 2.7
|
|
|
|
self.assertAlmostEqual(mesh.vertices[0].sharpness, 2.7)
|
|
|
|
|
|
|
|
self.assertEqual(len(mesh.vertices), len(verts) / len(dtype))
|
|
|
|
self.assertEqual(len(mesh.faces), len(faces))
|
|
|
|
self.assertEqual(len(mesh.faces[0].edges), len(faces[0]))
|
|
|
|
|
|
|
|
mesh.finalize()
|
|
|
|
|
|
|
|
subdivider = osd.Subdivider(
|
|
|
|
mesh,
|
|
|
|
vertexLayout = dtype,
|
|
|
|
indexType = np.uint32,
|
|
|
|
levels = 4)
|
|
|
|
|
|
|
|
subdivider.setCoarseVertices(verts, np.float32)
|
|
|
|
subdivider.refine()
|
|
|
|
|
|
|
|
numQuads = len(subdivider.getRefinedQuads()) / 4
|
|
|
|
numVerts = len(subdivider.getRefinedVertices()) / len(dtype)
|
|
|
|
|
|
|
|
self.assertEqual(numQuads, 1536, "Unexpected number of refined quads")
|
|
|
|
self.assertEqual(numVerts, 2056, "Unexpected number of refined verts")
|
|
|
|
|
|
|
|
# For now, disable the leak test by prepending "do_not_".
|
|
|
|
def do_not_test_leaks(self):
|
|
|
|
self.test_usage()
|
|
|
|
start = _get_heap_usage()
|
|
|
|
history = []
|
|
|
|
for i in xrange(1024):
|
|
|
|
self.test_usage()
|
|
|
|
if ((i+1) % 256) == 0:
|
|
|
|
history.append(_get_heap_usage() - start)
|
|
|
|
print str(history[-1]) + "...",
|
|
|
|
sys.stdout.flush()
|
|
|
|
print
|
|
|
|
total = 0
|
|
|
|
for i in xrange(1, len(history)):
|
|
|
|
delta = history[i] - history[i - 1]
|
|
|
|
if delta <= 0:
|
|
|
|
return
|
|
|
|
total = total + delta
|
|
|
|
avg = total / (len(history) - 1)
|
|
|
|
self.fail("Memory usage is strictly increasing ({0}).".format(avg))
|
|
|
|
|
|
|
|
def test_Topology_creation(self):
|
|
|
|
|
|
|
|
# Input data
|
|
|
|
indices, valences = _flatten(faces)
|
|
|
|
|
|
|
|
# Native list-of-lists, constant valence:
|
|
|
|
mesh = osd.Topology(faces)
|
|
|
|
self.assert_(mesh,
|
|
|
|
"Unable to construct Topology object from a list-of-lists")
|
|
|
|
|
|
|
|
# Native list, constant valence:
|
|
|
|
mesh = osd.Topology(indices, 4)
|
|
|
|
self.assert_(mesh,
|
|
|
|
"Unable to construct Topology object from a list")
|
|
|
|
|
|
|
|
# Native list-of-lists, variable valence:
|
|
|
|
faces2 = faces + [(8,9,10)]
|
|
|
|
mesh = osd.Topology(faces2)
|
|
|
|
self.assert_(mesh,
|
|
|
|
"Unable to construct Topology object from a list of "
|
|
|
|
"variable-sized lists")
|
|
|
|
|
|
|
|
# Two-dimensional numpy array:
|
|
|
|
numpyFaces = np.array(indices, 'uint16').reshape(-1, 4)
|
|
|
|
mesh = osd.Topology(numpyFaces)
|
|
|
|
self.assert_(mesh,
|
|
|
|
"Unable to construct Topology object from a "
|
|
|
|
"two-dimensional numpy array")
|
|
|
|
|
|
|
|
# Native index list and valence list:
|
|
|
|
mesh = osd.Topology(indices, valences)
|
|
|
|
self.assert_(mesh)
|
|
|
|
|
|
|
|
# Numpy index list and valence list:
|
|
|
|
indices = np.array(indices, 'uint16')
|
|
|
|
valences = np.array(valences, 'uint8')
|
|
|
|
mesh = osd.Topology(indices, valences)
|
|
|
|
self.assert_(mesh)
|
|
|
|
|
|
|
|
# Ensure various topology checks
|
|
|
|
self.assertRaises(osd.OsdTypeError, osd.Topology, indices, None)
|
|
|
|
self.assertRaises(osd.OsdTypeError, osd.Topology, faces, valences)
|
|
|
|
faces2 = faces + [(8,9)]
|
|
|
|
self.assertRaises(osd.TopoError, osd.Topology, faces2)
|
|
|
|
valences2 = valences + [3]
|
|
|
|
self.assertRaises(osd.TopoError, osd.Topology, indices, valences2)
|
|
|
|
|
|
|
|
def _get_heap_usage():
|
|
|
|
import resource
|
|
|
|
return resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
|
|
|
|
|
|
|
|
def _flatten(faces):
|
|
|
|
import itertools
|
|
|
|
flattened = list(itertools.chain(*faces))
|
|
|
|
lengths = [len(face) for face in faces]
|
|
|
|
return flattened, lengths
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
unittest.main()
|