OpenSubdiv/opensubdiv/far/stencilTablesFactory.h

1690 lines
55 KiB
C
Raw Normal View History

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License
// and the following modification to it: Section 6 Trademarks.
// deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the
// trade names, trademarks, service marks, or product names of the
// Licensor and its affiliates, except as required for reproducing
// the content of the NOTICE file.
//
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific
// language governing permissions and limitations under the
// License.
//
#ifndef FAR_STENCILTABLE_FACTORY_H
#define FAR_STENCILTABLE_FACTORY_H
#include "../version.h"
#include "../hbr/allocator.h"
#include "../hbr/mesh.h"
#include "../hbr/catmark.h"
#include "../far/stencilTables.h"
#include <string.h>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
class FarVertexStencil;
class FarStencilFactoryVertex;
/// \brief A factory for FarStencilTables
///
/// The FarStencilTablesFactory is used to generate FarStencilTables. Currently
/// this factory can only accumulate stencil tables for the Catmark subdivision
/// scheme.
///
/// Client-code must first select a face index in the source Hbr mesh (and
/// possibly a sub-face quadrant if the coarse face is not a quad). If the call
/// is successful, then an arbitrary number of stencils corresponding to (u,v)
/// sample locations can be computed using the AppendStencils method. These
/// stencils are self-contained and can be appended to any FarStencilTables.
///
/// Each stencil can be pushed to an selected level of feature isolation.
/// Surface approximation beyond this level of isolation is obtained by pushing
/// volatile vertices to their limits and bilinearly interpolating the resulting
/// quad sub-face containing the sample location (no Gregory patch approximation).
///
/// The current stencils accumulated are for limit positions only. Additional
/// methods to provide limit stencils on vertex locations should be fairly
/// easy to implement.
///
/// \note Hierarchical edits are not supported yet (XXXX)
///
/// \note Face-varying boundaries are not implemented yet (XXXX)
///
/// \note The FarStencilTablesFactory processes are currently not re-entrant:
/// every invokation of SetCurrentFace causes the HbrMesh to be unrefined to
/// a default starting position.
///
template <class T=FarStencilFactoryVertex> class FarStencilTablesFactory {
public:
/// \brief Constructor
///
/// \note this factory *will* modify the state of the HbrMesh
///
/// \note hierarchical vertex edits are not supported yet
///
FarStencilTablesFactory( HbrMesh<T> * mesh );
/// \brief Returns the HbrMesh used by the factory
HbrMesh<T> const * GetMesh() {
return _mesh;
}
/// \brief Sets the current Hbr face where stencils will be added
///
/// @param id A valid Hbr coarse face ID
///
/// @param quadrant If the face is extraordinary, specify which (u,v)
/// coordinates quadrant (aka sub-face) to use.
///
/// @return True upon success
///
bool SetCurrentFace( int id, unsigned int quadrant=0 );
/// \brief Append stencils for the given UV's to the FarStencilTables
///
/// @param stencilTables The table of stencils to add the results to
///
/// @param nsamples The number of uv locations
///
/// @param u Array of u-paramater locations
///
/// @param v Array of v-paramater locations
///
/// @param reflevel Max level of feature isolation
///
/// @return The number of stencils added to the array
///
int AppendStencils( FarStencilTables * stencilTables,
int nsamples,
float const * u,
float const * v,
int reflevel );
private:
// Reserve space for stencils of a set size at the end of a stencil table
void _AddNewStencils( FarStencilTables * tables, int nstencils, int stencilsize);
HbrMesh<T> * _mesh;
int _numCoarseVertices;
// A private helper class that caches computations for the current face
class Patch;
Patch _patch; // Cache for the current face
};
// Constructor
template <class T>
FarStencilTablesFactory<T>::FarStencilTablesFactory( HbrMesh<T> * mesh )
: _mesh(mesh) {
_numCoarseVertices = mesh->GetNumVertices();
}
// Sets the current Hbr face where stencils will be added
template <class T> bool
FarStencilTablesFactory<T>::SetCurrentFace(int id, unsigned int quadrant) {
assert(_mesh);
HbrFace<T> * f = GetMesh()->GetFace(id);
// XXXX Vertex edits are not supported yet
if ((f and (not f->IsCoarse())) or GetMesh()->HasVertexEdits())
return false;
// Extraordinary faces don't have simple (u,v) parameterization so we need
// to specify the parametric quadrant
if (GetMesh()->GetSubdivision()->FaceIsExtraordinary(GetMesh(), f)) {
if ( quadrant > (unsigned int)(f->GetNumVertices()-1) )
return false;
} else {
quadrant = 0;
}
_mesh->Unrefine(_numCoarseVertices, GetMesh()->GetNumCoarseFaces());
_patch.SetupControlStencils(f, quadrant);
return true;
}
// Append stencils for the given UV's to the FarStencilTables
template <class T> int
FarStencilTablesFactory<T>::AppendStencils( FarStencilTables * stencilTables,
int nsamples,
float const * u,
float const * v,
int reflevel ) {
assert(stencilTables);
int result=0;
if ((not nsamples) or (not _patch.GetCurrentFace()))
return result;
int stencilsize = _patch.GetStencilSize();
_AddNewStencils( stencilTables, nsamples, stencilsize );
FarStencil stencil = stencilTables->GetStencil( stencilTables->GetNumStencils()-nsamples );
std::vector<int> const & indices = _patch.GetControlVertexIndices();
for (int i=0; i<nsamples; ++i) {
// Copy control vertices indices
for (int j=0; j<stencilsize; ++j)
stencil._indices[j] = indices[j];
HbrHalfedge<T> * edge =
_patch.GetCurrentFace()->GetEdge(_patch.GetCurrentQuadrant());
// Copy stencil weights for sample
result += _patch.GetStencilsAtUV( edge, u[i], v[i], reflevel,
stencil._point,
stencil._uderiv,
stencil._vderiv );
// Advance to the next stencil
stencil.Increment();
}
return result;
}
template <class T> void
FarStencilTablesFactory<T>::_AddNewStencils( FarStencilTables * tables,
int nstencils, int stencilsize) {
int size = tables->GetNumStencils();
// Append sizes
tables->_sizes.insert(tables->_sizes.end(), nstencils, stencilsize);
// Append offsets
tables->_offsets.resize(size+nstencils);
int * offsPtr = &(tables->_offsets[size]),
h = (int)tables->_point.size();
for (int i=0; i<nstencils; ++i, h+=stencilsize)
*offsPtr++ = h;
// Extend data space for vertex indices and weights
int newsize = (int)tables->_point.size() + (nstencils*stencilsize);
tables->_indices.resize(newsize);
tables->_point.resize(newsize);
tables->_uderiv.resize(newsize);
tables->_vderiv.resize(newsize);
}
class FarVertexStencilAllocator;
/// \brief A container for vertex stencil weight coefficients
///
class FarVertexStencil {
public:
/// \brief Constructor
FarVertexStencil() { }
/// \brief Destructor
~FarVertexStencil() { }
/// \brief Next available instance in the pool allocator
FarVertexStencil * & GetNext() {
return _next;
}
/// \brief Returns a pointer to the vertex stencils pool allocator
FarVertexStencilAllocator * GetAllocator() const {
return _allocator;
}
/// \brief Returns a pointer to the first stencil weight coefficient
float const * GetData() const {
return _data;
}
/// \brief Resets the values of the weight coefficients: dst = val
///
/// @param dst Pointer to the weight coefficients that will be reset
///
/// @param val Value the weights will be reset to
///
/// @param stencilsize Number of weight coefficients in the stencil
///
static void Reset( float * dst, float val, int stencilsize );
/// \brief Resets the values of the weight coefficients: this = val
///
/// @param val Value the weights will be reset to
///
void Reset( float val );
/// \brief Copies the values of the weight coefficients: dst = other
///
/// @param dst Pointer to the destination weight coefficients
///
/// @param other Source stencil to copy the weights from
///
static void Copy( float * dst , FarVertexStencil const * other );
/// \brief Adds the coefficients from a stencil
///
/// @param dst Pointer to the destination weight coefficients
///
/// @param other Source stencil to add the weights from
///
2013-09-13 16:28:20 +00:00
static void Add( float * dst, FarVertexStencil const * other );
/// \brief Subtracts the coefficients from a stencil dst = (a - b)
///
/// @param dst Pointer to the destination weight coefficients
///
/// @param sa 'A' source stencil
///
/// @param sb 'B' source stencil
///
static void Subtract( float * dst, FarVertexStencil const * sa, FarVertexStencil const * sb );
/// \brief Scales the coefficients from a stencil: dst *= val
///
/// @param dst Pointer to the destination weight coefficients
///
/// @param val Value the weights will be scaled with
///
/// @param stencilsize Number of weight coefficients in the stencil
///
static void Scale( float * dst , float val, int stencilsize );
/// \brief Adds and scales the coefficients of the stencil: dst += other * val
///
/// @param dst Pointer to the destination weight coefficients
///
/// @param other Stencil to be added
///
/// @param val Value to weigh 'other' with
///
2013-09-13 16:28:20 +00:00
static void AddScaled( float * dst, FarVertexStencil const * other, float val );
/// \brief Adds and scales the coefficients of the stencil: this += other * val
///
/// @param other Stencil to be added
///
/// @param val Value to weigh 'other' with
///
void AddScaled( FarVertexStencil const & other, float val );
/// \brief Combines coefficients: this = a*sa + b*sb
///
/// @param a 'A' weight
///
/// @param sa 'A' stencil
///
/// @param b 'B' weight
///
/// @param sb 'B' stencil
///
void Combine( float a, FarVertexStencil const & sa, float b, FarVertexStencil const & sb );
/// \brief Prints the weight coefficients
void Print() const;
private:
template <class T> friend class FarStencilTablesFactory<T>::Patch;
friend class FarVertexStencilAllocator;
float * _GetData() {
return _data;
}
FarVertexStencilAllocator * _allocator;
FarVertexStencil * _next;
float _data[1];
};
/// \brief A pool allocator for FarVertexStencil
///
class FarVertexStencilAllocator {
public:
FarVertexStencilAllocator(int stencilsize) :
_stencilSize(stencilsize),
_allocator(&_memory, 256, 0, 0, sizeof(FarVertexStencil)+(stencilsize-1)*sizeof(float)) {
assert(stencilsize>=1);
}
// Returns the number of coefficients in the the stencil
int GetStencilSize() const {
return _stencilSize;
}
// Returns the total memory used by the allocator
size_t GetMemoryUsed( ) const {
return _memory;
}
// Allocates a FarVertexStencil from the pool
FarVertexStencil * Allocate( ) {
FarVertexStencil * result = _allocator.Allocate();
result->_allocator = this;
return result;
}
// Deallocates a FarVertexStencil from the pool
void Deallocate( FarVertexStencil * v) {
_allocator.Deallocate(v);
}
private:
int _stencilSize;
size_t _memory;
HbrAllocator<FarVertexStencil> _allocator;
};
inline void
FarVertexStencil::Reset( float val ) {
Reset( _GetData(), val, GetAllocator()->GetStencilSize() );
}
inline void
FarVertexStencil::Reset( float * dst, float val, int stencilsize ) {
float * end = dst + stencilsize;
while (dst < end)
(*dst++) = val;
}
inline void
FarVertexStencil::Copy( float * dst, FarVertexStencil const * other ) {
assert(other and other->GetAllocator());
memcpy( dst, other->GetData(), other->GetAllocator()->GetStencilSize()*sizeof(float) );
}
inline void
FarVertexStencil::Add( float * dst, FarVertexStencil const * other ) {
assert(other and other->GetAllocator());
float * end = dst + other->GetAllocator()->GetStencilSize();
float const * src = other->GetData();
while (dst < end)
(*dst++) += (*src++);
}
inline void
FarVertexStencil::Subtract( float * dst, FarVertexStencil const * sa,
FarVertexStencil const * sb ) {
assert(sa and sb and sa->GetAllocator());
float * end = dst + sa->GetAllocator()->GetStencilSize();
float const * aptr = sa->GetData(),
* bptr = sb->GetData();
while (dst < end)
(*dst++) = (*aptr++) - (*bptr++);
}
inline void
FarVertexStencil::Scale( float * dst , float val, int stencilsize ) {
float * end = dst + stencilsize;
while (dst < end)
(*dst++) *= val;
}
inline void
FarVertexStencil::AddScaled( FarVertexStencil const & other, float val ) {
AddScaled( _GetData(), &other, val );
}
inline void
FarVertexStencil::AddScaled( float * dst, FarVertexStencil const * other, float val ) {
assert(other and other->GetAllocator());
float * end = dst + other->GetAllocator()->GetStencilSize();
float const * src = other->GetData();
while (dst < end)
(*dst++) += (*src++) * val;
}
inline void
FarVertexStencil::Combine( float a, FarVertexStencil const & sa,
float b, FarVertexStencil const & sb ) {
assert(GetAllocator());
float * dst = _data,
* end = dst + GetAllocator()->GetStencilSize();
float const * aptr = sa.GetData(),
* bptr = sb.GetData();
while (dst < end)
(*dst++) = a*(*aptr++) + b*(*bptr++);
}
inline void
FarVertexStencil::Print() const {
printf("{ ");
for (int i=0; i<_allocator->GetStencilSize(); ++i)
printf("%.5f ", _data[i] );
printf("}");
}
/// \brief A dedicated vertex class for the FarStencilTablesFactory
///
class FarStencilFactoryVertex {
public:
/// \brief Constructor
FarStencilFactoryVertex( ) : _stencil(0) { }
FarStencilFactoryVertex(int) : _stencil(0) { }
/// \brief Destructor
~FarStencilFactoryVertex( ) { }
FarVertexStencil const * GetStencil() const {
return _stencil;
}
/// \brief Hbr template vertex class API : resets the vertex
void Clear() {
if (_stencil)
_stencil->Reset(0.0f);
}
/// \brief Hbr template vertex class API: interpolate vertex data with 'src'
/// vertex (this += src * weight)
///
/// @param src The source vertex
///
/// @param weight The interpolation weight
///
void AddWithWeight(FarStencilFactoryVertex const & src, float weight, void * =0 ) {
if (not _stencil) {
// Allocation is lazy, but 'src' will have a valid stencil unless that
// vertex is singular
if (src.GetStencil()) {
_stencil = src.GetStencil()->GetAllocator()->Allocate();
_stencil->Reset(0.0f);
} else
return;
}
_stencil->AddScaled( *src.GetStencil(), weight );
}
/// \brief Hbr template vertex class API: interpolate varying data with 'src'
/// vertex (this += src * weight)
///
/// @param src The source vertex
///
/// @param weight The interpolation weight
///
void AddVaryingWithWeight(FarStencilFactoryVertex const & src, float weight, void * =0 ) { }
/// \brief Hbr template vertex class API: edits are not supported yet
///
void ApplyVertexEdit(OpenSubdiv::HbrVertexEdit<FarStencilFactoryVertex> const & edit) { }
private:
template <class T> friend class FarStencilTablesFactory<T>::Patch;
FarVertexStencil * _GetStencil() {
return _stencil;
}
void _SetStencil( FarVertexStencil * stencil) {
_stencil = stencil;
}
FarVertexStencil * _stencil;
};
// A private helper class that caches computations for the current face
template <class T>
class FarStencilTablesFactory<T>::Patch {
public:
// Constructor
Patch() : _face(0), _quadrant(0), _allocator(0) { }
// Returns the current coarse face
HbrFace<T> const * GetCurrentFace() const {
return _face;
}
// Sub-quadrant of the current face if it's not a quad
int GetCurrentQuadrant() const {
return _quadrant;
}
// Returns the number of weights in the stencils for this face
int GetStencilSize() const {
return (int)_allocator->GetStencilSize();
}
// Return the indices of the control vertices in the HbrMesh
std::vector<int> const & GetControlVertexIndices() const {
return _vertIndices;
}
// Gathers all the coarse control vertices for an arbitrary patch
void SetupControlStencils( HbrFace<T> * f, int quadrant );
// Appends stencil weight coefficients for the given u & v
bool GetStencilsAtUV( HbrHalfedge<T> * e,
float u,
float v,
int reflevel,
float *point,
float *deriv1,
float *deriv2 );
private:
// True if the vertex has a BSpline limit
static bool _IsaBSpline( HbrVertex<T> * v );
// True if the edge has a BSpline limit
static bool _IsaBSpline( HbrHalfedge<T> * e );
// True if the face has a BSpline limit
static bool _IsaBSpline( HbrFace<T> * f );
// Computes the limit stencils
void _GetLimitStencils( HbrVertex<T> * v,
float *point );
// Computes derivative limit stencils
void _GetTangentLimitStencils( HbrHalfedge<T> * e,
float *uderiv,
float *vderiv );
// Computes BSpline weights
static void _GetBSplineWeights( float t,
float *cubicWeights,
float *quadraticWeights );
// Updates the cached BSpline stencils
void _UpdateBSplineStencils( HbrFace<T> const * f );
// Computes BSpline stencil weights at (u,v)
void _GetBSplineStencilsAtUV( float u,
float v,
float *point,
float *deriv1,
float *deriv2 );
HbrFace<T> * _face; // current face
int _quadrant, // current quadrant (if _face is not a quad)
_sharpedge; // index of the sharp edge (if any)
std::vector<int> _vertIndices; // indices of the control vertices
HbrFace<T> const * _bsplineFace; // current b-spline sub-face
FarVertexStencil * _bsplineStencils[16], // control stencils for current
* _reflectedStencils[4]; // b-spline sub-face
FarVertexStencilAllocator * _allocator;
};
// Gathers all the coarse control vertices for an arbitrary patch
template <class T> void
FarStencilTablesFactory<T>::Patch::SetupControlStencils( HbrFace<T> * f,
int quadrant ) {
assert(f and f->IsCoarse());
_quadrant = quadrant;
if (f==GetCurrentFace())
return;
_face = f;
_bsplineFace = NULL;
HbrMesh<T> * mesh = f->GetMesh();
// reset stencil pointers in coarse vertices (if any)
for (int i=0; i<(int)_vertIndices.size(); ++i) {
mesh->GetVertex(_vertIndices[i])->GetData()._SetStencil(0);
}
// new face will require a new set of coarse vertices
_vertIndices.clear();
// most stencils should use 16 CVs : 64 should be enough for most faces
_vertIndices.reserve( 16*4 );
// Gather operator that collects all the 1-ring control vertices around a
// face's corner
//
// R2
// o
// / .
// / .
// / . R1 R0
// R3 o o ----------- o ----
// \ | |
// \ | |
// \ | Corner |
// o ---- o ----------- o ----
// R4 | | ........... |
// | | ........... |
// | | .. Face .. |
// | | ........... |
// o ---- o ----------- o ----
// R5 | | |
// | | |
//
class GatherOperator : public HbrFaceOperator<T> {
HbrFace<T> const * _face;
HbrVertex<T> const * _corner;
std::vector<int> & _verts;
public:
GatherOperator( HbrFace<T> const * face,
HbrVertex<T> const * corner, std::vector<int> & verts ) :
_face(face), _corner(corner), _verts(verts) { }
virtual void operator() (HbrFace<T> &face) {
HbrMesh<T> * mesh = face.GetMesh();
assert(mesh);
if (&face==_face)
return;
int nv = face.GetNumVertices();
for (int i=0; i<nv; ++i) {
HbrHalfedge<T> * e = face.GetEdge(i);
// skip edges along original 0-ring face
if (e and (e->GetRightFace()==_face or e->GetLeftFace()==_face))
continue;
// skip original corner vertex
if (e->GetDestVertex(mesh)!=_corner)
_verts.push_back(e->GetDestVertexID());
}
}
};
for (int i=0; i<f->GetNumVertices(); ++i) {
HbrVertex<T> * corner = f->GetVertex(i);
// save the the 0-ring corner vertices
_vertIndices.push_back( corner->GetID() );
// gather the 1-ring vertices
GatherOperator op( f, corner, _vertIndices );
corner->ApplyOperatorSurroundingFaces( op );
}
std::sort( _vertIndices.begin(), _vertIndices.end());
std::vector<int>::const_iterator last = std::unique(_vertIndices.begin(), _vertIndices.end());
int ssize = (int)(last-_vertIndices.begin());
_vertIndices.resize(ssize);
// At this point _vertIndices contains the IDs of all base vertices that
// control the limit surface patch corresponding to the given face.
// Now we need to create and cache a base stencil for each of these
// control vertices.
if (_allocator) {
delete _allocator;
}
for (int i=0; i<4; ++i) {
_reflectedStencils[i] = NULL;
}
_allocator = new FarVertexStencilAllocator(ssize);
for (int i=0; i<ssize; ++i) {
// Allocate a clear vertex stencil (all coefs set to 0.0)
FarVertexStencil * stencil = _allocator->Allocate();
stencil->Reset(0.0f);
// Set the i-th coefficient of this stencil to 1.0
stencil->_GetData()[i] = 1.0f;
// Assign the stencil to the control vertex
mesh->GetVertex(_vertIndices[i])->GetData()._SetStencil(stencil);
}
}
// Evaluate the surface for the quad face left of edge at local coordinates
// (u,v), computing point and tangent stencils for non-null corresponding
// stencil pointers.
//
// In most cases only approximate evaluation is done by linearly interpolating
// between limit values after refLevel subdivision steps.
//
template <class T> bool
FarStencilTablesFactory<T>::Patch::GetStencilsAtUV( HbrHalfedge<T> * e,
float u,
float v,
int reflevel,
float *point,
float *uderiv,
float *vderiv ) {
assert( _allocator );
HbrFace<T> * f = e->GetLeftFace();
if (f->IsHole())
return false;
// non-quad ? get corresponding quadrant sub-face
if (f->GetMesh()->GetSubdivision()->FaceIsExtraordinary(f->GetMesh(), f)) {
f->Refine();
f = f->GetChild(GetCurrentQuadrant());
}
// We cache the B-spline stencils that we compute for a face,
// so the first thing we do is check whether the face that was given
// to us is the same one for which we last computed the B-spline
// stencils. If this is so, we can simply return the pointer.
if (f==_bsplineFace) {
_GetBSplineStencilsAtUV( u, v, point, uderiv, vderiv );
return true;
} else if (_IsaBSpline(f)) {
_UpdateBSplineStencils( f );
_GetBSplineStencilsAtUV( u, v, point, uderiv, vderiv );
return true;
}
// We reached the maximum recursion : give up !
if (reflevel==0) {
assert(not f->IsCoarse());
FarVertexStencil * pt = _allocator->Allocate(),
* utan = _allocator->Allocate(),
* vtan = _allocator->Allocate();
// Compute the bi-linear weights corresponding to the 4 face corners:
float weights[4];
weights[0] = (1.0f - u)*(1.0f - v);
weights[1] = u * (1.0f - v);
weights[2] = u * v;
weights[3] = (1.0f - u) * v;
// Iterate over the 4 corners
for(int i = 0; i < 4; ++i) {
if(weights[i] == 0)
continue;
HbrHalfedge<T> * elimit = f->GetEdge(i);
HbrVertex<T> * vlimit = f->GetVertex(i);
_GetLimitStencils( vlimit, pt->_GetData() );
_GetTangentLimitStencils( elimit, utan->_GetData(),
vtan->_GetData() );
FarVertexStencil::AddScaled( point, pt, weights[i] );
// Tangent vectors must compensate for the CCW rotation of 'elimit'
switch (i) {
case 0: {
FarVertexStencil::AddScaled( uderiv, utan, weights[i] );
FarVertexStencil::AddScaled( vderiv, vtan, weights[i] ); } break;
case 1: {
FarVertexStencil::AddScaled( uderiv, vtan, -weights[i] );
FarVertexStencil::AddScaled( vderiv, utan, weights[i] ); } break;
case 2: {
FarVertexStencil::AddScaled( uderiv, utan, -weights[i] );
FarVertexStencil::AddScaled( vderiv, vtan, -weights[i] ); } break;
case 3: {
FarVertexStencil::AddScaled( uderiv, vtan, weights[i] );
FarVertexStencil::AddScaled( vderiv, utan, -weights[i] ); } break;
}
}
_allocator->Deallocate(pt);
_allocator->Deallocate(utan);
_allocator->Deallocate(vtan);
return true;
} else {
f->Refine();
int quadrant;
if (u<=0.5f and v<=0.5f) { quadrant = 0; }
else if (u> 0.5f and v<=0.5f) { quadrant = 1; u-=0.5f; }
else if (u> 0.5f and v> 0.5f) { quadrant = 2; u-=0.5f; v-=0.5f; }
else if (u<=0.5f and v> 0.5f) { quadrant = 3; v-=0.5f; }
else
assert(0);
HbrVertex<T> * a = f->GetVertex(quadrant)->Subdivide(),
* b = f->GetEdge(quadrant)->Subdivide();
HbrHalfedge<T> * subedge = a->GetEdge(b);
GetStencilsAtUV( subedge, 2.0f*u, 2.0f*v, reflevel-1, point, uderiv, vderiv );
}
return true;
}
// True if the vertex has a BSpline limit
template <class T> bool
FarStencilTablesFactory<T>::Patch::_IsaBSpline( HbrVertex<T> * v ) {
if (v->IsExtraordinary() or v->GetMask(true))
return false;
HbrHalfedge<T> const * start = v->GetIncidentEdge(),
* e = start;
if (e) do {
HbrFace<T> * f = e->GetFace();
// Adjacent face must be regular
if (f->GetNumVertices() != 4)
return false;
// If the adjacent face has hierarchical edits which don't
// terminate at this level, we can't subdivide
if (HbrHierarchicalEdit<T> ** edits = f->GetHierarchicalEdits()) {
while (HbrHierarchicalEdit<T> const * edit = *edits) {
if (not edit->IsRelevantToFace(f))
break;
if (edit->GetNSubfaces() > f->GetDepth())
return false;
edits++;
}
}
HbrHalfedge<T> const * next = v->GetNextEdge(e);
if (!next) {
// We encountered a break in the cycle. This means the
// vertex is on a boundary!
return false;
} else {
e = next;
}
} while (e != start);
// If there is facevarying data, we check whether this is a
// facevarying boundary vertex as well.
if (v->GetMesh()->GetFVarCount() and
v->GetMesh()->GetFVarInterpolateBoundaryMethod() != HbrMesh<T>::k_InterpolateBoundaryNone) {
if (not v->IsFVarAllSmooth()) return false;
}
return true;
}
// True if the edge has a BSpline limit
template <class T> bool
FarStencilTablesFactory<T>::Patch::_IsaBSpline( HbrHalfedge<T> * e ) {
// Edge operator checking sharpness of next edge in cycle
struct _SharpOnext {
HbrHalfedge<T> const *
operator () (HbrHalfedge<T> const * e0) const {
HbrVertex<T> const * v = e0->GetOrgVertex();
HbrHalfedge<T> const * e = v->GetNextEdge(e0);
if (e) do {
if (e->GetSharpness())
break;
e = v->GetNextEdge(e);
} while (e and e != e0);
return (e == e0 ? 0 : e);
}
};
e->GetOrgVertex()->GuaranteeNeighbors();
if (e->GetSharpness() and e->GetSharpness() < HbrHalfedge<T>::k_InfinitelySharp)
return false;
HbrMesh<T> const * mesh = e->GetLeftFace() ? e->GetLeftFace()->GetMesh() :
e->GetRightFace()->GetMesh();
// currently the B-spline code does not handle facevarying sharp edges correctly
if (mesh->GetFVarCount() and
mesh->GetFVarInterpolateBoundaryMethod() != HbrHalfedge<T>::k_InterpolateBoundaryNone) {
for(int j = 0; j < mesh->GetFVarCount(); ++j)
if(e->GetFVarSharpness(j))
return false;
}
if (e->GetSharpness()) {
if (e->GetOrgVertex()->GetMask(true) != HbrVertex<T>::k_Crease or
e->GetDestVertex()->GetMask(true) != HbrVertex<T>::k_Crease)
return false;
if (!e->GetOpposite())
return false;
HbrHalfedge<T> const * e1 = _SharpOnext(e),
* e2 = _SharpOnext(e->GetOpposite());
if ( (not e1)
or (not e2)
or e1->GetSharpness() < HbrHalfedge<T>::k_InfinitelySharp
or e2->GetSharpness() < HbrHalfedge<T>::k_InfinitelySharp )
return false;
} else {
if ((not _IsaBSpline(e->GetOrgVertex())) or
(not _IsaBSpline(e->GetDestVertex()))) {
return false;
}
}
return true;
}
// True if the face has a BSpline limit
template <class T> bool
FarStencilTablesFactory<T>::Patch::_IsaBSpline( HbrFace<T> * f ) {
int nv = f->GetNumVertices();
if (nv != 4)
return false;
if (f->IsHole())
return false;
HbrMesh<T> const * mesh = f->GetMesh();
HbrHalfedge<T> * sharpEdge = 0,
* edge = f->GetFirstEdge();
for (int i = 0; i < 4; ++i) {
edge->GetOrgVertex()->GuaranteeNeighbors();
// currently the BSpline code does not handle facevarying
// sharp edges correctly
if (mesh->GetFVarCount() and mesh->GetFVarInterpolateBoundaryMethod() !=
HbrMesh<T>::k_InterpolateBoundaryNone) {
for(int j = 0; j < mesh->GetFVarCount(); ++j)
if(edge->GetFVarSharpness(j))
return false;
}
// ensure that the face isn't adjacent to more than one sharp edge
if (edge->GetSharpness() >= HbrHalfedge<T>::k_InfinitelySharp) {
if (sharpEdge) {
return false;
} else {
sharpEdge = edge;
}
}
edge = edge->GetNext();
}
if (sharpEdge) {
// Make sure the two vertices on the sharp edge are creases
// and the other two vertices are bspline verts
if ( sharpEdge->GetOrgVertex()->GetMask(true)!=HbrVertex<T>::k_Crease or
sharpEdge->GetDestVertex()->GetMask(true)!=HbrVertex<T>::k_Crease or
(not _IsaBSpline(sharpEdge->GetNext()->GetDestVertex())) or
(not _IsaBSpline(sharpEdge->GetPrev()->GetOrgVertex()))) {
return false;
}
// Make sure the hard edge continues being a hard edge on adjacent
// two faces
edge = sharpEdge->GetNext()->GetOpposite();
if (!edge) {
return false;
}
if (edge->GetNext()->GetSharpness() !=
HbrHalfedge<T>::k_InfinitelySharp) {
return false;
}
edge = sharpEdge->GetPrev()->GetOpposite();
if ((not edge) or edge->GetPrev()->GetSharpness() !=
HbrHalfedge<T>::k_InfinitelySharp) {
return false;
}
} else {
// All four vertices must be spline verts
edge = f->GetFirstEdge();
for (int i = 0; i < 4; ++i) {
if (!_IsaBSpline(edge->GetOrgVertex()))
return false;
edge = edge->GetNext();
}
}
return true;
}
// Updates the cached BSpline stencils
template <class T> void
FarStencilTablesFactory<T>::Patch::_UpdateBSplineStencils( HbrFace<T> const * f ) {
assert( f->GetNumVertices()==4 );
_bsplineFace = f;
// Fill out the array of stencils assuming this is a simple B-Spline
// case, and no stencil reflection is necessary.
static size_t indices[16] = {5, 4, 0, 1, 6, 2, 3, 7, 10, 11, 15, 14, 9, 13, 12, 8};
int sharpedge = -1;
for (int i=0; i<4; ++i) {
HbrHalfedge<T> const * e = f->GetEdge(i);
// First check if this edge is sharp, and if so remember it.
// Also, if it's sharp we don't want all of the four stencils
// whose numbers are given by indices[4*i]..indices[4*i+3].
// Rather, we need just the first two (the remaining two
// will be computed by reflection later in this function).
//
// | | |
// | | | --- : regular edge
// | | |
// | (4*i+1) | (4*i) | === : sharp edge
// X --------- X ========= o ------
// e1 e X : accumulated vertices
//
if (e->GetSharpness() >= HbrHalfedge<T>::k_InfinitelySharp) {
sharpedge=i;
HbrHalfedge<T> * e1 = e->GetPrev()->GetOpposite()->GetPrev();
_bsplineStencils[indices[4*i ]] = e->GetOrgVertex()->GetData()._GetStencil();
_bsplineStencils[indices[4*i+1]] = e1->GetOrgVertex()->GetData()._GetStencil();
continue;
}
// Also must check if the previous edge was sharp. If it was, then
// once again, we only need two stencils instead of four. In this
// case those are the stencils numbered indices[4*i] and
// indices[4*i+3].
//
// | || |
// | || | --- : regular edge
// | || |
// | || (4*i) | || : sharp edge
// X --------- X --------- o ------
// | e | X : accumulated vertices
// | |
// |
// | (4*i+3)
// ---- X ----
//
if (e->GetPrev()->GetSharpness() >= HbrHalfedge<T>::k_InfinitelySharp) {
_bsplineStencils[indices[4*i ]] = e->GetOrgVertex()->GetData()._GetStencil();
_bsplineStencils[indices[4*i+3]] = e->GetOpposite()->GetNext()->GetDestVertex()->GetData()._GetStencil();
continue;
}
// Both the current edge, and the previous one are smooth,
// so we should get all four stencils in this case.
HbrHalfedge<T> * e2 = e->GetOpposite()->GetNext()->GetOpposite()->GetNext();
for (int j=0; j<4; ++j) {
assert(e2);
_bsplineStencils[indices[4*i+j]] = e2->GetOrgVertex()->GetData()._GetStencil();
e2 = e2->GetNext();
}
}
if (sharpedge<0)
return;
if (not _reflectedStencils[0]) {
_reflectedStencils[0] = _allocator->Allocate();
_reflectedStencils[1] = _allocator->Allocate();
_reflectedStencils[2] = _allocator->Allocate();
_reflectedStencils[3] = _allocator->Allocate();
}
// There is a sharp edge around the face, pointed to by sharpEdge.
// We must override the corresponding 4 outer control stencils by
// reflecting 4 internal control stencils across this edge.
// We'll make use of the following three static index arrays.
// reflect[k] lists the indices of those stencils who must be reflected
// if the sharp edge is the k-th edge ccw around the face.
static int reflect[4][4] = {{8, 9, 10, 11},{1, 5, 9, 13},{7, 6, 5, 4},{14, 10, 6, 2}};
// via[k] lists the indices of those stencils in the row or column
// corresponding to the k-th sharp edge (ccw around the face).
static int via[4][4] = {{4, 5, 6, 7}, {2, 6, 10, 14}, {11, 10, 9, 8}, {13, 9, 5, 1}};
// dest[k] lists the destination of the reflected stencils
// corresponding to the k-th sharp edge (ccw around the face).
static int dest[4][4] = {{0, 1, 2, 3}, {3, 7, 11, 15}, {15, 14, 13, 12}, {12, 8, 4, 0}};
// We must reflect the stencil reflect[sharpEdgeIndex][j] via
// stencil via[sharpEdgeIndex][j], overriding the stencil
// dest[sharpEdgeIndex][j]
for (int i=0; i<4; ++i) {
_reflectedStencils[i]->Combine(
2.0, *(_bsplineStencils[ via[sharpedge][i]]),
-1.0, *(_bsplineStencils[reflect[sharpedge][i]]) );
_bsplineStencils[dest[sharpedge][i]] = _reflectedStencils[i];
}
return;
}
// Computes BSpline weights
template <class T> void
FarStencilTablesFactory<T>::Patch::_GetBSplineWeights( float t,
float *cubicWeights,
float *quadraticWeights) {
// The weights for the four uniform cubic B-Spline basis functions are:
// (1/6)(1 - t)^3
// (1/6)(3t^3 - 6t^2 + 4)
// (1/6)(-3t^3 + 3t^2 + 3t + 1)
// (1/6)t^3
float t2 = t*t;
float t3 = 3*t2*t;
float w0 = 1 - t;
cubicWeights[0] = (w0*w0*w0) / 6.0f;
cubicWeights[1] = (t3 - 6.0f*t2 + 4.0f) / 6.0f;
cubicWeights[2] = (3.0f*t2 - t3 + 3.0f*t + 1.0f) / 6.0f;
cubicWeights[3] = t3 / 18.0f;
// The weights for the three uniform quadratic basis functions are:
// (1/2)(1-t)^2
// (1/2)(1 + 2t - 2t^2)
// (1/2)t^2
quadraticWeights[0] = 0.5f * w0 * w0;
quadraticWeights[1] = 0.5f + t - t2;
quadraticWeights[2] = 0.5f * t2;
}
// Computes BSpline stencil weights at (u,v)
template <class T> void
FarStencilTablesFactory<T>::Patch::_GetBSplineStencilsAtUV( float u,
float v,
float *point,
float *deriv1,
float *deriv2 ) {
float uWeights[4], vWeights[4], duWeights[3], dvWeights[3];
_GetBSplineWeights(u, uWeights, duWeights);
_GetBSplineWeights(v, vWeights, dvWeights);
if (point) {
FarVertexStencil::Reset(point, 0.0f, GetStencilSize());
// Compute the tensor product weight corresponding to each control
// vertex, and accumulate the weighted control stencils.
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
float weight = uWeights[j] * vWeights[i];
FarVertexStencil::AddScaled(point, _bsplineStencils[4*i+j], weight);
}
}
}
if (deriv1 and deriv2) {
// Compute the du tangent stencil. This is done by taking the tensor
// product between the quadratic weights computed for u and the cubic
// weights computed for v. The stencil is constructed using
// differences between consecutive vertices in each row (i.e.
// in the u direction).
FarVertexStencil::Reset(deriv1, 0.0f, GetStencilSize());
for (int i = 0; i < 4; ++i) {
float prevWeight = 0.0f;
for (int j = 0; j < 3; ++j) {
float weight = duWeights[j]*vWeights[i];
FarVertexStencil::AddScaled(deriv1, _bsplineStencils[4*i+j], prevWeight - weight);
prevWeight = weight;
}
FarVertexStencil::AddScaled(deriv1, _bsplineStencils[4*i+3], prevWeight);
}
FarVertexStencil::Reset(deriv2, 0.0f, GetStencilSize());
for (int j = 0; j < 4; ++j) {
float prevWeight = 0.0f;
for (int i = 0; i < 3; ++i) {
float weight = uWeights[j]*dvWeights[i];
FarVertexStencil::AddScaled(deriv2, _bsplineStencils[4*i+j], prevWeight - weight);
prevWeight = weight;
}
FarVertexStencil::AddScaled(deriv2, _bsplineStencils[12+j], prevWeight);
}
}
}
// Computes the limit stencils
template <class T> void
FarStencilTablesFactory<T>::Patch::_GetLimitStencils( HbrVertex<T> * v,
float *point ) {
v->GuaranteeNeighbors();
// Refine vertex until stable
while (v->IsVolatile()) {
v->Refine();
HbrVertex<T> * vfine = v->Subdivide();
assert(vfine);
v=vfine;
}
assert(v->GetMask(false) == v->GetMask(true));
switch(v->GetMask(false)) {
case HbrVertex<T>::k_Smooth:
case HbrVertex<T>::k_Dart: {
assert(not v->OnBoundary());
FarVertexStencil::Reset(point, 0.0f, GetStencilSize());
int n = v->GetValence();
//
// o ------- o o
// b0*1 | a0*4 | b3*1
// | |
// | |
// | |
// o ------- o ------- o
// a1*4 | point | a3*4
// | |
// | |
// | |
// o o ------- o
// b1*1 a2*4 b2*1
//
// point = (a0+a1+a2+a3)*4 + (b0+b1+b2+b3)
//
class SmoothVertexOperator : public HbrHalfedgeOperator<T> {
public:
SmoothVertexOperator(HbrVertex<T> *v, float * point) :
_vertex(v), _point(point) { }
virtual void operator() (HbrHalfedge<T> &e) {
HbrVertex<T> * a = e.GetDestVertex();
HbrHalfedge<T> * next = e.GetNext();
if (a==_vertex) {
a = e.GetOrgVertex();
next = e.GetPrev();
}
HbrVertex<T> * b = next->GetDestVertex();
FarVertexStencil::AddScaled( _point, a->GetData().GetStencil(), 4.0f );
FarVertexStencil::Add( _point, b->GetData().GetStencil() );
}
private:
HbrVertex<T> * _vertex;
float * _point;
};
SmoothVertexOperator op( v, point );
v->ApplyOperatorSurroundingEdges(op);
float s = 1.0f / float(n*(n+5.0f));
FarVertexStencil::Scale(point, s, GetStencilSize());
FarVertexStencil::AddScaled(point, v->GetData().GetStencil(), s*n*n );
} break;
case HbrVertex<T>::k_Crease: {
FarVertexStencil::Reset(point, 0.0f, GetStencilSize());
//
// | | |
// | | |
// | | | --- : regular edge
// ---- o ======= o ======= o ---
// a1 | point | | a0 === : sharp edge
// | | |
// | | |
//
// point = a0 + a1
//
class CreaseEdgeOperator : public HbrHalfedgeOperator<T> {
public:
CreaseEdgeOperator(HbrVertex<T> *v, float * point) :
_vertex(v), _point(point), _count(0) { }
virtual void operator() (HbrHalfedge<T> &e) {
if (_count<2 and e.IsSharp(false)) {
HbrVertex<T> * a = e.GetDestVertex();
if (a==_vertex)
a = e.GetOrgVertex();
FarVertexStencil::Add( _point, a->GetData().GetStencil() );
++_count;
}
}
private:
HbrVertex<T> * _vertex;
float * _point;
int _count;
};
CreaseEdgeOperator op( v, point );
v->ApplyOperatorSurroundingEdges(op);
FarVertexStencil::Scale( point, 1.0f/6.0f, GetStencilSize() );
FarVertexStencil::AddScaled( point, v->GetData().GetStencil(), 2.0f/3.0f );
} break;
case HbrVertex<T>::k_Corner: {
FarVertexStencil::Copy( point, v->GetData().GetStencil() );
} break;
}
}
// Computes derivative limit stencils
template <class T> void
FarStencilTablesFactory<T>::Patch::_GetTangentLimitStencils( HbrHalfedge<T> * e,
float * uderiv,
float * vderiv ) {
static float creaseK[][12] = {
{ .000000f, .000000f, .000000f, .000000f, .000000f, .000000f,
.000000f, .000000f, .000000f, .000000f, .000000f, .000000f },
{ .000000f, .000000f, .000000f, .000000f, .000000f, .000000f,
.000000f, .000000f, .000000f, .000000f, .000000f, .000000f },
{ 1.000000f, -.500000f, -.500000f, .000000f, .000000f, .000000f,
.000000f, .000000f, .000000f, .000000f, .000000f, .000000f },
{ 1.000000f, .000000f, .000000f, -1.00000f, .000000f, .000000f,
.000000f, .000000f, .000000f, .000000f, .000000f, .000000f },
{ 1.000000f, .500000f, .500000f, -1.00000f, -1.00000f, .000000f,
.000000f, .000000f, .000000f, .000000f, .000000f, .000000f },
{ .707107f, .500000f, .500000f, -.500000f, -.707107f, -.500000f,
.000000f, .000000f, .000000f, .000000f, .000000f, .000000f },
{ .743496f, .601501f, .601501f, -.371748f, -.601501f, -.601501f,
-.371748f, .000000f, .000000f, .000000f, .000000f, .000000f },
{ .788675f, .683013f, .683013f, -.288675f, -.500000f, -.577350f,
-.500000f, -.288675f, .000000f, .000000f, .000000f, .000000f },
{ .835813f, .753042f, .753042f, -.231921f, -.417907f, -.521121f,
-.521121f, -.417907f, -.231921f, .000000f, .000000f, .000000f },
{ .882683f, .815493f, .815493f, -.191342f, -.353553f, -.461940f,
-.500000f, -.461940f, -.353553f, -.191342f, .000000f, .000000f },
{ .928486f, .872491f, .872491f, -.161230f, -.303013f, -.408248f,
-.464243f, -.464243f, -.408248f, -.303013f, -.161230f, .000000f }
};
HbrVertex<T> * v = e->GetOrgVertex();
while (v->IsVolatile()) {
v->Refine();
v = v->Subdivide();
e = v->GetEdge(e->Subdivide());
assert(e);
}
assert(v->GetMask(false) == v->GetMask(true));
switch(v->GetMask(false)) {
case HbrVertex<T>::k_Smooth:
case HbrVertex<T>::k_Dart: {
FarVertexStencil::Reset(uderiv, 0.0f, GetStencilSize());
FarVertexStencil::Reset(vderiv, 0.0f, GetStencilSize());
int n = v->GetValence();
float alpha = 2.0f * M_PI / (float) n,
c0 = 2.0f * cosf(alpha),
c1 = 1.0f,
A = 1.0f + c0 + sqrtf(18.0f + c0) * cosf(0.5f * alpha);
int i = 0;
float d = 0.0f;
HbrHalfedge<T> * e0=e;
if (e0) do {
HbrHalfedge<T> * onext = v->GetNextEdge(e0);
assert(onext);
HbrVertex<T> * w1 = e0->GetDestVertex(),
* f1 = e0->GetNext()->GetDestVertex(),
* w2 = onext->GetDestVertex(),
* f2 = onext->GetNext()->GetDestVertex();
c0 = c1;
c1 = cosf((i+1.0f) * alpha);
float K1 = A * c0,
K2 = c0 + c1;
d += fabsf(K1) + fabsf(K2);
// Accumulate
FarVertexStencil::AddScaled(uderiv, w1->GetData().GetStencil(), K1);
FarVertexStencil::AddScaled(uderiv, f1->GetData().GetStencil(), K2);
FarVertexStencil::AddScaled(vderiv, w2->GetData().GetStencil(), K1);
FarVertexStencil::AddScaled(vderiv, f2->GetData().GetStencil(), K2);
e0 = onext;
i++;
} while (e0 != e);
// XXXX prman scales deriv1 and deriv2 by 1.0/d
// Why? Do we need to do this as well?
float invd = 1.0f/d;
FarVertexStencil::Scale(uderiv, invd, GetStencilSize());
FarVertexStencil::Scale(vderiv, invd, GetStencilSize());
} break;
case HbrVertex<T>::k_Crease: {
class CreaseEdgesOperator : public HbrHalfedgeOperator<T> {
private:
bool _gather;
int _valence, _count;
float _d, * _deriv, (*_crease)[12];
public:
HbrVertex<T> * org;
HbrHalfedge<T> * ei[2];
int eidx[2];
CreaseEdgesOperator(HbrVertex<T> * v) : _gather(true), _count(0), org(v) {
ei[0]=ei[1]=0;
eidx[0]=eidx[1]=-1;
}
void SetAccumMode(int valence, float d, float * deriv, float (*crease)[12]) {
_gather = false;
_count = 0;
_valence = valence;
_d=d; _deriv=deriv; _crease=crease;
}
virtual void operator() (HbrHalfedge<T> &e) {
if (_gather) {
if (e.IsSharp(false) and (eidx[0]<0 or eidx[1]<0)) {
if (not ei[1]) { ei[1]=&e; eidx[1]=_count; }
else if (not ei[0]) { ei[0]=&e; eidx[0]=_count; }
else
return;
}
} else {
if ( _count>eidx[1] and _count<eidx[0] ) {
HbrVertex<T> * v = e.GetDestVertex();
if (v==org)
v = e.GetOrgVertex();
int idx = _count - eidx[1] + 3;
FarVertexStencil::AddScaled(_deriv, v->GetData().GetStencil(), _crease[_valence][idx]);
_d += fabsf(_crease[_valence][idx]);
}
}
++_count;
}
};
CreaseEdgesOperator op( v );
v->ApplyOperatorSurroundingEdges( op );
// We expected (at least) two edges to be on a crease. Instead, there
// are zero or 1. We're not really sure what to do in that case, but
// the easiest thing to do is to ignore the crease, which fixes the
// coredump at the very least. The code here is exactly the same as
// the default case.
if ((op.eidx[0]<0) or (op.eidx[1]<0)) {
e = e->GetPrev();
HbrVertex<T> * v1 = e->GetDestVertex(),
* v2 = v->GetNextEdge(e)->GetDestVertex();
FarVertexStencil::Subtract(uderiv, v1->GetData().GetStencil(), v->GetData().GetStencil());
FarVertexStencil::Subtract(vderiv, v2->GetData().GetStencil(), v->GetData().GetStencil());
break;
}
// Count the number of edges between e1 and e2 going clockwise.
// Since e1 is AFTER e2 (see above), this just requires some math on
// the edge indices
int n = v->GetValence() - op.eidx[0] + op.eidx[1] + 1;
assert(n >= 2);
// creaseK table has 11 entries : max valence is 10
// XXXX error should be reported
if (n >= 11) {
break;
}
// Math on the two crease vertices
HbrVertex<T> * v1 = op.ei[0]->GetDestVertex(),
* v2 = op.ei[1]->GetDestVertex();
if (v1==v)
v1 = op.ei[0]->GetOrgVertex();
if (v2==v)
v2 = op.ei[1]->GetOrgVertex();
FarVertexStencil::Subtract(uderiv, v1->GetData().GetStencil(), v2->GetData().GetStencil());
FarVertexStencil::Scale(uderiv, 0.5f, GetStencilSize());
FarVertexStencil::AddScaled(vderiv, v->GetData().GetStencil(), creaseK[n][0]);
FarVertexStencil::AddScaled(vderiv, v1->GetData().GetStencil(), creaseK[n][1]);
FarVertexStencil::AddScaled(vderiv, v2->GetData().GetStencil(), creaseK[n][2]);
// Math on vertices between the two creases
float d = fabsf(creaseK[n][0]) + fabsf(creaseK[n][1]) + fabsf(creaseK[n][2]);
op.SetAccumMode( n, d, vderiv, creaseK );
v->ApplyOperatorSurroundingEdges( op );
} break;
case HbrVertex<T>::k_Corner: {
HbrVertex<T> * v1 = e->GetDestVertex(),
* v2 = v->GetQEONext(v1);
FarVertexStencil::Subtract(uderiv, v1->GetData().GetStencil(), v->GetData().GetStencil());
FarVertexStencil::Subtract(vderiv, v2->GetData().GetStencil(), v->GetData().GetStencil());
} break;
}
// Scale tangent stencils so that magnitudes are consistent across levels.
float scale = float (1 << e->GetLeftFace()->GetDepth());
FarVertexStencil::Scale(uderiv, scale, GetStencilSize());
FarVertexStencil::Scale(vderiv, scale, GetStencilSize());
}
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif // FAR_STENCILTABLE_FACTORY_H