OpenSubdiv/examples/ptexViewer/viewer.cpp

2495 lines
82 KiB
C++
Raw Normal View History

//
2013-07-18 21:19:50 +00:00
// Copyright 2013 Pixar
//
2013-07-18 21:19:50 +00:00
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License
// and the following modification to it: Section 6 Trademarks.
// deleted and replaced with:
//
2013-07-18 21:19:50 +00:00
// 6. Trademarks. This License does not grant permission to use the
// trade names, trademarks, service marks, or product names of the
// Licensor and its affiliates, except as required for reproducing
// the content of the NOTICE file.
//
2013-07-18 21:19:50 +00:00
// You may obtain a copy of the License at
//
2013-07-18 21:19:50 +00:00
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific
// language governing permissions and limitations under the
// License.
//
#if defined(__APPLE__)
#if defined(OSD_USES_GLEW)
#include <GL/glew.h>
#else
#include <OpenGL/gl3.h>
#endif
#define GLFW_INCLUDE_GL3
#define GLFW_NO_GLU
#else
#include <stdlib.h>
#include <GL/glew.h>
#if defined(WIN32)
#include <GL/wglew.h>
#endif
#endif
#if defined(GLFW_VERSION_3)
#include <GLFW/glfw3.h>
GLFWwindow* g_window = 0;
GLFWmonitor* g_primary = 0;
#else
#include <GL/glfw.h>
#endif
#include <vector>
#include <sstream>
#include <fstream>
#include <string>
#include <utility>
#include <algorithm>
#define HBR_ADAPTIVE
#include <hbr/mesh.h>
#include <hbr/bilinear.h>
#include <hbr/catmark.h>
#include <hbr/face.h>
#include <osd/error.h>
#include <osd/glDrawContext.h>
#include <osd/glDrawRegistry.h>
#include <osd/glPtexMipmapTexture.h>
#include <osd/cpuGLVertexBuffer.h>
#include <osd/cpuComputeContext.h>
#include <osd/cpuComputeController.h>
OpenSubdiv::OsdCpuComputeController * g_cpuComputeController = NULL;
#ifdef OPENSUBDIV_HAS_OPENMP
#include <osd/ompComputeController.h>
OpenSubdiv::OsdOmpComputeController * g_ompComputeController = NULL;
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
#include <osd/clGLVertexBuffer.h>
#include <osd/clComputeContext.h>
#include <osd/clComputeController.h>
#include "../common/clInit.h"
cl_context g_clContext = NULL;
cl_command_queue g_clQueue = NULL;
OpenSubdiv::OsdCLComputeController * g_clComputeController = NULL;
#endif
#ifdef OPENSUBDIV_HAS_CUDA
#include <osd/cudaGLVertexBuffer.h>
#include <osd/cudaComputeContext.h>
#include <osd/cudaComputeController.h>
#include <cuda_runtime_api.h>
#include <cuda_gl_interop.h>
#include "../common/cudaInit.h"
bool g_cudaInitialized = false;
OpenSubdiv::OsdCudaComputeController * g_cudaComputeController = NULL;
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
#include <osd/glslTransformFeedbackComputeContext.h>
#include <osd/glslTransformFeedbackComputeController.h>
#include <osd/glVertexBuffer.h>
OpenSubdiv::OsdGLSLTransformFeedbackComputeController
*g_glslTransformFeedbackComputeController = NULL;
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
#include <osd/glslComputeContext.h>
#include <osd/glslComputeController.h>
#include <osd/glVertexBuffer.h>
OpenSubdiv::OsdGLSLComputeController * g_glslComputeController = NULL;
#endif
#include <osd/glMesh.h>
OpenSubdiv::OsdGLMeshInterface *g_mesh;
#include "Ptexture.h"
#include "PtexUtils.h"
#include "../common/stopwatch.h"
#include "../common/simple_math.h"
#include "../common/gl_hud.h"
#include "../common/patchColors.h"
#include "../common/hdr_reader.h"
#include "../../regression/common/shape_utils.h"
static const char *g_defaultShaderSource =
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
#include "shader.inc"
#else
#include "shader_gl3.inc"
#endif
;
static const char *g_skyShaderSource =
#include "skyshader.inc"
;
static const char *g_imageShaderSource =
#include "imageshader.inc"
;
static std::string g_shaderSource;
static const char *g_shaderFilename = NULL;
typedef OpenSubdiv::HbrMesh<OpenSubdiv::OsdVertex> OsdHbrMesh;
typedef OpenSubdiv::HbrVertex<OpenSubdiv::OsdVertex> OsdHbrVertex;
typedef OpenSubdiv::HbrFace<OpenSubdiv::OsdVertex> OsdHbrFace;
typedef OpenSubdiv::HbrHalfedge<OpenSubdiv::OsdVertex> OsdHbrHalfedge;
enum KernelType { kCPU = 0,
kOPENMP = 1,
kCUDA = 2,
kCL = 3,
kGLSL = 4,
kGLSLCompute = 5 };
enum HudCheckBox { HUD_CB_ADAPTIVE,
HUD_CB_DISPLAY_OCCLUSION,
HUD_CB_DISPLAY_NORMALMAP,
HUD_CB_DISPLAY_SPECULAR,
HUD_CB_ANIMATE_VERTICES,
HUD_CB_VIEW_LOD,
HUD_CB_FRACTIONAL_SPACING,
HUD_CB_PATCH_CULL,
HUD_CB_IBL,
HUD_CB_BLOOM,
HUD_CB_FREEZE };
enum HudRadioGroup { HUD_RB_KERNEL,
HUD_RB_LEVEL,
HUD_RB_SCHEME,
HUD_RB_WIRE,
HUD_RB_COLOR,
HUD_RB_DISPLACEMENT,
HUD_RB_NORMAL };
enum DisplayType { DISPLAY_WIRE,
DISPLAY_SHADED,
DISPLAY_WIRE_ON_SHADED };
enum ColorType { COLOR_NONE,
COLOR_PTEX_NEAREST,
COLOR_PTEX_HW_BILINEAR,
COLOR_PTEX_BILINEAR,
COLOR_PTEX_BIQUADRATIC,
COLOR_PATCHTYPE,
COLOR_PATCHCOORD,
COLOR_NORMAL };
enum DisplacementType { DISPLACEMENT_NONE,
DISPLACEMENT_HW_BILINEAR,
DISPLACEMENT_BILINEAR,
DISPLACEMENT_BIQUADRATIC };
enum NormalType { NORMAL_SURFACE,
NORMAL_FACET,
NORMAL_HW_SCREENSPACE,
NORMAL_SCREENSPACE,
NORMAL_BIQUADRATIC,
NORMAL_BIQUADRATIC_WG };
//-----------------------------------------------------------------------------
int g_frame = 0,
g_repeatCount = 0;
// GUI variables
int g_fullscreen = 0,
g_wire = DISPLAY_SHADED,
g_drawNormals = 0,
g_mbutton[3] = {0, 0, 0},
g_level = 2,
g_tessLevel = 2,
g_kernel = kCPU,
g_scheme = 0,
g_running = 1,
g_maxMipmapLevels = 10,
g_color = COLOR_PTEX_BILINEAR,
g_displacement = DISPLACEMENT_NONE,
g_normal = NORMAL_SURFACE;
float g_moveScale = 0.0f,
g_displacementScale = 1.0f,
g_mipmapBias = 0.0;
bool g_adaptive = false,
g_yup = false,
g_patchCull = true,
g_screenSpaceTess = true,
g_fractionalSpacing = true,
g_ibl = false,
g_bloom = false,
g_freeze = false;
GLuint g_transformUB = 0,
g_transformBinding = 0,
g_tessellationUB = 0,
g_tessellationBinding = 0,
g_lightingUB = 0,
g_lightingBinding = 0;
struct Transform {
float ModelViewMatrix[16];
float ProjectionMatrix[16];
float ModelViewProjectionMatrix[16];
float ModelViewInverseMatrix[16];
} transformData;
// ptex switch
bool g_occlusion = false,
g_specular = false;
// camera
float g_rotate[2] = {0, 0},
g_dolly = 5,
g_pan[2] = {0, 0},
g_center[3] = {0, 0, 0},
g_size = 0;
int g_prev_x = 0,
g_prev_y = 0;
// viewport
int g_width = 1024,
g_height = 1024;
GLhud g_hud;
// performance
float g_cpuTime = 0;
float g_gpuTime = 0;
#define NUM_FPS_TIME_SAMPLES 6
float g_fpsTimeSamples[NUM_FPS_TIME_SAMPLES] = {0, 0, 0, 0, 0, 0};
int g_currentFpsTimeSample = 0;
Stopwatch g_fpsTimer;
float g_animTime = 0;
// geometry
std::vector<float> g_positions,
g_normals;
std::vector<std::vector<float> > g_animPositions;
GLuint g_primQuery = 0;
GLuint g_vao = 0;
GLuint g_skyVAO = 0;
GLuint g_diffuseEnvironmentMap = 0;
GLuint g_specularEnvironmentMap = 0;
struct Sky {
int numIndices;
GLuint vertexBuffer;
GLuint elementBuffer;
GLuint mvpMatrix;
GLuint program;
Sky() : numIndices(0), vertexBuffer(0), elementBuffer(0), mvpMatrix(0),
program(0) {}
} g_sky;
struct ImageShader {
GLuint blurProgram;
GLuint hipassProgram;
GLuint compositeProgram;
GLuint frameBuffer;
GLuint frameBufferTexture;
GLuint frameBufferDepthTexture;
GLuint smallFrameBuffer[2];
GLuint smallFrameBufferTexture[2];
GLuint smallWidth, smallHeight;
GLuint vao;
GLuint vbo;
ImageShader() : blurProgram(0), hipassProgram(0), compositeProgram(0),
frameBuffer(0), frameBufferTexture(0), frameBufferDepthTexture(0) {
smallFrameBuffer[0] = smallFrameBuffer[1] = 0;
smallFrameBufferTexture[0] = smallFrameBufferTexture[1] = 0;
}
} g_imageShader;
OpenSubdiv::OsdGLPtexMipmapTexture * g_osdPTexImage = 0;
OpenSubdiv::OsdGLPtexMipmapTexture * g_osdPTexDisplacement = 0;
OpenSubdiv::OsdGLPtexMipmapTexture * g_osdPTexOcclusion = 0;
OpenSubdiv::OsdGLPtexMipmapTexture * g_osdPTexSpecular = 0;
const char * g_ptexColorFilename;
static void
checkGLErrors(std::string const & where = "")
{
GLuint err;
while ((err = glGetError()) != GL_NO_ERROR) {
std::cerr << "GL error: "
<< (where.empty() ? "" : where + " ")
<< err << "\n";
}
}
//------------------------------------------------------------------------------
static void
calcNormals(OsdHbrMesh * mesh, std::vector<float> const & pos, std::vector<float> & result )
{
// calc normal vectors
int nverts = (int)pos.size()/3;
int nfaces = mesh->GetNumCoarseFaces();
for (int i = 0; i < nfaces; ++i) {
OsdHbrFace * f = mesh->GetFace(i);
float const * p0 = &pos[f->GetVertex(0)->GetID()*3],
* p1 = &pos[f->GetVertex(1)->GetID()*3],
* p2 = &pos[f->GetVertex(2)->GetID()*3];
float n[3];
cross(n, p0, p1, p2);
for (int j = 0; j < f->GetNumVertices(); j++) {
int idx = f->GetVertex(j)->GetID() * 3;
result[idx ] += n[0];
result[idx+1] += n[1];
result[idx+2] += n[2];
}
}
for (int i = 0; i < nverts; ++i)
normalize(&result[i*3]);
}
//------------------------------------------------------------------------------
void
updateGeom()
{
int nverts = (int)g_positions.size() / 3;
if (g_moveScale and g_adaptive and not g_animPositions.empty()) {
// baked animation only works with adaptive for now
// (since non-adaptive requires normals)
int nkey = (int)g_animPositions.size();
const float fps = 24.0f;
float p = fmodf(g_animTime * fps, (float)nkey);
int key = (int)p;
float b = p - key;
std::vector<float> vertex;
vertex.reserve(nverts*3);
for (int i = 0; i < nverts*3; ++i) {
float p0 = g_animPositions[key][i];
float p1 = g_animPositions[(key+1)%nkey][i];
vertex.push_back(p0*(1-b) + p1*b);
}
g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts);
} else {
std::vector<float> vertex;
vertex.reserve(nverts*6);
const float *p = &g_positions[0];
const float *n = &g_normals[0];
for (int i = 0; i < nverts; ++i) {
float move = g_size*0.005f*cosf(p[0]*100/g_size+g_frame*0.01f);
vertex.push_back(p[0]);
vertex.push_back(p[1]+g_moveScale*move);
vertex.push_back(p[2]);
p += 3;
if (g_adaptive == false) {
vertex.push_back(n[0]);
vertex.push_back(n[1]);
vertex.push_back(n[2]);
n += 3;
}
}
g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts);
}
Stopwatch s;
s.Start();
g_mesh->Refine();
s.Stop();
g_cpuTime = float(s.GetElapsed() * 1000.0f);
s.Start();
g_mesh->Synchronize();
s.Stop();
g_gpuTime = float(s.GetElapsed() * 1000.0f);
}
//-------------------------------------------------------------------------------
void
fitFrame()
{
g_pan[0] = g_pan[1] = 0;
g_dolly = g_size;
}
//-------------------------------------------------------------------------------
template <class T>
OpenSubdiv::HbrMesh<T> * createPTexGeo(PtexTexture * r)
{
PtexMetaData* meta = r->getMetaData();
if (meta->numKeys() < 3) return NULL;
const float* vp;
const int *vi, *vc;
int nvp, nvi, nvc;
meta->getValue("PtexFaceVertCounts", vc, nvc);
if (nvc == 0)
return NULL;
meta->getValue("PtexVertPositions", vp, nvp);
if (nvp == 0)
return NULL;
meta->getValue("PtexFaceVertIndices", vi, nvi);
if (nvi == 0)
return NULL;
static OpenSubdiv::HbrCatmarkSubdivision<T> _catmark;
static OpenSubdiv::HbrBilinearSubdivision<T> _bilinear;
OpenSubdiv::HbrMesh<T> * mesh;
if (g_scheme == 0)
mesh = new OpenSubdiv::HbrMesh<T>(&_catmark);
else
mesh = new OpenSubdiv::HbrMesh<T>(&_bilinear);
g_positions.clear();
g_positions.reserve(nvp);
// compute model bounding
float min[3] = {vp[0], vp[1], vp[2]};
float max[3] = {vp[0], vp[1], vp[2]};
for (int i = 0; i < nvp/3; ++i) {
for (int j = 0; j < 3; ++j) {
float v = vp[i*3+j];
g_positions.push_back(v);
min[j] = std::min(min[j], v);
max[j] = std::max(max[j], v);
}
mesh->NewVertex(i, T());
}
for (int j = 0; j < 3; ++j) {
g_center[j] = (min[j] + max[j]) * 0.5f;
g_size += (max[j]-min[j])*(max[j]-min[j]);
}
g_size = sqrtf(g_size);
const int *fv = vi;
for (int i = 0, ptxidx = 0; i < nvc; ++i) {
int nv = vc[i];
OpenSubdiv::HbrFace<T> * face = mesh->NewFace(nv, (int *)fv, 0);
face->SetPtexIndex(ptxidx);
if (nv != 4)
ptxidx += nv;
else
ptxidx++;
fv += nv;
}
mesh->SetInterpolateBoundaryMethod(OpenSubdiv::HbrMesh<T>::k_InterpolateBoundaryEdgeOnly);
// set creases here
// applyTags<T>( mesh, sh );
mesh->Finish();
return mesh;
}
//------------------------------------------------------------------------------
void
#if GLFW_VERSION_MAJOR >= 3
reshape(GLFWwindow *, int width, int height)
#else
reshape(int width, int height)
#endif
{
g_width = width;
g_height = height;
g_hud.Rebuild(width, height);
// resize framebuffers
glBindTexture(GL_TEXTURE_2D, g_imageShader.frameBufferTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0,
GL_RGBA, GL_UNSIGNED_BYTE, 0);
glBindTexture(GL_TEXTURE_2D, g_imageShader.frameBufferDepthTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, width, height, 0,
GL_DEPTH_COMPONENT, GL_FLOAT, 0);
glBindFramebuffer(GL_FRAMEBUFFER, g_imageShader.frameBuffer);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, g_imageShader.frameBufferTexture, 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, g_imageShader.frameBufferDepthTexture, 0);
const int d = 4;
g_imageShader.smallWidth = width/d;
g_imageShader.smallHeight = height/d;
for (int i = 0; i < 2; ++i) {
glBindTexture(GL_TEXTURE_2D, g_imageShader.smallFrameBufferTexture[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width/d, height/d, 0,
GL_RGBA, GL_UNSIGNED_BYTE, 0);
glBindFramebuffer(GL_FRAMEBUFFER, g_imageShader.smallFrameBuffer[i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, g_imageShader.smallFrameBufferTexture[i], 0);
}
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE)
assert(false);
glBindTexture(GL_TEXTURE_2D, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
checkGLErrors("Reshape");
}
void reshape() {
#if GLFW_VERSION_MAJOR >= 3
reshape(g_window, g_width, g_height);
#else
reshape(g_width, g_height);
#endif
}
#if GLFW_VERSION_MAJOR >= 3
void windowClose(GLFWwindow*) {
g_running = false;
}
#else
int windowClose() {
g_running = false;
return GL_TRUE;
}
#endif
//------------------------------------------------------------------------------
const char *getKernelName(int kernel)
{
if (kernel == kCPU)
return "CPU";
else if (kernel == kOPENMP)
return "OpenMP";
else if (kernel == kCUDA)
return "Cuda";
else if (kernel == kGLSL)
return "GLSL";
else if (kernel == kCL)
return "OpenCL";
return "Unknown";
}
//------------------------------------------------------------------------------
static GLuint compileShader(GLenum shaderType,
OpenSubdiv::OsdDrawShaderSource const & common,
OpenSubdiv::OsdDrawShaderSource const & source)
{
const char *sources[4];
std::stringstream definitions;
for (int i = 0; i < (int)common.defines.size(); ++i) {
definitions << "#define "
<< common.defines[i].first << " "
<< common.defines[i].second << "\n";
}
for (int i = 0; i < (int)source.defines.size(); ++i) {
definitions << "#define "
<< source.defines[i].first << " "
<< source.defines[i].second << "\n";
}
std::string defString = definitions.str();
sources[0] = source.version.c_str();
sources[1] = defString.c_str();
sources[2] = common.source.c_str();
sources[3] = source.source.c_str();
GLuint shader = glCreateShader(shaderType);
glShaderSource(shader, 4, sources, NULL);
glCompileShader(shader);
GLint status;
glGetShaderiv(shader, GL_COMPILE_STATUS, &status);
if (status == GL_FALSE) {
GLchar emsg[40960];
glGetShaderInfoLog(shader, sizeof(emsg), 0, emsg);
fprintf(stderr, "Error compiling GLSL shader: %s\n", emsg);
fprintf(stderr, "Defines: %s\n", defString.c_str());
return 0;
}
return shader;
}
int bindPTexture(GLint program, OpenSubdiv::OsdGLPtexMipmapTexture *osdPTex,
GLuint data, GLuint packing, int samplerUnit)
{
#if defined(GL_ARB_separate_shader_objects) || defined(GL_VERSION_4_1)
glProgramUniform1i(program, data, samplerUnit + 0);
glProgramUniform1i(program, packing, samplerUnit + 1);
#else
glUniform1i(data, samplerUnit + 0);
glUniform1i(packing, samplerUnit + 1);
#endif
glActiveTexture(GL_TEXTURE0 + samplerUnit + 0);
glBindTexture(GL_TEXTURE_2D_ARRAY, osdPTex->GetTexelsTexture());
glActiveTexture(GL_TEXTURE0 + samplerUnit + 1);
glBindTexture(GL_TEXTURE_BUFFER, osdPTex->GetLayoutTextureBuffer());
glActiveTexture(GL_TEXTURE0);
return samplerUnit + 2;
}
//------------------------------------------------------------------------------
union Effect {
struct {
unsigned int wire:2;
unsigned int color:3;
unsigned int displacement:2;
unsigned int normal:3;
int occlusion:1;
int specular:1;
int patchCull:1;
int screenSpaceTess:1;
int fractionalSpacing:1;
int ibl:1;
};
int value;
bool operator < (const Effect &e) const {
return value < e.value;
}
};
typedef std::pair<OpenSubdiv::OsdDrawContext::PatchDescriptor, Effect> EffectDesc;
class EffectDrawRegistry : public OpenSubdiv::OsdGLDrawRegistry<EffectDesc>
{
protected:
virtual ConfigType *
_CreateDrawConfig(DescType const & desc, SourceConfigType const * sconfig);
virtual SourceConfigType *
_CreateDrawSourceConfig(DescType const & desc);
};
EffectDrawRegistry::SourceConfigType *
EffectDrawRegistry::_CreateDrawSourceConfig(DescType const & desc)
{
Effect effect = desc.second;
SourceConfigType * sconfig =
BaseRegistry::_CreateDrawSourceConfig(desc.first);
if (effect.patchCull)
sconfig->commonShader.AddDefine("OSD_ENABLE_PATCH_CULL");
if (effect.screenSpaceTess)
sconfig->commonShader.AddDefine("OSD_ENABLE_SCREENSPACE_TESSELLATION");
if (effect.fractionalSpacing)
sconfig->commonShader.AddDefine("OSD_FRACTIONAL_ODD_SPACING");
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
const char *glslVersion = "#version 400\n";
#else
const char *glslVersion = "#version 330\n";
#endif
bool quad = true;
if (desc.first.GetType() == OpenSubdiv::FarPatchTables::QUADS) {
sconfig->vertexShader.source = g_shaderSource;
sconfig->vertexShader.version = glslVersion;
sconfig->vertexShader.AddDefine("VERTEX_SHADER");
if (effect.displacement) {
sconfig->geometryShader.AddDefine("FLAT_NORMALS");
}
} else {
quad = false;
sconfig->tessEvalShader.source = g_shaderSource + sconfig->tessEvalShader.source;
sconfig->tessEvalShader.version = glslVersion;
if (effect.displacement and (not effect.normal))
sconfig->geometryShader.AddDefine("FLAT_NORMALS");
}
assert(sconfig);
sconfig->geometryShader.source = g_shaderSource;
sconfig->geometryShader.version = glslVersion;
sconfig->geometryShader.AddDefine("GEOMETRY_SHADER");
sconfig->fragmentShader.source = g_shaderSource;
sconfig->fragmentShader.version = glslVersion;
sconfig->fragmentShader.AddDefine("FRAGMENT_SHADER");
switch (effect.color) {
case COLOR_NONE:
break;
case COLOR_PTEX_NEAREST:
sconfig->fragmentShader.AddDefine("COLOR_PTEX_NEAREST");
break;
case COLOR_PTEX_HW_BILINEAR:
sconfig->fragmentShader.AddDefine("COLOR_PTEX_HW_BILINEAR");
break;
case COLOR_PTEX_BILINEAR:
sconfig->fragmentShader.AddDefine("COLOR_PTEX_BILINEAR");
break;
case COLOR_PTEX_BIQUADRATIC:
sconfig->fragmentShader.AddDefine("COLOR_PTEX_BIQUADRATIC");
break;
case COLOR_PATCHTYPE:
sconfig->fragmentShader.AddDefine("COLOR_PATCHTYPE");
break;
case COLOR_PATCHCOORD:
sconfig->fragmentShader.AddDefine("COLOR_PATCHCOORD");
break;
case COLOR_NORMAL:
sconfig->fragmentShader.AddDefine("COLOR_NORMAL");
break;
}
switch (effect.displacement) {
case DISPLACEMENT_NONE:
break;
case DISPLACEMENT_HW_BILINEAR:
sconfig->commonShader.AddDefine("DISPLACEMENT_HW_BILINEAR");
break;
case DISPLACEMENT_BILINEAR:
sconfig->commonShader.AddDefine("DISPLACEMENT_BILINEAR");
break;
case DISPLACEMENT_BIQUADRATIC:
sconfig->commonShader.AddDefine("DISPLACEMENT_BIQUADRATIC");
break;
}
switch (effect.normal) {
case NORMAL_FACET:
sconfig->commonShader.AddDefine("NORMAL_FACET");
break;
case NORMAL_HW_SCREENSPACE:
sconfig->commonShader.AddDefine("NORMAL_HW_SCREENSPACE");
break;
case NORMAL_SCREENSPACE:
sconfig->commonShader.AddDefine("NORMAL_SCREENSPACE");
break;
case NORMAL_BIQUADRATIC:
sconfig->commonShader.AddDefine("NORMAL_BIQUADRATIC");
break;
case NORMAL_BIQUADRATIC_WG:
sconfig->commonShader.AddDefine("OSD_COMPUTE_NORMAL_DERIVATIVES");
sconfig->commonShader.AddDefine("NORMAL_BIQUADRATIC_WG");
break;
}
if (effect.occlusion)
sconfig->fragmentShader.AddDefine("USE_PTEX_OCCLUSION");
if (effect.specular)
sconfig->fragmentShader.AddDefine("USE_PTEX_SPECULAR");
if (effect.ibl)
sconfig->fragmentShader.AddDefine("USE_IBL");
if (quad) {
sconfig->geometryShader.AddDefine("PRIM_QUAD");
sconfig->fragmentShader.AddDefine("PRIM_QUAD");
} else {
sconfig->geometryShader.AddDefine("PRIM_TRI");
sconfig->fragmentShader.AddDefine("PRIM_TRI");
}
if (effect.wire == 0) {
sconfig->geometryShader.AddDefine("GEOMETRY_OUT_WIRE");
sconfig->fragmentShader.AddDefine("GEOMETRY_OUT_WIRE");
} else if (effect.wire == 1) {
sconfig->geometryShader.AddDefine("GEOMETRY_OUT_FILL");
sconfig->fragmentShader.AddDefine("GEOMETRY_OUT_FILL");
} else if (effect.wire == 2) {
sconfig->geometryShader.AddDefine("GEOMETRY_OUT_LINE");
sconfig->fragmentShader.AddDefine("GEOMETRY_OUT_LINE");
}
return sconfig;
}
EffectDrawRegistry::ConfigType *
EffectDrawRegistry::_CreateDrawConfig(
DescType const & desc,
SourceConfigType const * sconfig)
{
ConfigType * config = BaseRegistry::_CreateDrawConfig(desc.first, sconfig);
assert(config);
// XXXdyu can use layout(binding=) with GLSL 4.20 and beyond
g_transformBinding = 0;
GLint transformIndex = glGetUniformBlockIndex(config->program, "Transform");
if (transformIndex != -1)
glUniformBlockBinding(config->program, transformIndex, g_transformBinding);
g_tessellationBinding = 1;
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
GLint tessellationIndex = glGetUniformBlockIndex(config->program, "Tessellation");
if (tessellationIndex != -1)
glUniformBlockBinding(config->program, tessellationIndex, g_tessellationBinding);
#endif
g_lightingBinding = 2;
GLint lightingIndex = glGetUniformBlockIndex(config->program, "Lighting");
if (lightingIndex != -1)
glUniformBlockBinding(config->program, lightingIndex, g_lightingBinding);
GLint loc;
#if defined(GL_ARB_separate_shader_objects) || defined(GL_VERSION_4_1)
if ((loc = glGetUniformLocation(config->program, "OsdVertexBuffer")) != -1) {
glProgramUniform1i(config->program, loc, 0); // GL_TEXTURE0
}
if ((loc = glGetUniformLocation(config->program, "OsdValenceBuffer")) != -1) {
glProgramUniform1i(config->program, loc, 1); // GL_TEXTURE1
}
if ((loc = glGetUniformLocation(config->program, "OsdQuadOffsetBuffer")) != -1) {
glProgramUniform1i(config->program, loc, 2); // GL_TEXTURE2
}
if ((loc = glGetUniformLocation(config->program, "OsdPatchParamBuffer")) != -1) {
glProgramUniform1i(config->program, loc, 3); // GL_TEXTURE3
}
#else
glUseProgram(config->program);
if ((loc = glGetUniformLocation(config->program, "OsdVertexBuffer")) != -1) {
glUniform1i(loc, 0); // GL_TEXTURE0
}
if ((loc = glGetUniformLocation(config->program, "OsdValenceBuffer")) != -1) {
glUniform1i(loc, 1); // GL_TEXTURE1
}
if ((loc = glGetUniformLocation(config->program, "OsdQuadOffsetBuffer")) != -1) {
glUniform1i(loc, 2); // GL_TEXTURE2
}
if ((loc = glGetUniformLocation(config->program, "OsdPatchParamBuffer")) != -1) {
glUniform1i(loc, 3); // GL_TEXTURE3
}
#endif
return config;
}
EffectDrawRegistry effectRegistry;
EffectDrawRegistry::ConfigType *
getInstance(Effect effect, OpenSubdiv::OsdDrawContext::PatchDescriptor const & patchDesc)
{
EffectDesc desc(patchDesc, effect);
EffectDrawRegistry::ConfigType * config =
effectRegistry.GetDrawConfig(desc);
assert(config);
return config;
}
//------------------------------------------------------------------------------
OpenSubdiv::OsdGLPtexMipmapTexture *
createPtex(const char *filename)
{
Ptex::String ptexError;
printf("Loading ptex : %s\n", filename);
#define USE_PTEX_CACHE
#define PTEX_CACHE_SIZE (512*1024*1024)
#ifdef USE_PTEX_CACHE
PtexCache *cache = PtexCache::create(1, PTEX_CACHE_SIZE);
PtexTexture *ptex = cache->get(filename, ptexError);
#else
PtexTexture *ptex = PtexTexture::open(filename, ptexError, true);
#endif
if (ptex == NULL) {
printf("Error in reading %s\n", filename);
exit(1);
}
OpenSubdiv::OsdGLPtexMipmapTexture *osdPtex =
OpenSubdiv::OsdGLPtexMipmapTexture::Create(ptex, g_maxMipmapLevels);
#ifdef USE_PTEX_CACHE
cache->release();
#endif
ptex->release();
return osdPtex;
}
void
createOsdMesh(int level, int kernel)
{
checkGLErrors("createOsdMesh");
Ptex::String ptexError;
PtexTexture *ptexColor = PtexTexture::open(g_ptexColorFilename, ptexError, true);
if (ptexColor == NULL) {
printf("Error in reading %s\n", g_ptexColorFilename);
exit(1);
}
// generate Hbr representation from ptex
OsdHbrMesh * hmesh = createPTexGeo<OpenSubdiv::OsdVertex>(ptexColor);
if (hmesh == NULL) return;
g_normals.resize(g_positions.size(), 0.0f);
calcNormals(hmesh, g_positions, g_normals);
delete g_mesh;
g_mesh = NULL;
// Adaptive refinement currently supported only for catmull-clark scheme
bool doAdaptive = (g_adaptive != 0 and g_scheme == 0);
OpenSubdiv::OsdMeshBitset bits;
bits.set(OpenSubdiv::MeshAdaptive, doAdaptive);
bits.set(OpenSubdiv::MeshPtexData, true);
int numVertexElements = g_adaptive ? 3 : 6;
int numVaryingElements = 0;
if (kernel == kCPU) {
if (not g_cpuComputeController) {
g_cpuComputeController = new OpenSubdiv::OsdCpuComputeController();
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdCpuGLVertexBuffer,
OpenSubdiv::OsdCpuComputeController,
OpenSubdiv::OsdGLDrawContext>(
g_cpuComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits);
#ifdef OPENSUBDIV_HAS_OPENMP
} else if (kernel == kOPENMP) {
if (not g_ompComputeController) {
g_ompComputeController = new OpenSubdiv::OsdOmpComputeController();
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdCpuGLVertexBuffer,
OpenSubdiv::OsdOmpComputeController,
OpenSubdiv::OsdGLDrawContext>(
g_ompComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
} else if (kernel == kCL) {
if (not g_clComputeController) {
g_clComputeController = new OpenSubdiv::OsdCLComputeController(g_clContext, g_clQueue);
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdCLGLVertexBuffer,
OpenSubdiv::OsdCLComputeController,
OpenSubdiv::OsdGLDrawContext>(
g_clComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits, g_clContext, g_clQueue);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
} else if (kernel == kCUDA) {
if (not g_cudaComputeController) {
g_cudaComputeController = new OpenSubdiv::OsdCudaComputeController();
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdCudaGLVertexBuffer,
OpenSubdiv::OsdCudaComputeController,
OpenSubdiv::OsdGLDrawContext>(
g_cudaComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
} else if (kernel == kGLSL) {
if (not g_glslTransformFeedbackComputeController) {
g_glslTransformFeedbackComputeController =
new OpenSubdiv::OsdGLSLTransformFeedbackComputeController();
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdGLVertexBuffer,
OpenSubdiv::OsdGLSLTransformFeedbackComputeController,
OpenSubdiv::OsdGLDrawContext>(
g_glslTransformFeedbackComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
} else if (kernel == kGLSLCompute) {
if (not g_glslComputeController) {
g_glslComputeController = new OpenSubdiv::OsdGLSLComputeController();
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdGLVertexBuffer,
OpenSubdiv::OsdGLSLComputeController,
OpenSubdiv::OsdGLDrawContext>(
g_glslComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits);
#endif
} else {
printf("Unsupported kernel %s\n", getKernelName(kernel));
}
delete hmesh;
if (glGetError() != GL_NO_ERROR) {
printf("GLERROR\n");
}
updateGeom();
// ------ VAO
glBindVertexArray(g_vao);
glBindBuffer(GL_ARRAY_BUFFER, g_mesh->BindVertexBuffer());
if (g_adaptive) {
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
} else {
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 6, 0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 6, (float*)12);
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_mesh->GetDrawContext()->GetPatchIndexBuffer());
glBindVertexArray(0);
}
void
createSky()
{
const int U_DIV = 20;
const int V_DIV = 20;
std::vector<float> vbo;
std::vector<int> indices;
for (int u = 0; u <= U_DIV; ++u) {
for (int v = 0; v < V_DIV; ++v) {
float s = float(2*M_PI*float(u)/U_DIV);
float t = float(M_PI*float(v)/(V_DIV-1));
vbo.push_back(-sin(t)*sin(s));
vbo.push_back(cos(t));
vbo.push_back(-sin(t)*cos(s));
vbo.push_back(u/float(U_DIV));
vbo.push_back(v/float(V_DIV));
if (v > 0 && u > 0) {
indices.push_back((u-1)*V_DIV+v-1);
indices.push_back(u*V_DIV+v-1);
indices.push_back((u-1)*V_DIV+v);
indices.push_back((u-1)*V_DIV+v);
indices.push_back(u*V_DIV+v-1);
indices.push_back(u*V_DIV+v);
}
}
}
glGenBuffers(1, &g_sky.vertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, g_sky.vertexBuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*vbo.size(), &vbo[0], GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glGenBuffers(1, &g_sky.elementBuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_sky.elementBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(int)*indices.size(), &indices[0], GL_STATIC_DRAW);
g_sky.numIndices = (int)indices.size();
g_sky.program = glCreateProgram();
OpenSubdiv::OsdDrawShaderSource common, vertexShader, fragmentShader;
vertexShader.source = g_skyShaderSource;
vertexShader.version = "#version 410\n";
vertexShader.AddDefine("SKY_VERTEX_SHADER");
fragmentShader.source = g_skyShaderSource;
fragmentShader.version = "#version 410\n";
fragmentShader.AddDefine("SKY_FRAGMENT_SHADER");
GLuint vs = compileShader(GL_VERTEX_SHADER,
common, vertexShader);
GLuint fs = compileShader(GL_FRAGMENT_SHADER,
common, fragmentShader);
glAttachShader(g_sky.program, vs);
glAttachShader(g_sky.program, fs);
glLinkProgram(g_sky.program);
glDeleteShader(vs);
glDeleteShader(fs);
GLint environmentMap = glGetUniformLocation(g_sky.program, "environmentMap");
#if defined(GL_ARB_separate_shader_objects) || defined(GL_VERSION_4_1)
if (g_specularEnvironmentMap)
glProgramUniform1i(g_sky.program, environmentMap, 6);
else
glProgramUniform1i(g_sky.program, environmentMap, 5);
#else
glUseProgram(g_sky.program);
if (g_specularEnvironmentMap)
glUniform1i(environmentMap, 6);
else
glUniform1i(environmentMap, 5);
#endif
g_sky.mvpMatrix = glGetUniformLocation(g_sky.program, "ModelViewProjectionMatrix");
}
GLuint
compileImageShader(const char *define)
{
GLuint program = glCreateProgram();
OpenSubdiv::OsdDrawShaderSource common, vertexShader, fragmentShader;
vertexShader.source = g_imageShaderSource;
vertexShader.version = "#version 410\n";
vertexShader.AddDefine("IMAGE_VERTEX_SHADER");
fragmentShader.source = g_imageShaderSource;
fragmentShader.version = "#version 410\n";
fragmentShader.AddDefine("IMAGE_FRAGMENT_SHADER");
fragmentShader.AddDefine(define);
GLuint vs = compileShader(GL_VERTEX_SHADER,
common, vertexShader);
GLuint fs = compileShader(GL_FRAGMENT_SHADER,
common, fragmentShader);
glAttachShader(program, vs);
glAttachShader(program, fs);
glLinkProgram(program);
glDeleteShader(vs);
glDeleteShader(fs);
#if defined(GL_ARB_separate_shader_objects) || defined(GL_VERSION_4_1)
GLint colorMap = glGetUniformLocation(program, "colorMap");
if (colorMap != -1)
glProgramUniform1i(program, colorMap, 0); // GL_TEXTURE0
GLint depthMap = glGetUniformLocation(program, "depthMap");
if (depthMap != -1)
glProgramUniform1i(program, depthMap, 1); // GL_TEXTURE1
#else
glUseProgram(program);
GLint colorMap = glGetUniformLocation(program, "colorMap");
if (colorMap != -1)
glUniform1i(colorMap, 0); // GL_TEXTURE0
GLint depthMap = glGetUniformLocation(program, "depthMap");
if (depthMap != -1)
glUniform1i(depthMap, 1); // GL_TEXTURE1
#endif
return program;
}
void
createImageShader()
{
g_imageShader.blurProgram = compileImageShader("BLUR");
g_imageShader.hipassProgram = compileImageShader("HIPASS");
g_imageShader.compositeProgram = compileImageShader("COMPOSITE");
glGenVertexArrays(1, &g_imageShader.vao);
glBindVertexArray(g_imageShader.vao);
glGenBuffers(1, &g_imageShader.vbo);
float pos[] = { -1, -1, 1, -1, -1, 1, 1, 1 };
glGenBuffers(1, &g_imageShader.vbo);
glBindBuffer(GL_ARRAY_BUFFER, g_imageShader.vbo);
glBufferData(GL_ARRAY_BUFFER,
sizeof(pos), pos, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, g_imageShader.vbo);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, 0);
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void
applyImageShader()
{
int w = g_imageShader.smallWidth, h = g_imageShader.smallHeight;
const float hoffsets[10] = {
-2.0f / w, 0,
-1.0f / w, 0,
0, 0,
+1.0f / w, 0,
+2.0f / w, 0,
};
const float voffsets[10] = {
0, -2.0f / h,
0, -1.0f / h,
0, 0,
0, +1.0f / h,
0, +2.0f / h,
};
const float weights[5] = {
1.0f / 16.0f,
4.0f / 16.0f,
6.0f / 16.0f,
4.0f / 16.0f,
1.0f / 16.0f,
};
checkGLErrors("image shader begin");
glBindVertexArray(g_imageShader.vao);
GLint uniformAlpha = glGetUniformLocation(g_imageShader.compositeProgram, "alpha");
if (g_bloom) {
// XXX: fix me
GLint uniformOffsets = glGetUniformLocation(g_imageShader.blurProgram, "Offsets");
GLint uniformWeights = glGetUniformLocation(g_imageShader.blurProgram, "Weights");
// down sample
glUseProgram(g_imageShader.hipassProgram);
glViewport(0, 0, g_imageShader.smallWidth, g_imageShader.smallHeight);
glBindFramebuffer(GL_FRAMEBUFFER, g_imageShader.smallFrameBuffer[0]);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, g_imageShader.frameBufferTexture);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
// horizontal blur pass
glUseProgram(g_imageShader.blurProgram);
glBindFramebuffer(GL_FRAMEBUFFER, g_imageShader.smallFrameBuffer[1]);
glBindTexture(GL_TEXTURE_2D, g_imageShader.smallFrameBufferTexture[0]);
glUniform2fv(uniformOffsets, 5, hoffsets);
glUniform1fv(uniformWeights, 5, weights);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
// vertical blur pass
glBindFramebuffer(GL_FRAMEBUFFER, g_imageShader.smallFrameBuffer[0]);
glBindTexture(GL_TEXTURE_2D, g_imageShader.smallFrameBufferTexture[1]);
glUniform2fv(uniformOffsets, 5, voffsets);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, g_width, g_height);
// blit full-res
glUseProgram(g_imageShader.compositeProgram);
glUniform1f(uniformAlpha, 1);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, g_imageShader.frameBufferTexture);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
if (g_bloom) {
glUseProgram(g_imageShader.compositeProgram);
glUniform1f(uniformAlpha, 0.5);
glBlendFunc(GL_ONE, GL_ONE);
glEnable(GL_BLEND);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, g_imageShader.smallFrameBufferTexture[0]);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glDisable(GL_BLEND);
}
glBindVertexArray(0);
glUseProgram(0);
checkGLErrors("image shader");
}
//------------------------------------------------------------------------------
static GLuint
bindProgram(Effect effect, OpenSubdiv::OsdDrawContext::PatchArray const & patch)
{
OpenSubdiv::OsdDrawContext::PatchDescriptor const & desc = patch.GetDescriptor();
EffectDrawRegistry::ConfigType *
config = getInstance(effect, desc);
GLuint program = config->program;
glUseProgram(program);
if (g_transformUB == 0) {
glGenBuffers(1, &g_transformUB);
glBindBuffer(GL_UNIFORM_BUFFER, g_transformUB);
glBufferData(GL_UNIFORM_BUFFER,
sizeof(transformData), NULL, GL_STATIC_DRAW);
};
glBindBuffer(GL_UNIFORM_BUFFER, g_transformUB);
glBufferSubData(GL_UNIFORM_BUFFER,
0, sizeof(transformData), &transformData);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, g_transformBinding, g_transformUB);
// Update and bind tessellation state
struct Tessellation {
float TessLevel;
} tessellationData;
tessellationData.TessLevel = static_cast<float>(1 << g_tessLevel);
if (g_tessellationUB == 0) {
glGenBuffers(1, &g_tessellationUB);
glBindBuffer(GL_UNIFORM_BUFFER, g_tessellationUB);
glBufferData(GL_UNIFORM_BUFFER,
sizeof(tessellationData), NULL, GL_STATIC_DRAW);
};
glBindBuffer(GL_UNIFORM_BUFFER, g_tessellationUB);
glBufferSubData(GL_UNIFORM_BUFFER,
0, sizeof(tessellationData), &tessellationData);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, g_tessellationBinding, g_tessellationUB);
// Update and bind lighting state
struct Lighting {
struct Light {
float position[4];
float ambient[4];
float diffuse[4];
float specular[4];
} lightSource[2];
} lightingData = {
{{ { 0.6f, 1.0f, 0.6f, 0.0f },
{ 0.1f, 0.1f, 0.1f, 1.0f },
{ 1.7f, 1.3f, 1.1f, 1.0f },
{ 1.0f, 1.0f, 1.0f, 1.0f } },
{ { -0.8f, 0.6f, -0.7f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f },
{ 0.8f, 0.8f, 1.5f, 1.0f },
{ 0.4f, 0.4f, 0.4f, 1.0f } }}
};
if (g_lightingUB == 0) {
glGenBuffers(1, &g_lightingUB);
glBindBuffer(GL_UNIFORM_BUFFER, g_lightingUB);
glBufferData(GL_UNIFORM_BUFFER,
sizeof(lightingData), NULL, GL_STATIC_DRAW);
};
glBindBuffer(GL_UNIFORM_BUFFER, g_lightingUB);
glBufferSubData(GL_UNIFORM_BUFFER,
0, sizeof(lightingData), &lightingData);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, g_lightingBinding, g_lightingUB);
//-----------------
int sampler = 7;
// color ptex
GLint texData = glGetUniformLocation(program, "textureImage_Data");
GLint texPacking = glGetUniformLocation(program, "textureImage_Packing");
sampler = bindPTexture(program, g_osdPTexImage, texData, texPacking, sampler);
// displacement ptex
if (g_displacement != DISPLACEMENT_NONE || g_normal) {
texData = glGetUniformLocation(program, "textureDisplace_Data");
texPacking = glGetUniformLocation(program, "textureDisplace_Packing");
sampler = bindPTexture(program, g_osdPTexDisplacement, texData, texPacking, sampler);
}
// occlusion ptex
if (g_occlusion) {
texData = glGetUniformLocation(program, "textureOcclusion_Data");
texPacking = glGetUniformLocation(program, "textureOcclusion_Packing");
sampler = bindPTexture(program, g_osdPTexOcclusion, texData, texPacking, sampler);
}
// specular ptex
if (g_specular) {
texData = glGetUniformLocation(program, "textureSpecular_Data");
texPacking = glGetUniformLocation(program, "textureSpecular_Packing");
sampler = bindPTexture(program, g_osdPTexSpecular, texData, texPacking, sampler);
}
// other textures
if (g_ibl) {
if (g_diffuseEnvironmentMap) {
#if defined(GL_ARB_separate_shader_objects) || defined(GL_VERSION_4_1)
glProgramUniform1i(program, glGetUniformLocation(program, "diffuseEnvironmentMap"), 5);
#else
glUniform1i(glGetUniformLocation(program, "diffuseEnvironmentMap"), 5);
#endif
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, g_diffuseEnvironmentMap);
sampler++;
}
if (g_specularEnvironmentMap) {
#if defined(GL_ARB_separate_shader_objects) || defined(GL_VERSION_4_1)
glProgramUniform1i(program, glGetUniformLocation(program, "specularEnvironmentMap"), 6);
#else
glUniform1i(glGetUniformLocation(program, "specularEnvironmentMap"), 6);
#endif
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, g_specularEnvironmentMap);
sampler++;
}
glActiveTexture(GL_TEXTURE0);
}
return program;
}
//------------------------------------------------------------------------------
void
drawModel()
{
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
GLuint bVertex = g_mesh->BindVertexBuffer();
#else
g_mesh->BindVertexBuffer();
#endif
OpenSubdiv::OsdDrawContext::PatchArrayVector const & patches =
g_mesh->GetDrawContext()->patchArrays;
glBindVertexArray(g_vao);
// patch drawing
for (int i = 0; i < (int)patches.size(); ++i) {
OpenSubdiv::OsdDrawContext::PatchArray const & patch = patches[i];
OpenSubdiv::OsdDrawContext::PatchDescriptor desc = patch.GetDescriptor();
OpenSubdiv::FarPatchTables::Type patchType = desc.GetType();
GLenum primType;
switch (patchType) {
case OpenSubdiv::FarPatchTables::QUADS:
primType = GL_LINES_ADJACENCY;
break;
case OpenSubdiv::FarPatchTables::TRIANGLES:
primType = GL_TRIANGLES;
break;
default:
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
primType = GL_PATCHES;
glPatchParameteri(GL_PATCH_VERTICES, desc.GetNumControlVertices());
#else
primType = GL_POINTS;
#endif
}
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
if (g_mesh->GetDrawContext()->GetVertexTextureBuffer()) {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_BUFFER,
g_mesh->GetDrawContext()->GetVertexTextureBuffer());
glTexBuffer(GL_TEXTURE_BUFFER, GL_R32F, bVertex);
}
if (g_mesh->GetDrawContext()->GetVertexValenceTextureBuffer()) {
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_BUFFER,
g_mesh->GetDrawContext()->GetVertexValenceTextureBuffer());
}
if (g_mesh->GetDrawContext()->GetQuadOffsetsTextureBuffer()) {
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_BUFFER,
g_mesh->GetDrawContext()->GetQuadOffsetsTextureBuffer());
}
#endif
if (g_mesh->GetDrawContext()->GetPatchParamTextureBuffer()) {
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_BUFFER,
g_mesh->GetDrawContext()->GetPatchParamTextureBuffer());
}
glActiveTexture(GL_TEXTURE0);
Effect effect;
effect.value = 0;
effect.color = g_color;
effect.displacement = g_displacement;
effect.occlusion = g_occlusion;
effect.normal = g_normal;
effect.specular = g_specular;
effect.patchCull = g_patchCull;
effect.screenSpaceTess = g_screenSpaceTess;
effect.fractionalSpacing = g_fractionalSpacing;
effect.ibl = g_ibl;
effect.wire = g_wire;
GLuint program = bindProgram(effect, patch);
GLint nonAdaptiveLevel = glGetUniformLocation(program, "nonAdaptiveLevel");
if (nonAdaptiveLevel != -1) {
#if defined(GL_ARB_separate_shader_objects) || defined(GL_VERSION_4_1)
glProgramUniform1i(program, nonAdaptiveLevel, g_level);
#else
glUniform1i(nonAdaptiveLevel, g_level);
#endif
}
GLint displacementScale = glGetUniformLocation(program, "displacementScale");
if (displacementScale != -1)
glUniform1f(displacementScale, g_displacementScale);
GLint mipmapBias = glGetUniformLocation(program, "mipmapBias");
if (mipmapBias != -1)
glUniform1f(mipmapBias, g_mipmapBias);
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
GLuint overrideColor = glGetUniformLocation(program, "overrideColor");
float const * color = getAdaptivePatchColor(desc);
glProgramUniform4f(program, overrideColor, color[0], color[1], color[2], color[3]);
#endif
if (g_wire == DISPLAY_WIRE) {
glDisable(GL_CULL_FACE);
}
GLuint uniformGregoryQuadOffsetBase =
glGetUniformLocation(program, "OsdGregoryQuadOffsetBase");
GLuint uniformPrimitiveIdBase =
glGetUniformLocation(program, "OsdPrimitiveIdBase");
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
glProgramUniform1i(program, uniformGregoryQuadOffsetBase,
patch.GetQuadOffsetIndex());
glProgramUniform1i(program, uniformPrimitiveIdBase,
patch.GetPatchIndex());
#else
glUniform1i(uniformGregoryQuadOffsetBase,
patch.GetQuadOffsetIndex());
glUniform1i(uniformPrimitiveIdBase,
patch.GetPatchIndex());
#endif
glDrawElements(primType,
patch.GetNumIndices(), GL_UNSIGNED_INT,
(void *)(patch.GetVertIndex() * sizeof(unsigned int)));
if (g_wire == DISPLAY_WIRE) {
glEnable(GL_CULL_FACE);
}
}
glBindVertexArray(0);
}
void
drawSky()
{
glUseProgram(g_sky.program);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
float modelView[16], projection[16], mvp[16];
double aspect = g_width/(double)g_height;
identity(modelView);
rotate(modelView, g_rotate[1], 1, 0, 0);
rotate(modelView, g_rotate[0], 0, 1, 0);
perspective(projection, 45.0f, (float)aspect, g_size*0.001f, g_size+g_dolly);
multMatrix(mvp, modelView, projection);
glUniformMatrix4fv(g_sky.mvpMatrix, 1, GL_FALSE, mvp);
glBindVertexArray(g_skyVAO);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, g_sky.vertexBuffer);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 5, 0);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 5,
(void*)(sizeof(GLfloat)*3));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_sky.elementBuffer);
glDrawElements(GL_TRIANGLES, g_sky.numIndices, GL_UNSIGNED_INT, 0);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glBindVertexArray(0);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
}
void
display()
{
glBindFramebuffer(GL_FRAMEBUFFER, g_imageShader.frameBuffer);
Stopwatch s;
s.Start();
glViewport(0, 0, g_width, g_height);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
if (g_ibl) {
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
drawSky();
}
// primitive counting
glBeginQuery(GL_PRIMITIVES_GENERATED, g_primQuery);
double aspect = g_width/(double)g_height;
identity(transformData.ModelViewMatrix);
translate(transformData.ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly);
rotate(transformData.ModelViewMatrix, g_rotate[1], 1, 0, 0);
rotate(transformData.ModelViewMatrix, g_rotate[0], 0, 1, 0);
if (g_yup)
rotate(transformData.ModelViewMatrix, -90, 1, 0, 0);
translate(transformData.ModelViewMatrix, -g_center[0], -g_center[1], -g_center[2]);
perspective(transformData.ProjectionMatrix, 45.0f, (float)aspect, g_size*0.001f,
g_size+g_dolly);
multMatrix(transformData.ModelViewProjectionMatrix,
transformData.ModelViewMatrix,
transformData.ProjectionMatrix);
inverseMatrix(transformData.ModelViewInverseMatrix,
transformData.ModelViewMatrix);
glEnable(GL_DEPTH_TEST);
drawModel();
glDisable(GL_DEPTH_TEST);
glUseProgram(0);
glEndQuery(GL_PRIMITIVES_GENERATED);
applyImageShader();
s.Stop();
float drawCpuTime = float(s.GetElapsed() * 1000.0f);
s.Start();
glFinish();
s.Stop();
float drawGpuTime = float(s.GetElapsed() * 1000.0f);
GLuint numPrimsGenerated = 0;
glGetQueryObjectuiv(g_primQuery, GL_QUERY_RESULT, &numPrimsGenerated);
g_fpsTimer.Stop();
float elapsed = (float)g_fpsTimer.GetElapsed();
if (not g_freeze)
g_animTime += elapsed;
g_fpsTimer.Start();
if (g_hud.IsVisible()) {
double fps = 1.0/elapsed;
// Avereage fps over a defined number of time samples for
// easier reading in the HUD
g_fpsTimeSamples[g_currentFpsTimeSample++] = float(fps);
if (g_currentFpsTimeSample >= NUM_FPS_TIME_SAMPLES)
g_currentFpsTimeSample = 0;
double averageFps = 0;
for (int i = 0; i < NUM_FPS_TIME_SAMPLES; ++i) {
averageFps += g_fpsTimeSamples[i]/(float)NUM_FPS_TIME_SAMPLES;
}
g_hud.DrawString(10, -180, "Tess level (+/-): %d", g_tessLevel);
if (numPrimsGenerated > 1000000) {
g_hud.DrawString(10, -160, "Primitives : %3.1f million",
(float)numPrimsGenerated/1000000.0);
} else if (numPrimsGenerated > 1000) {
g_hud.DrawString(10, -160, "Primitives : %3.1f thousand",
(float)numPrimsGenerated/1000.0);
} else {
g_hud.DrawString(10, -160, "Primitives : %d", numPrimsGenerated);
}
g_hud.DrawString(10, -140, "Vertices : %d", g_mesh->GetNumVertices());
g_hud.DrawString(10, -120, "Scheme : %s", g_scheme == 0 ? "CATMARK" : "LOOP");
g_hud.DrawString(10, -100, "GPU Kernel : %.3f ms", g_gpuTime);
g_hud.DrawString(10, -80, "CPU Kernel : %.3f ms", g_cpuTime);
g_hud.DrawString(10, -60, "GPU Draw : %.3f ms", drawGpuTime);
g_hud.DrawString(10, -40, "CPU Draw : %.3f ms", drawCpuTime);
g_hud.DrawString(10, -20, "FPS : %3.1f", averageFps);
g_hud.Flush();
}
glFinish();
checkGLErrors("draw end");
}
//------------------------------------------------------------------------------
static void
#if GLFW_VERSION_MAJOR >= 3
mouse(GLFWwindow *, int button, int state, int mods)
#else
mouse(int button, int state)
#endif
{
if (state == GLFW_RELEASE)
g_hud.MouseRelease();
if (button == 0 && state == GLFW_PRESS && g_hud.MouseClick(g_prev_x, g_prev_y))
return;
g_mbutton[button] = (state == GLFW_PRESS);
}
//------------------------------------------------------------------------------
static void
#if GLFW_VERSION_MAJOR >= 3
motion(GLFWwindow *, double dx, double dy)
{
int x = (int)dx, y = (int)dy;
#else
motion(int x, int y)
{
2013-09-24 16:04:20 +00:00
#endif
if (g_hud.MouseCapture()) {
// check gui
g_hud.MouseMotion(x, y);
} else if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) {
// orbit
g_rotate[0] += x - g_prev_x;
g_rotate[1] += y - g_prev_y;
} else if (!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) {
// pan
g_pan[0] -= g_dolly*(x - g_prev_x)/g_width;
g_pan[1] += g_dolly*(y - g_prev_y)/g_height;
} else if ((g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) or
(!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2])) {
// dolly
g_dolly -= g_dolly*0.01f*(x - g_prev_x);
if (g_dolly <= 0.01) g_dolly = 0.01f;
}
g_prev_x = x;
g_prev_y = y;
}
//------------------------------------------------------------------------------
void uninitGL()
{
if (g_osdPTexImage) delete g_osdPTexImage;
if (g_osdPTexDisplacement) delete g_osdPTexDisplacement;
if (g_osdPTexOcclusion) delete g_osdPTexOcclusion;
if (g_osdPTexSpecular) delete g_osdPTexSpecular;
glDeleteQueries(1, &g_primQuery);
glDeleteVertexArrays(1, &g_vao);
glDeleteVertexArrays(1, &g_skyVAO);
if (g_mesh)
delete g_mesh;
delete g_cpuComputeController;
#ifdef OPENSUBDIV_HAS_OPENMP
delete g_ompComputeController;
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
delete g_clComputeController;
uninitCL(g_clContext, g_clQueue);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
delete g_cudaComputeController;
cudaDeviceReset();
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
delete g_glslTransformFeedbackComputeController;
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
delete g_glslComputeController;
#endif
if (g_diffuseEnvironmentMap)
glDeleteTextures(1, &g_diffuseEnvironmentMap);
if (g_specularEnvironmentMap)
glDeleteTextures(1, &g_specularEnvironmentMap);
if (g_sky.program) glDeleteProgram(g_sky.program);
if (g_sky.vertexBuffer) glDeleteBuffers(1, &g_sky.vertexBuffer);
if (g_sky.elementBuffer) glDeleteBuffers(1, &g_sky.elementBuffer);
glDeleteFramebuffers(1, &g_imageShader.frameBuffer);
glDeleteTextures(1, &g_imageShader.frameBufferTexture);
glDeleteTextures(1, &g_imageShader.frameBufferDepthTexture);
glDeleteFramebuffers(2, g_imageShader.smallFrameBuffer);
glDeleteTextures(2, g_imageShader.smallFrameBufferTexture);
glDeleteProgram(g_imageShader.blurProgram);
glDeleteProgram(g_imageShader.hipassProgram);
glDeleteProgram(g_imageShader.compositeProgram);
glDeleteVertexArrays(1, &g_imageShader.vao);
glDeleteBuffers(1, &g_imageShader.vbo);
}
//------------------------------------------------------------------------------
static void
callbackWireframe(int b)
{
g_wire = b;
}
static void
callbackKernel(int k)
{
g_kernel = k;
createOsdMesh(g_level, g_kernel);
#ifdef OPENSUBDIV_HAS_OPENCL
if (g_kernel == kCL and g_clContext == NULL) {
// Initialize OpenCL
if (initCL(&g_clContext, &g_clQueue) == false) {
printf("Error in initializing OpenCL\n");
exit(1);
}
}
#endif
}
static void
callbackScheme(int s)
{
g_scheme = s;
createOsdMesh(g_level, g_kernel);
}
static void
callbackLevel(int l)
{
g_level = l;
createOsdMesh(g_level, g_kernel);
}
static void
callbackColor(int c)
{
g_color = c;
}
static void
callbackDisplacement(int d)
{
g_displacement = d;
}
static void
callbackNormal(int n)
{
g_normal = n;
}
static void
callbackCheckBox(bool checked, int button)
{
bool rebuild = false;
switch (button) {
case HUD_CB_ADAPTIVE:
if (OpenSubdiv::OsdGLDrawContext::SupportsAdaptiveTessellation()) {
g_adaptive = checked;
rebuild = true;
}
break;
case HUD_CB_DISPLAY_OCCLUSION:
g_occlusion = checked;
break;
case HUD_CB_DISPLAY_SPECULAR:
g_specular = checked;
break;
case HUD_CB_ANIMATE_VERTICES:
g_moveScale = checked ? 1.0f : 0.0f;
g_animTime = 0;
break;
case HUD_CB_VIEW_LOD:
g_screenSpaceTess = checked;
break;
case HUD_CB_FRACTIONAL_SPACING:
g_fractionalSpacing = checked;
break;
case HUD_CB_PATCH_CULL:
g_patchCull = checked;
break;
case HUD_CB_IBL:
g_ibl = checked;
break;
case HUD_CB_BLOOM:
g_bloom = checked;
break;
case HUD_CB_FREEZE:
g_freeze = checked;
break;
}
if (rebuild)
createOsdMesh(g_level, g_kernel);
}
static void
callbackSlider(float value, int data)
{
switch (data) {
case 0:
g_mipmapBias = value;
break;
case 1:
g_displacementScale = value;
break;
}
}
//-------------------------------------------------------------------------------
void
reloadShaderFile()
{
if (not g_shaderFilename) return;
std::ifstream ifs(g_shaderFilename);
if (not ifs) return;
printf("Load shader %s\n", g_shaderFilename);
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
g_shaderSource = ss.str();
effectRegistry.Reset();
}
//------------------------------------------------------------------------------
static void
toggleFullScreen()
{
// XXXX manuelk : to re-implement from glut
}
//------------------------------------------------------------------------------
void
#if GLFW_VERSION_MAJOR >= 3
keyboard(GLFWwindow *, int key, int scancode, int event, int mods)
#else
#define GLFW_KEY_ESCAPE GLFW_KEY_ESC
keyboard(int key, int event)
#endif
{
if (event == GLFW_RELEASE) return;
if (g_hud.KeyDown(tolower(key))) return;
switch (key) {
case 'Q': g_running = 0; break;
case 'E': g_drawNormals = (g_drawNormals+1)%2; break;
case 'F': fitFrame(); break;
case GLFW_KEY_TAB: toggleFullScreen(); break;
case 'R': reloadShaderFile(); createOsdMesh(g_level, g_kernel); break;
case '+':
case '=': g_tessLevel++; break;
case '-': g_tessLevel = std::max(1, g_tessLevel-1); break;
case GLFW_KEY_ESCAPE: g_hud.SetVisible(!g_hud.IsVisible()); break;
}
}
//------------------------------------------------------------------------------
void
idle()
{
if (not g_freeze)
g_frame++;
updateGeom();
if (g_repeatCount != 0 && g_frame >= g_repeatCount)
g_running = 0;
}
//------------------------------------------------------------------------------
void
initGL()
{
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glEnable(GL_CULL_FACE);
glGenQueries(1, &g_primQuery);
glGenVertexArrays(1, &g_vao);
glGenVertexArrays(1, &g_skyVAO);
glGenFramebuffers(1, &g_imageShader.frameBuffer);
glGenTextures(1, &g_imageShader.frameBufferTexture);
glGenTextures(1, &g_imageShader.frameBufferDepthTexture);
glGenFramebuffers(2, g_imageShader.smallFrameBuffer);
glGenTextures(2, g_imageShader.smallFrameBufferTexture);
glBindTexture(GL_TEXTURE_2D, g_imageShader.frameBufferTexture);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D, g_imageShader.frameBufferDepthTexture);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
for (int i = 0; i < 2; ++i) {
glBindTexture(GL_TEXTURE_2D, g_imageShader.smallFrameBufferTexture[i]);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
glBindTexture(GL_TEXTURE_2D, 0);
}
//------------------------------------------------------------------------------
void usage(const char *program)
{
printf("Usage: %s [options] <color.ptx> [<displacement.ptx>] [occlusion.ptx>] "
"[specular.ptx] [pose.obj]...\n", program);
printf("Options: -l level : subdivision level\n");
printf(" -c count : frame count until exit (for profiler)\n");
printf(" -d <diffseEnvMap.hdr> : diffuse environment map for IBL\n");
printf(" -e <specularEnvMap.hdr> : specular environment map for IBL\n");
printf(" -s <shaderfile.glsl> : custom shader file\n");
printf(" -y : Y-up model\n");
printf(" -m level : max mimmap level (default=10)\n");
printf(" --disp <scale> : Displacment scale\n");
}
//------------------------------------------------------------------------------
static void
callbackError(OpenSubdiv::OsdErrorType err, const char *message)
{
printf("OsdError: %d\n", err);
printf("%s", message);
}
//------------------------------------------------------------------------------
static void
setGLCoreProfile()
{
#if GLFW_VERSION_MAJOR >= 3
#define glfwOpenWindowHint glfwWindowHint
#define GLFW_OPENGL_VERSION_MAJOR GLFW_CONTEXT_VERSION_MAJOR
#define GLFW_OPENGL_VERSION_MINOR GLFW_CONTEXT_VERSION_MINOR
#endif
#if GLFW_VERSION_MAJOR >= 2 and GLFW_VERSION_MINOR >= 7
glfwOpenWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#if not defined(__APPLE__)
glfwOpenWindowHint(GLFW_OPENGL_VERSION_MAJOR, 4);
glfwOpenWindowHint(GLFW_OPENGL_VERSION_MINOR, 2);
#else
glfwOpenWindowHint(GLFW_OPENGL_VERSION_MAJOR, 3);
glfwOpenWindowHint(GLFW_OPENGL_VERSION_MINOR, 2);
#endif
glfwOpenWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
}
//------------------------------------------------------------------------------
int main(int argc, char ** argv)
{
std::vector<std::string> animobjs;
const char *diffuseEnvironmentMap = NULL, *specularEnvironmentMap = NULL;
const char *colorFilename = NULL, *displacementFilename = NULL,
*occlusionFilename = NULL, *specularFilename = NULL;
bool fullscreen = false;
for (int i = 1; i < argc; ++i) {
if (strstr(argv[i], ".obj"))
animobjs.push_back(argv[i]);
else if (!strcmp(argv[i], "-l"))
g_level = atoi(argv[++i]);
else if (!strcmp(argv[i], "-c"))
g_repeatCount = atoi(argv[++i]);
else if (!strcmp(argv[i], "-d"))
diffuseEnvironmentMap = argv[++i];
else if (!strcmp(argv[i], "-e"))
specularEnvironmentMap = argv[++i];
else if (!strcmp(argv[i], "-s"))
g_shaderFilename = argv[++i];
else if (!strcmp(argv[i], "-f"))
fullscreen = true;
else if (!strcmp(argv[i], "-y"))
g_yup = true;
else if (!strcmp(argv[i], "-m"))
g_maxMipmapLevels = atoi(argv[++i]);
else if (!strcmp(argv[i], "--disp"))
g_displacementScale = (float)atof(argv[++i]);
else if (colorFilename == NULL)
colorFilename = argv[i];
else if (displacementFilename == NULL) {
displacementFilename = argv[i];
g_displacement = DISPLACEMENT_BILINEAR;
g_normal = NORMAL_BIQUADRATIC;
} else if (occlusionFilename == NULL) {
occlusionFilename = argv[i];
g_occlusion = 1;
} else if (specularFilename == NULL) {
specularFilename = argv[i];
g_specular = 1;
}
}
OsdSetErrorCallback(callbackError);
g_shaderSource = g_defaultShaderSource;
reloadShaderFile();
g_ptexColorFilename = colorFilename;
if (g_ptexColorFilename == NULL) {
usage(argv[0]);
return 1;
}
if (not glfwInit()) {
printf("Failed to initialize GLFW\n");
return 1;
}
static const char windowTitle[] = "OpenSubdiv ptexViewer";
#define CORE_PROFILE
#ifdef CORE_PROFILE
setGLCoreProfile();
#endif
#if GLFW_VERSION_MAJOR >= 3
if (fullscreen) {
g_primary = glfwGetPrimaryMonitor();
// apparently glfwGetPrimaryMonitor fails under linux : if no primary,
// settle for the first one in the list
if (not g_primary) {
int count = 0;
GLFWmonitor ** monitors = glfwGetMonitors(&count);
if (count)
g_primary = monitors[0];
}
if (g_primary) {
GLFWvidmode const * vidmode = glfwGetVideoMode(g_primary);
g_width = vidmode->width;
g_height = vidmode->height;
}
}
if (not (g_window=glfwCreateWindow(g_width, g_height, windowTitle,
fullscreen and g_primary ? g_primary : NULL, NULL))) {
printf("Failed to open window.\n");
glfwTerminate();
return 1;
}
glfwMakeContextCurrent(g_window);
glfwSetKeyCallback(g_window, keyboard);
glfwSetCursorPosCallback(g_window, motion);
glfwSetMouseButtonCallback(g_window, mouse);
#else
if (glfwOpenWindow(g_width, g_height, 8, 8, 8, 8, 24, 8,
fullscreen ? GLFW_FULLSCREEN : GLFW_WINDOW) == GL_FALSE) {
printf("Failed to open window.\n");
glfwTerminate();
return 1;
}
glfwSetWindowTitle(windowTitle);
glfwSetKeyCallback(keyboard);
glfwSetMousePosCallback(motion);
glfwSetMouseButtonCallback(mouse);
#endif
#if defined(OSD_USES_GLEW)
#ifdef CORE_PROFILE
// this is the only way to initialize glew correctly under core profile context.
glewExperimental = true;
#endif
if (GLenum r = glewInit() != GLEW_OK) {
printf("Failed to initialize glew. error = %d\n", r);
exit(1);
}
#ifdef CORE_PROFILE
// clear GL errors which was generated during glewInit()
glGetError();
#endif
#endif
initGL();
#if GLFW_VERSION_MAJOR >= 3
glfwSetWindowSizeCallback(g_window, reshape);
glfwSetWindowCloseCallback(g_window, windowClose);
// as of GLFW 3.0.1 this callback is not implicit
reshape();
#else
glfwSetWindowSizeCallback(reshape);
glfwSetWindowCloseCallback(windowClose);
#endif
// activate feature adaptive tessellation if OSD supports it
g_adaptive = OpenSubdiv::OsdGLDrawContext::SupportsAdaptiveTessellation();
#if OPENSUBDIV_HAS_CUDA
// Note: This function randomly crashes with linux 5.0-dev driver.
// cudaGetDeviceProperties overrun stack..?
cudaGLSetGLDevice(cutGetMaxGflopsDeviceId());
#endif
g_hud.Init(g_width, g_height);
g_hud.AddRadioButton(HUD_RB_KERNEL, "CPU (K)", true,
10, 10, callbackKernel, kCPU, 'k');
#ifdef OPENSUBDIV_HAS_OPENMP
g_hud.AddRadioButton(HUD_RB_KERNEL, "OPENMP", false,
10, 30, callbackKernel, kOPENMP, 'k');
#endif
#ifdef OPENSUBDIV_HAS_CUDA
g_hud.AddRadioButton(HUD_RB_KERNEL, "CUDA", false,
10, 50, callbackKernel, kCUDA, 'k');
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
g_hud.AddRadioButton(HUD_RB_KERNEL, "OPENCL", false,
10, 70, callbackKernel, kCL, 'k');
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
g_hud.AddRadioButton(HUD_RB_KERNEL, "GLSL Transform Feedback", false,
10, 90, callbackKernel, kGLSL, 'k');
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
// Must also check at run time for OpenGL 4.3
if (GLEW_VERSION_4_3) {
g_hud.AddRadioButton(HUD_RB_KERNEL, "GLSL Compute", false,
10, 110, callbackKernel, kGLSLCompute, 'k');
}
#endif
if (OpenSubdiv::OsdGLDrawContext::SupportsAdaptiveTessellation())
g_hud.AddCheckBox("Adaptive (`)", g_adaptive,
10, 150, callbackCheckBox, HUD_CB_ADAPTIVE, '`');
g_hud.AddRadioButton(HUD_RB_SCHEME, "CATMARK", true, 10, 190, callbackScheme, 0);
g_hud.AddRadioButton(HUD_RB_SCHEME, "BILINEAR", false, 10, 210, callbackScheme, 1);
for (int i = 1; i < 8; ++i) {
char level[16];
sprintf(level, "Lv. %d", i);
g_hud.AddRadioButton(HUD_RB_LEVEL, level, i == g_level,
10, 220+i*20, callbackLevel, i, '0'+i);
}
g_hud.AddRadioButton(HUD_RB_WIRE, "Wire (W)", (g_wire == DISPLAY_WIRE),
100, 10, callbackWireframe, 0, 'w');
g_hud.AddRadioButton(HUD_RB_WIRE, "Shaded", (g_wire == DISPLAY_SHADED),
100, 30, callbackWireframe, 1, 'w');
g_hud.AddRadioButton(HUD_RB_WIRE, "Wire on Shaded", (g_wire == DISPLAY_WIRE_ON_SHADED),
100, 50, callbackWireframe, 2, 'w');
g_hud.AddLabel("Color (C)", -200, 10);
g_hud.AddRadioButton(HUD_RB_COLOR, "None", (g_color == COLOR_NONE),
-200, 30, callbackColor, COLOR_NONE, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Ptex Nearest", (g_color == COLOR_PTEX_NEAREST),
-200, 50, callbackColor, COLOR_PTEX_NEAREST, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Ptex HW bilinear", (g_color == COLOR_PTEX_HW_BILINEAR),
-200, 70, callbackColor, COLOR_PTEX_HW_BILINEAR, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Ptex bilinear", (g_color == COLOR_PTEX_BILINEAR),
-200, 90, callbackColor, COLOR_PTEX_BILINEAR, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Ptex biquadratic", (g_color == COLOR_PTEX_BIQUADRATIC),
-200, 110, callbackColor, COLOR_PTEX_BIQUADRATIC, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Patch type", (g_color == COLOR_PATCHTYPE),
-200, 130, callbackColor, COLOR_PATCHTYPE, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Patch coord", (g_color == COLOR_PATCHCOORD),
-200, 150, callbackColor, COLOR_PATCHCOORD, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Normal", (g_color == COLOR_NORMAL),
-200, 170, callbackColor, COLOR_NORMAL, 'c');
if (displacementFilename != NULL) {
g_hud.AddLabel("Displacement (D)", -200, 200);
g_hud.AddRadioButton(HUD_RB_DISPLACEMENT, "None",
(g_displacement == DISPLACEMENT_NONE),
-200, 220, callbackDisplacement, DISPLACEMENT_NONE, 'd');
g_hud.AddRadioButton(HUD_RB_DISPLACEMENT, "HW bilinear",
(g_displacement == DISPLACEMENT_HW_BILINEAR),
-200, 240, callbackDisplacement, DISPLACEMENT_HW_BILINEAR, 'd');
g_hud.AddRadioButton(HUD_RB_DISPLACEMENT, "Bilinear",
(g_displacement == DISPLACEMENT_BILINEAR),
-200, 260, callbackDisplacement, DISPLACEMENT_BILINEAR, 'd');
g_hud.AddRadioButton(HUD_RB_DISPLACEMENT, "Biquadratic",
(g_displacement == DISPLACEMENT_BIQUADRATIC),
-200, 280, callbackDisplacement, DISPLACEMENT_BIQUADRATIC, 'd');
g_hud.AddLabel("Normal (N)", -200, 310);
g_hud.AddRadioButton(HUD_RB_NORMAL, "Surface",
(g_normal == NORMAL_SURFACE),
-200, 330, callbackNormal, NORMAL_SURFACE, 'n');
g_hud.AddRadioButton(HUD_RB_NORMAL, "Facet",
(g_normal == NORMAL_FACET),
-200, 350, callbackNormal, NORMAL_FACET, 'n');
g_hud.AddRadioButton(HUD_RB_NORMAL, "HW Screen space",
(g_normal == NORMAL_HW_SCREENSPACE),
-200, 370, callbackNormal, NORMAL_HW_SCREENSPACE, 'n');
g_hud.AddRadioButton(HUD_RB_NORMAL, "Screen space",
(g_normal == NORMAL_SCREENSPACE),
-200, 390, callbackNormal, NORMAL_SCREENSPACE, 'n');
g_hud.AddRadioButton(HUD_RB_NORMAL, "Biquadratic",
(g_normal == NORMAL_BIQUADRATIC),
-200, 410, callbackNormal, NORMAL_BIQUADRATIC, 'n');
g_hud.AddRadioButton(HUD_RB_NORMAL, "Biquadratic WG",
(g_normal == NORMAL_BIQUADRATIC_WG),
-200, 430, callbackNormal, NORMAL_BIQUADRATIC_WG, 'n');
}
g_hud.AddSlider("Mipmap Bias", 0, 5, 0,
-200, 450, 20, false, callbackSlider, 0);
g_hud.AddSlider("Displacementd", 0, 5, 1,
-200, 490, 20, false, callbackSlider, 1);
if (occlusionFilename != NULL) {
g_hud.AddCheckBox("Ambient Occlusion (A)", g_occlusion,
250, 10, callbackCheckBox, HUD_CB_DISPLAY_OCCLUSION, 'a');
}
if (specularFilename != NULL)
g_hud.AddCheckBox("Specular (S)", g_specular,
250, 30, callbackCheckBox, HUD_CB_DISPLAY_SPECULAR, 's');
if (diffuseEnvironmentMap || specularEnvironmentMap) {
g_hud.AddCheckBox("IBL (I)", g_ibl,
250, 50, callbackCheckBox, HUD_CB_IBL, 'i');
}
g_hud.AddCheckBox("Animate vertices (M)", g_moveScale != 0.0,
450, 10, callbackCheckBox, HUD_CB_ANIMATE_VERTICES, 'm');
g_hud.AddCheckBox("Screen space LOD (V)", g_screenSpaceTess,
450, 30, callbackCheckBox, HUD_CB_VIEW_LOD, 'v');
g_hud.AddCheckBox("Fractional spacing (T)", g_fractionalSpacing,
450, 50, callbackCheckBox, HUD_CB_FRACTIONAL_SPACING, 't');
g_hud.AddCheckBox("Frustum Patch Culling (B)", g_patchCull,
450, 70, callbackCheckBox, HUD_CB_PATCH_CULL, 'b');
g_hud.AddCheckBox("Bloom (Y)", g_bloom,
450, 90, callbackCheckBox, HUD_CB_BLOOM, 'y');
g_hud.AddCheckBox("Freeze (spc)", g_freeze,
450, 110, callbackCheckBox, HUD_CB_FREEZE, ' ');
// create mesh from ptex metadata
createOsdMesh(g_level, g_kernel);
// load ptex files
if (colorFilename)
g_osdPTexImage = createPtex(colorFilename);
if (displacementFilename)
g_osdPTexDisplacement = createPtex(displacementFilename);
if (occlusionFilename)
g_osdPTexOcclusion = createPtex(occlusionFilename);
if (specularFilename)
g_osdPTexSpecular = createPtex(specularFilename);
// load animation obj sequences (optional)
if (not animobjs.empty()) {
for (int i = 0; i < (int)animobjs.size(); ++i) {
std::ifstream ifs(animobjs[i].c_str());
if (ifs) {
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
printf("Reading %s\r", animobjs[i].c_str());
std::string str = ss.str();
shape *shape = shape::parseShape(str.c_str());
if (shape->verts.size() != g_positions.size()) {
printf("Error: vertex count doesn't match.\n");
goto error;
}
g_animPositions.push_back(shape->verts);
delete shape;
} else {
printf("Error in reading %s\n", animobjs[i].c_str());
goto error;
}
}
printf("\n");
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
if (diffuseEnvironmentMap) {
HdrInfo info;
unsigned char * image = loadHdr(diffuseEnvironmentMap, &info, /*convertToFloat=*/true);
if (image) {
glGenTextures(1, &g_diffuseEnvironmentMap);
glBindTexture(GL_TEXTURE_2D, g_diffuseEnvironmentMap);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, info.width, info.height,
0, GL_RGBA, GL_FLOAT, image);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
free(image);
}
}
if (specularEnvironmentMap) {
HdrInfo info;
unsigned char * image = loadHdr(specularEnvironmentMap, &info, /*convertToFloat=*/true);
if (image) {
glGenTextures(1, &g_specularEnvironmentMap);
glBindTexture(GL_TEXTURE_2D, g_specularEnvironmentMap);
// glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE); // deprecated
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, info.width, info.height,
0, GL_RGBA, GL_FLOAT, image);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
free(image);
}
}
if (diffuseEnvironmentMap || specularEnvironmentMap) {
createSky();
}
createImageShader();
fitFrame();
while (g_running) {
idle();
display();
#if GLFW_VERSION_MAJOR >= 3
glfwPollEvents();
glfwSwapBuffers(g_window);
#else
glfwSwapBuffers();
#endif
glFinish();
}
error:
uninitGL();
glfwTerminate();
}