OpenSubdiv/opensubdiv/far/patchTables.h

986 lines
32 KiB
C
Raw Normal View History

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
2013-07-18 21:19:50 +00:00
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef FAR_PATCH_TABLES_H
#define FAR_PATCH_TABLES_H
#include "../version.h"
#include "../far/patchParam.h"
#include "../far/types.h"
#include <cstdlib>
#include <cassert>
#include <algorithm>
#include <vector>
#include <map>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
/// \brief Container for patch vertex indices tables
///
/// PatchTables contain the lists of vertices for each patch of an adaptive
/// mesh representation.
///
class PatchTables {
public:
typedef std::vector<unsigned int> PTable;
typedef std::vector<int> VertexValenceTable;
typedef std::vector<unsigned int> QuadOffsetTable;
typedef std::vector<PatchParam> PatchParamTable;
enum Type {
NON_PATCH = 0, ///< undefined
POINTS, ///< points (useful for cage drawing)
LINES, ///< lines (useful for cage drawing)
QUADS, ///< bilinear quads-only patches
TRIANGLES, ///< bilinear triangles-only mesh
LOOP, ///< Loop patch (unsupported)
REGULAR, ///< feature-adaptive bicubic patches
BOUNDARY,
CORNER,
GREGORY,
GREGORY_BOUNDARY
};
enum TransitionPattern {
NON_TRANSITION = 0,
PATTERN0,
PATTERN1,
PATTERN2,
PATTERN3,
PATTERN4
};
/// \brief Describes the type of a patch
2013-05-09 01:47:36 +00:00
///
/// Uniquely identifies all the types of patches in a mesh :
///
/// * Raw polygon meshes are identified as POLYGONS and can contain faces
/// with arbitrary number of vertices
///
/// * Uniformly subdivided meshes contain bilinear patches of either QUADS
/// or TRIANGLES
///
/// * Adaptively subdivided meshes contain bicubic patches of types REGULAR,
/// BOUNDARY, CORNER, GREGORY, GREGORY_BOUNDARY. These bicubic patches are
/// also further distinguished by a transition pattern as well as a rotational
/// orientation.
///
/// An iterator class is provided as a convenience to enumerate over the set
/// of valid feature adaptive patch descriptors.
///
class Descriptor {
public:
/// \brief Default constructor.
Descriptor() :
_type(NON_PATCH), _pattern(NON_TRANSITION), _rotation(0) {}
/// \brief Constructor
Descriptor(int type, int pattern, unsigned char rotation) :
2013-05-14 01:43:05 +00:00
_type(type), _pattern(pattern), _rotation(rotation) { }
/// \brief Copy Constructor
Descriptor( Descriptor const & d ) :
_type(d.GetType()), _pattern(d.GetPattern()), _rotation(d.GetRotation()) { }
/// \brief Returns the type of the patch
Type GetType() const {
2013-05-14 01:43:05 +00:00
return (Type)_type;
}
/// \brief Returns the transition pattern of the patch if any (5 types)
TransitionPattern GetPattern() const {
2013-05-14 01:43:05 +00:00
return (TransitionPattern)_pattern;
}
/// \brief Returns the rotation of the patch (4 rotations)
unsigned char GetRotation() const {
return (unsigned char)_rotation;
}
/// \brief Returns the number of control vertices expected for a patch of the
2013-05-09 01:47:36 +00:00
/// type described
static inline short GetNumControlVertices( Type t );
static inline short GetNumFVarControlVertices( Type t );
/// \brief Returns the number of control vertices expected for a patch of the
2013-05-09 01:47:36 +00:00
/// type described
short GetNumControlVertices() const {
return GetNumControlVertices( this->GetType() );
}
/// \brief Returns the number of control vertices expected for a patch of the
/// type described
short GetNumFVarControlVertices() const {
return GetNumFVarControlVertices( this->GetType() );
}
/// Returns a vector of all the legal patch descriptors
static inline std::vector<Descriptor> const & GetAllValidDescriptors();
/// \brief Allows ordering of patches by type
inline bool operator < ( Descriptor const other ) const;
/// \brief True if the descriptors are identical
inline bool operator == ( Descriptor const other ) const;
/// \brief Descriptor Iterator
/// Iterates through the patches in the following preset order
///
/// ANY order:
/// POINTS
/// LINES
/// QUADS
/// TRIANGLES
/// LOOP
///
/// FEATURE_ADAPTIVE_CATMARK order:
///
/// NON_TRANSITION ( REGULAR
/// BOUNDARY
/// CORNER
/// GREGORY
/// GREGORY_BOUNDARY )
///
/// PATTERN0 ( REGULAR
/// BOUNDARY ROT0 ROT1 ROT2 ROT3
/// CORNER ROT0 ROT1 ROT2 ROT3 )
///
/// PATTERN1 ( REGULAR
/// BOUNDARY ROT0 ROT1 ROT2 ROT3
/// CORNER ROT0 ROT1 ROT2 ROT3 )
/// ...
///
/// NON_TRANSITION NON_PATCH ROT0 (end)
///
class iterator;
enum PrimType {
ANY,
FEATURE_ADAPTIVE_CATMARK
};
/// \brief Returns a patch type iterator
/// @param type if type=ANY then the iterater points to type POINTS
/// if type=FEATURE_ADAPTIVE_CATMARK then the iterator
/// points to type NON_TRANSITION REGULAR
static iterator begin(PrimType type);
/// \brief Returns an iterator to the end of the list of patch types (NON_PATCH)
static iterator end();
private:
friend class PatchTablesFactory;
friend class iterator;
2013-05-14 01:43:05 +00:00
unsigned int _type:4;
unsigned int _pattern:3;
unsigned int _rotation:2;
};
/// \brief Describes an array of patches of the same type
class PatchArray {
public:
/// \brief Constructor.
2013-05-10 17:44:03 +00:00
///
/// @param desc descriptor information for the patches in
2013-05-17 21:07:53 +00:00
/// the array
///
2013-05-10 17:44:03 +00:00
/// @param vertIndex absolute index to the first control vertex
/// of the first patch in the PTable
///
/// @param patchIndex absolute index of the first patch in the
2013-05-10 17:44:03 +00:00
/// array
///
/// @param npatches number of patches in the array
///
/// @param quadOffsetIndex absolute index of the first quad offset
/// entry
///
PatchArray( Descriptor desc, unsigned int vertIndex, unsigned int patchIndex, unsigned int npatches, unsigned int quadOffsetIndex ) :
_desc(desc), _range(vertIndex, patchIndex, npatches, quadOffsetIndex) { }
/// Returns a patch descriptor defining the type of patches in the array
Descriptor GetDescriptor() const {
return _desc;
}
/// \brief Describes the range of patches in a PatchArray
struct ArrayRange {
/// \brief Constructor
2013-05-10 17:44:03 +00:00
///
/// @param ivertIndex absolute index to the first control vertex
/// of the first patch in the PTable
2013-05-10 17:44:03 +00:00
///
/// @param ipatchIndex absolute index of the first patch in the
/// array
2013-05-10 17:44:03 +00:00
///
/// @param inpatches number of patches in the array
2013-05-10 17:44:03 +00:00
///
/// @param iquadOffsetIndex absolute index of the first quad offset
/// entry
2013-05-10 17:44:03 +00:00
///
ArrayRange( unsigned int ivertIndex, unsigned int ipatchIndex, unsigned int inpatches, unsigned int iquadOffsetIndex ) :
vertIndex(ivertIndex), patchIndex(ipatchIndex), npatches(inpatches), quadOffsetIndex(iquadOffsetIndex) { }
unsigned int vertIndex, // absolute index to the first control vertex of the first patch in the PTable
patchIndex, // absolute index of the first patch in the array
npatches, // number of patches in the array
quadOffsetIndex; // absolute index of the first quad offset entry
};
/// \brief Returns a array range struct
ArrayRange const & GetArrayRange() const {
return _range;
}
/// \brief Returns the index of the first control vertex of the first patch
2013-05-09 01:47:36 +00:00
/// of this array in the global PTable
unsigned int GetVertIndex() const {
return _range.vertIndex;
}
/// \brief Returns the global index of the first patch in this array (Used to
/// access param / fvar table data)
unsigned int GetPatchIndex() const {
return _range.patchIndex;
}
/// \brief Returns the number of patches in the array
unsigned int GetNumPatches() const {
return _range.npatches;
}
/// \brief Returns the index to the first entry in the QuadOffsetTable
unsigned int GetQuadOffsetIndex() const {
return _range.quadOffsetIndex;
}
private:
friend class PatchTablesFactory;
Descriptor _desc; // type of patches in the array
ArrayRange _range; // index locators in the array
};
typedef std::vector<PatchArray> PatchArrayVector;
/// \brief Handle that can be used as unique patch identifier within PatchTables
struct PatchHandle {
unsigned int patchArrayIdx, // OsdPatchArray containing the patch
patchIdx, // Absolute index of the patch
vertexOffset; // Offset to the first CV of the patch
};
/// \brief Get the table of patch control vertices
PTable const & GetPatchTable() const { return _patches; }
/// \brief Returns a pointer to the array of patches matching the descriptor
PatchArray const * GetPatchArray( Descriptor desc ) const {
return const_cast<PatchTables *>(this)->findPatchArray( desc );
}
/// \brief Returns all arrays of patches
PatchArrayVector const & GetPatchArrayVector() const {
return _patchArrays;
}
/// brief Returns a pointer to the PatchArry of uniformly subdivided faces at 'level'
///
/// @param level the level of subdivision of the faces (returns the highest
/// level by default)
///
/// @return a pointer to the PatchArray or NULL if the mesh is not uniformly
/// subdivided or the level cannot be found.
///
PatchArray const * GetPatchArray(int level=0) const;
/// \brief Returns a pointer to the vertex indices of uniformly subdivided faces
///
/// In uniform mode the PatchTablesFactory can be set to generate either a
/// patch array containing the faces at the highest level of subdivision, or
/// a range of arrays, corresponding to multiple successive levels of subdivision.
///
/// Note : level '0' is not the coarse mesh. Currently there is no path in the
/// factories to convert the coarse mesh to PatchTables.
///
/// @param level the level of subdivision of the faces (returns the highest
/// level by default)
///
/// @return a pointer to the first vertex index or NULL if the mesh
/// is not uniformly subdivided or the level cannot be found.
///
unsigned int const * GetFaceVertices(int level=0) const;
/// \brief Returns the number of faces in a uniformly subdivided mesh at a given level
///
/// In uniform mode the PatchTablesFactory can be set to generate either a
/// patch array containing the faces at the highest level of subdivision, or
/// a range of arrays, corresponding to multiple successive levels of subdivision.
///
/// Note : level '0' is not the coarse mesh. Currently there is no path in the
/// factories to convert the coarse mesh to PatchTables.
///
/// @param level the level of subdivision of the faces (returns the highest
/// level by default)
///
/// @return the number of faces in the mesh given the subdivision level
/// or -1 if the mesh is not uniform or the level is incorrect.
///
int GetNumFaces(int level=0) const;
/// \brief Returns a vertex valence table used by Gregory patches
VertexValenceTable const & GetVertexValenceTable() const { return _vertexValenceTable; }
/// \brief Returns a quad offsets table used by Gregory patches
QuadOffsetTable const & GetQuadOffsetTable() const { return _quadOffsetTable; }
/// \brief Returns a PatchParamTable for each type of patch
PatchParamTable const & GetPatchParamTable() const { return _paramTable; }
/// \brief Ringsize of Regular Patches in table.
static short GetRegularPatchRingsize() { return 16; }
/// \brief Ringsize of Boundary Patches in table.
static short GetBoundaryPatchRingsize() { return 12; }
/// \brief Ringsize of Boundary Patches in table.
static short GetCornerPatchRingsize() { return 9; }
/// \brief Ringsize of Gregory (and Gregory Boundary) Patches in table.
static short GetGregoryPatchRingsize() { return 4; }
/// \brief Returns the total number of patches stored in the tables
int GetNumPatches() const;
/// \brief Returns the total number of control vertex indices in the tables
int GetNumControlVertices() const;
/// \brief Returns max vertex valence
int GetMaxValence() const { return _maxValence; }
/// \brief True if the patches are of feature adaptive types
bool IsFeatureAdaptive() const;
/// \brief Returns the total number of vertices in the mesh across across all depths
int GetNumPtexFaces() const { return _numPtexFaces; }
/// \brief Face-varying patch vertex indices tables
///
/// FVarPatchTables contain the topology for face-varying primvar data
/// channels. The patch ordering matches that of PatchTables PatchArrays.
///
class FVarPatchTables {
public:
/// \brief Returns the number of face-varying primvar channels
int GetNumChannels() const {
return (int)_channels.size();
}
/// \brief Returns the face-varying patches vertex indices
///
/// @param channel Then face-varying primvar channel index
///
std::vector<unsigned int> const & GetPatchVertices(int channel) const {
return _channels[channel].patchVertIndices;
}
private:
friend class PatchTablesFactory;
struct Channel {
friend class PatchTablesFactory;
std::vector<unsigned int> patchVertIndices; // face-varying vertex indices
};
std::vector<Channel> _channels; // face-varying primvar channels
};
/// \brief Returns the face-varying patches
FVarPatchTables const * GetFVarPatchTables() const { return _fvarPatchTables; }
/// \brief Public constructor
///
/// @param patchArrays Vector of descriptors and ranges for arrays of patches
///
/// @param patches Indices of the control vertices of the patches
///
/// @param vertexValences Vertex valance table
///
/// @param quadOffsets Quad offset table
///
/// @param fvarPatchTables Indices of the face-varying control vertices of the patches
///
/// @param patchParams Local patch parameterization
///
/// @param maxValence Highest vertex valence allowed in the mesh
///
PatchTables(PatchArrayVector const & patchArrays,
PTable const & patches,
VertexValenceTable const * vertexValences,
QuadOffsetTable const * quadOffsets,
PatchParamTable const * patchParams,
FVarPatchTables const * fvarPatchTables,
int maxValence);
/// \brief Destructor
~PatchTables() { delete _fvarPatchTables; }
/// \brief Interpolate the (s,t) parametric location of a patch
///
/// @param handle A patch handle indentifying the sub-patch containing the
/// (s,t) location
///
/// @param s Patch coordinate (in coarse face normalized space)
///
/// @param t Patch coordinate (in coarse face normalized space)
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> void Limit(PatchHandle const & handle,
float s, float t, T const src, U * dst) const;
private:
friend class PatchTablesFactory;
// Returns bi-cubic interpolation coefficients for a given (u,v) location
// on a b-spline patch
static void getBSplineWeightsAtUV(PatchParam::BitField bits, float s, float t,
float point[16], float deriv1[16], float deriv2[16]);
private:
2013-05-09 01:47:36 +00:00
// Returns the array of patches of type "desc", or NULL if there aren't any in the primitive
inline PatchArray * findPatchArray( Descriptor desc );
// Private constructor
PatchTables( int maxvalence ) : _fvarPatchTables(0), _maxValence(maxvalence) { }
PatchArrayVector _patchArrays; // Vector of descriptors for arrays of patches
PTable _patches; // Indices of the control vertices of the patches
VertexValenceTable _vertexValenceTable; // vertex valence table (for Gregory patches)
QuadOffsetTable _quadOffsetTable; // quad offsets table (for Gregory patches)
PatchParamTable _paramTable;
FVarPatchTables const * _fvarPatchTables; // sparse face-varying patch table
// highest vertex valence allowed in the mesh (used for Gregory
// vertexValance & quadOffset tables)
int _maxValence;
// number of total ptex faces in quads or triangles(loop)
int _numPtexFaces;
};
/// \brief Descriptor iterator class
class PatchTables::Descriptor::iterator {
public:
/// Constructor
iterator() : _pos(-1) {}
/// Copy Constructor
iterator(Descriptor desc);
/// Iteration increment operator
iterator & operator ++ ();
/// True of the two descriptors are identical
bool operator == ( iterator const & other ) const {
return (_pos==other._pos);
}
/// True if the two descriptors are different
bool operator != ( iterator const & other ) const {
return not (*this==other);
}
/// Dereferencing operator
Descriptor const * operator -> () const {
return getValue();
}
/// Dereferencing operator
Descriptor const & operator * () const {
return *getValue();
}
private:
inline Descriptor const * getValue() const;
int _pos;
};
// Iterator constructor
inline PatchTables::Descriptor::iterator::iterator(Descriptor desc) {
_pos = -1;
std::vector<Descriptor> const & descs =
Descriptor::GetAllValidDescriptors();
for (int i=0; i<(int)descs.size(); ++i) {
if (descs[i] == desc) {
_pos = i;
break;
}
}
}
// Iteration increment operator
inline PatchTables::Descriptor::iterator &
PatchTables::Descriptor::iterator::operator ++ () {
if (++_pos>=(int)Descriptor::GetAllValidDescriptors().size()) {
_pos = -1;
}
return *this;
}
inline PatchTables::Descriptor const *
PatchTables::Descriptor::iterator::getValue() const {
static Descriptor _nonpatch;
std::vector<Descriptor> const & descs =
Descriptor::GetAllValidDescriptors();
if (_pos>=0 and _pos<(int)descs.size()) {
return &descs[_pos];
}
return &_nonpatch;
}
inline std::vector<PatchTables::Descriptor> const &
PatchTables::Descriptor::GetAllValidDescriptors() {
static std::vector<Descriptor> _descriptors;
if (_descriptors.empty()) {
_descriptors.reserve(55);
// non-patch primitives
for (int i=POINTS; i<=LOOP; ++i) {
_descriptors.push_back( Descriptor(i, NON_TRANSITION, 0) );
}
// non-transition patches
for (int i=REGULAR; i<=GREGORY_BOUNDARY; ++i) {
_descriptors.push_back( Descriptor(i, NON_TRANSITION, 0) );
}
// transition patches
for (int i=PATTERN0; i<=PATTERN4; ++i) {
_descriptors.push_back( Descriptor(REGULAR, i, 0) );
// 4 rotations for boundary & corner patches
for (int j=0; j<4; ++j) {
_descriptors.push_back( Descriptor(BOUNDARY, i, j) );
}
for (int j=0; j<4; ++j) {
_descriptors.push_back( Descriptor(CORNER, i, j) );
}
}
}
return _descriptors;
}
// Returns an iterator to the first type of patch (REGULAR NON_TRANSITION ROT0)
inline PatchTables::Descriptor::iterator
PatchTables::Descriptor::begin(PrimType type) {
switch (type) {
case ANY:
return iterator( Descriptor(POINTS, NON_TRANSITION, 0) );
case FEATURE_ADAPTIVE_CATMARK:
return iterator( Descriptor(REGULAR, NON_TRANSITION, 0) );
default:
return iterator( Descriptor() );
}
}
// Returns an iterator to the end of the list of patch types (NON_PATCH)
inline PatchTables::Descriptor::iterator
PatchTables::Descriptor::end() {
return iterator( Descriptor() );
}
// Constructor
inline
PatchTables::PatchTables(PatchArrayVector const & patchArrays,
PTable const & patches,
VertexValenceTable const * vertexValences,
QuadOffsetTable const * quadOffsets,
PatchParamTable const * patchParams,
FVarPatchTables const * fvarPatchTables,
int maxValence) :
_patchArrays(patchArrays),
_patches(patches),
_fvarPatchTables(fvarPatchTables),
_maxValence(maxValence),
_numPtexFaces(0) {
// copy other tables if exist
if (vertexValences)
_vertexValenceTable = *vertexValences;
if (quadOffsets)
_quadOffsetTable = *quadOffsets;
if (patchParams)
_paramTable = *patchParams;
}
inline bool
PatchTables::IsFeatureAdaptive() const {
// the vertex valence table is only used by Gregory patches, so the PatchTables
// contain feature adaptive patches if this is not empty.
if (not _vertexValenceTable.empty())
return true;
PatchArrayVector const & parrays = GetPatchArrayVector();
// otherwise, we have to check each patch array
for (int i=0; i<(int)parrays.size(); ++i) {
if (parrays[i].GetDescriptor().GetType() >= REGULAR and
parrays[i].GetDescriptor().GetType() <= GREGORY_BOUNDARY)
return true;
}
return false;
}
// Returns the number of control vertices expected for a patch of this type
inline short
PatchTables::Descriptor::GetNumControlVertices( PatchTables::Type type ) {
switch (type) {
case REGULAR : return PatchTables::GetRegularPatchRingsize();
case QUADS : return 4;
case GREGORY :
case GREGORY_BOUNDARY : return PatchTables::GetGregoryPatchRingsize();
case BOUNDARY : return PatchTables::GetBoundaryPatchRingsize();
case CORNER : return PatchTables::GetCornerPatchRingsize();
case TRIANGLES : return 3;
case LINES : return 2;
case POINTS : return 1;
default : return -1;
}
}
// Returns the total number of control vertex indices in the tables
inline int
PatchTables::GetNumControlVertices() const {
int result=0;
for (int i=0; i<(int)_patchArrays.size(); ++i) {
result += _patchArrays[i].GetDescriptor().GetNumControlVertices() *
_patchArrays[i].GetNumPatches();
}
return result;
}
// Returns the number of face-varying control vertices expected for a patch of this type
inline short
PatchTables::Descriptor::GetNumFVarControlVertices( PatchTables::Type type ) {
switch (type) {
case REGULAR : // We only support bilinear interpolation for now,
case QUADS : // so all these patches only carry 4 CVs.
case GREGORY :
case GREGORY_BOUNDARY :
case BOUNDARY :
case CORNER : return 4;
case TRIANGLES : return 3;
case LINES : return 2;
case POINTS : return 1;
default : return -1;
}
}
// Returns a pointer to the PatchArry of uniformly subdivided faces at 'level'
inline PatchTables::PatchArray const *
PatchTables::GetPatchArray(int level) const {
if (IsFeatureAdaptive())
return NULL;
PatchArrayVector const & parrays = GetPatchArrayVector();
if (parrays.empty())
return NULL;
if (level < 1) {
return &(*parrays.rbegin());
} else if ((level-1) < (int)parrays.size() ) {
return &parrays[level-1];
}
return NULL;
}
// Returns a pointer to the vertex indices of uniformly subdivided faces
inline unsigned int const *
PatchTables::GetFaceVertices(int level) const {
PatchArray const * parray = GetPatchArray(level);
if (parray) {
return &GetPatchTable()[ parray->GetVertIndex() ];
}
return NULL;
}
// Returns the number of faces in a uniformly subdivided mesh at a given level
inline int
PatchTables::GetNumFaces(int level) const {
PatchArray const * parray = GetPatchArray(level);
if (parray) {
return parray->GetNumPatches();
}
return -1;
}
// Allows ordering of patches by type
inline bool
PatchTables::Descriptor::operator < ( Descriptor const other ) const {
return _pattern < other._pattern or ((_pattern == other._pattern) and
(_type < other._type or ((_type == other._type) and
(_rotation < other._rotation))));
}
// True if the descriptors are identical
inline bool
PatchTables::Descriptor::operator == ( Descriptor const other ) const {
return _pattern == other._pattern and
_type == other._type and
_rotation == other._rotation;
}
// Returns a pointer to the array of patches matching the descriptor
inline PatchTables::PatchArray *
PatchTables::findPatchArray( PatchTables::Descriptor desc ) {
for (int i=0; i<(int)_patchArrays.size(); ++i) {
if (_patchArrays[i].GetDescriptor()==desc)
return &_patchArrays[i];
}
return 0;
}
// Returns the total number of patches stored in the tables
inline int
PatchTables::GetNumPatches() const {
// there is one PatchParam record for each patch in the mesh
return (int)GetPatchParamTable().size();
}
template <class T, class U>
inline void
InterpolateRegularPatch(unsigned int const * cvs,
float const * Q, float const *Qd1, float const *Qd2,
T const src, U * dst) {
//
// v0 -- v1 -- v2 -- v3
// |.....|.....|.....|
// |.....|.....|.....|
// v4 -- v5 -- v6 -- v7
// |.....|.....|.....|
// |.....|.....|.....|
// v8 -- v9 -- v10-- v11
// |.....|.....|.....|
// |.....|.....|.....|
// v12-- v13-- v14-- v15
//
for (int k=0; k<16; ++k) {
dst->AddWithWeight(src[cvs[k]], Q[k], Qd1[k], Qd2[k]);
}
}
template <class T, class U>
inline void
InterpolateBoundaryPatch(unsigned int const * cvs,
float const * Q, float const *Qd1, float const *Qd2,
T const src, U * dst) {
// mirror the missing vertices (M)
//
// M0 -- M1 -- M2 -- M3 (corner)
// | | | |
// | | | |
// v0 -- v1 -- v2 -- v3 M : mirrored
// |.....|.....|.....|
// |.....|.....|.....|
// v4 -- v5 -- v6 -- v7 v : original Cv
// |.....|.....|.....|
// |.....|.....|.....|
// v8 -- v9 -- v10-- v11
//
for (int k=0; k<4; ++k) { // M0 - M3
dst->AddWithWeight(src[cvs[k]], 2.0f*Q[k], 2.0f*Qd1[k], 2.0f*Qd2[k]);
dst->AddWithWeight(src[cvs[k+4]], -1.0f*Q[k], -1.0f*Qd1[k], -1.0f*Qd2[k]);
}
for (int k=0; k<12; ++k) {
dst->AddWithWeight(src[cvs[k]], Q[k+4], Qd1[k+4], Qd2[k+4]);
}
}
template <class T, class U>
inline void
InterpolateCornerPatch(unsigned int const * cvs,
float const * Q, float const *Qd1, float const *Qd2,
T const src, U * dst) {
// mirror the missing vertices (M)
//
// M0 -- M1 -- M2 -- M3 (corner)
// | | | |
// | | | |
// v0 -- v1 -- v2 -- M4 M : mirrored
// |.....|.....| |
// |.....|.....| |
// v3.--.v4.--.v5 -- M5 v : original Cv
// |.....|.....| |
// |.....|.....| |
// v6 -- v7 -- v8 -- M6
//
for (int k=0; k<3; ++k) { // M0 - M2
dst->AddWithWeight(src[cvs[k ]], 2.0f*Q[k], 2.0f*Qd1[k], 2.0f*Qd2[k]);
dst->AddWithWeight(src[cvs[k+3]], -1.0f*Q[k], -1.0f*Qd1[k], -1.0f*Qd2[k]);
}
for (int k=0; k<3; ++k) { // M4 - M6
int idx = (k+1)*4 + 3;
dst->AddWithWeight(src[cvs[k*3+2]], 2.0f*Q[idx], 2.0f*Qd1[idx], 2.0f*Qd2[idx]);
dst->AddWithWeight(src[cvs[k*3+1]], -1.0f*Q[idx], -1.0f*Qd1[idx], -1.0f*Qd2[idx]);
}
// M3 = -2.v1 + 4.v2 + v4 - 2.v5
dst->AddWithWeight(src[cvs[1]], -2.0f*Q[3], -2.0f*Qd1[3], -2.0f*Qd2[3]);
dst->AddWithWeight(src[cvs[2]], 4.0f*Q[3], 4.0f*Qd1[3], 4.0f*Qd2[3]);
dst->AddWithWeight(src[cvs[4]], 1.0f*Q[3], 1.0f*Qd1[3], 1.0f*Qd2[3]);
dst->AddWithWeight(src[cvs[5]], -2.0f*Q[3], -2.0f*Qd1[3], -2.0f*Qd2[3]);
for (int y=0; y<3; ++y) { // v0 - v8
for (int x=0; x<3; ++x) {
int idx = y*4+x+4;
dst->AddWithWeight(src[cvs[y*3+x]], Q[idx], Qd1[idx], Qd2[idx]);
}
}
}
// Interpolates the limit position of a parametric location on a patch
template <class T, class U>
inline void
PatchTables::Limit(PatchHandle const & handle, float s, float t,
T const src, U * dst) const {
assert(dst);
PatchTables::PatchArray const & parray =
_patchArrays[handle.patchArrayIdx];
unsigned int const * cvs =
&_patches[parray.GetVertIndex() + handle.vertexOffset];
PatchParam::BitField const & bits =
_paramTable[handle.patchIdx].bitField;
bits.Normalize(s,t);
Type ptype = parray.GetDescriptor().GetType();
if (ptype>=REGULAR and ptype<=CORNER) {
float Q[16], Qd1[16], Qd2[16];
getBSplineWeightsAtUV(bits, s, t, Q, Qd1, Qd2);
float scale = float(1 << bits.GetDepth());
for (int k=0; k<16; ++k) {
Qd1[k] *= scale;
Qd2[k] *= scale;
}
dst->Clear();
switch (ptype) {
case REGULAR:
InterpolateRegularPatch(cvs, Q, Qd1, Qd2, src, dst);
break;
case BOUNDARY:
InterpolateBoundaryPatch(cvs, Q, Qd1, Qd2, src, dst);
break;
case CORNER:
InterpolateCornerPatch(cvs, Q, Qd1, Qd2, src, dst);
break;
default:
assert(0);
}
} else if (ptype>=GREGORY and ptype<=GREGORY_BOUNDARY) {
} else {
assert(0);
}
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_PATCH_TABLES */