2015-05-09 00:31:26 +00:00
|
|
|
//
|
|
|
|
// Copyright 2015 Pixar
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
|
|
// with the following modification; you may not use this file except in
|
|
|
|
// compliance with the Apache License and the following modification to it:
|
|
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
|
|
//
|
|
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
|
|
//
|
|
|
|
// You may obtain a copy of the Apache License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the Apache License with the above modification is
|
|
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
|
|
// language governing permissions and limitations under the Apache License.
|
|
|
|
//
|
|
|
|
|
2015-05-19 18:22:37 +00:00
|
|
|
#ifndef OPENSUBDIV3_OSD_GL_XFB_EVALUATOR_H
|
|
|
|
#define OPENSUBDIV3_OSD_GL_XFB_EVALUATOR_H
|
2015-05-09 00:31:26 +00:00
|
|
|
|
|
|
|
#include "../version.h"
|
|
|
|
|
|
|
|
#include "../osd/opengl.h"
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
#include "../osd/types.h"
|
2015-05-29 16:21:14 +00:00
|
|
|
#include "../osd/bufferDescriptor.h"
|
2015-05-09 00:31:26 +00:00
|
|
|
|
|
|
|
namespace OpenSubdiv {
|
|
|
|
namespace OPENSUBDIV_VERSION {
|
|
|
|
|
|
|
|
namespace Far {
|
2015-05-28 00:23:36 +00:00
|
|
|
class PatchTable;
|
2015-05-22 18:50:01 +00:00
|
|
|
class StencilTable;
|
2015-05-28 00:23:36 +00:00
|
|
|
class LimitStencilTable;
|
2015-05-09 00:31:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
namespace Osd {
|
|
|
|
|
2015-05-22 18:50:01 +00:00
|
|
|
/// \brief GL TextureBuffer stencil table
|
2015-05-09 00:31:26 +00:00
|
|
|
///
|
2015-05-22 18:50:01 +00:00
|
|
|
/// This class is a GL Texture Buffer representation of Far::StencilTable.
|
2015-05-09 00:31:26 +00:00
|
|
|
///
|
|
|
|
/// GLSLTransformFeedback consumes this table to apply stencils
|
|
|
|
///
|
|
|
|
///
|
2015-05-22 18:50:01 +00:00
|
|
|
class GLStencilTableTBO {
|
2015-05-09 00:31:26 +00:00
|
|
|
public:
|
2015-05-22 18:50:01 +00:00
|
|
|
static GLStencilTableTBO *Create(
|
|
|
|
Far::StencilTable const *stencilTable, void *deviceContext = NULL) {
|
2015-05-09 00:31:26 +00:00
|
|
|
(void)deviceContext; // unused
|
2015-05-22 18:50:01 +00:00
|
|
|
return new GLStencilTableTBO(stencilTable);
|
2015-05-09 00:31:26 +00:00
|
|
|
}
|
|
|
|
|
2015-05-28 00:23:36 +00:00
|
|
|
static GLStencilTableTBO *Create(
|
|
|
|
Far::LimitStencilTable const *limitStencilTable,
|
|
|
|
void *deviceContext = NULL) {
|
|
|
|
(void)deviceContext; // unused
|
|
|
|
return new GLStencilTableTBO(limitStencilTable);
|
|
|
|
}
|
|
|
|
|
2015-05-22 18:50:01 +00:00
|
|
|
explicit GLStencilTableTBO(Far::StencilTable const *stencilTable);
|
2015-05-28 00:23:36 +00:00
|
|
|
explicit GLStencilTableTBO(Far::LimitStencilTable const *limitStencilTable);
|
2015-05-22 18:50:01 +00:00
|
|
|
~GLStencilTableTBO();
|
2015-05-09 00:31:26 +00:00
|
|
|
|
|
|
|
// interfaces needed for GLSLTransformFeedbackKernel
|
|
|
|
GLuint GetSizesTexture() const { return _sizes; }
|
|
|
|
GLuint GetOffsetsTexture() const { return _offsets; }
|
|
|
|
GLuint GetIndicesTexture() const { return _indices; }
|
|
|
|
GLuint GetWeightsTexture() const { return _weights; }
|
2015-05-28 00:23:36 +00:00
|
|
|
GLuint GetDuWeightsTexture() const { return _duWeights; }
|
|
|
|
GLuint GetDvWeightsTexture() const { return _dvWeights; }
|
2015-05-09 00:31:26 +00:00
|
|
|
int GetNumStencils() const { return _numStencils; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
GLuint _sizes;
|
|
|
|
GLuint _offsets;
|
|
|
|
GLuint _indices;
|
|
|
|
GLuint _weights;
|
2015-05-28 00:23:36 +00:00
|
|
|
GLuint _duWeights;
|
|
|
|
GLuint _dvWeights;
|
2015-05-09 00:31:26 +00:00
|
|
|
int _numStencils;
|
|
|
|
};
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
|
|
|
|
class GLXFBEvaluator {
|
|
|
|
public:
|
|
|
|
typedef bool Instantiatable;
|
2015-05-29 16:21:14 +00:00
|
|
|
static GLXFBEvaluator * Create(BufferDescriptor const &srcDesc,
|
|
|
|
BufferDescriptor const &dstDesc,
|
|
|
|
BufferDescriptor const &duDesc,
|
|
|
|
BufferDescriptor const &dvDesc,
|
2015-05-09 00:31:26 +00:00
|
|
|
void * deviceContext = NULL) {
|
|
|
|
(void)deviceContext; // not used
|
|
|
|
GLXFBEvaluator *instance = new GLXFBEvaluator();
|
2015-05-28 00:23:36 +00:00
|
|
|
if (instance->Compile(srcDesc, dstDesc, duDesc, dvDesc))
|
|
|
|
return instance;
|
2015-05-09 00:31:26 +00:00
|
|
|
delete instance;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Constructor.
|
|
|
|
GLXFBEvaluator();
|
|
|
|
|
|
|
|
/// Destructor. note that the GL context must be made current.
|
|
|
|
~GLXFBEvaluator();
|
|
|
|
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
/// ----------------------------------------------------------------------
|
|
|
|
///
|
|
|
|
/// Stencil evaluations with StencilTable
|
|
|
|
///
|
|
|
|
/// ----------------------------------------------------------------------
|
|
|
|
|
2015-05-09 00:31:26 +00:00
|
|
|
/// \brief Generic static stencil function. This function has a same
|
|
|
|
/// signature as other device kernels have so that it can be called
|
|
|
|
/// transparently from OsdMesh template interface.
|
|
|
|
///
|
|
|
|
/// @param srcBuffer Input primvar buffer.
|
|
|
|
/// must have BindVBO() method returning a
|
|
|
|
/// const float pointer for read
|
|
|
|
///
|
|
|
|
/// @param srcDesc vertex buffer descriptor for the input buffer
|
|
|
|
///
|
|
|
|
/// @param dstBuffer Output primvar buffer
|
|
|
|
/// must have BindVBO() method returning a
|
|
|
|
/// float pointer for write
|
|
|
|
///
|
|
|
|
/// @param dstDesc vertex buffer descriptor for the output buffer
|
|
|
|
///
|
|
|
|
/// @param stencilTable stencil table to be applied. The table must have
|
|
|
|
/// Texture Buffer Object interfaces.
|
|
|
|
///
|
|
|
|
/// @param instance cached compiled instance. Clients are supposed to
|
|
|
|
/// pre-compile an instance of this class and provide
|
|
|
|
/// to this function. If it's null the kernel still
|
|
|
|
/// compute by instantiating on-demand kernel although
|
|
|
|
/// it may cause a performance problem.
|
|
|
|
///
|
|
|
|
/// @param deviceContext not used in the GLSLTransformFeedback kernel
|
|
|
|
///
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
template <typename SRC_BUFFER, typename DST_BUFFER, typename STENCIL_TABLE>
|
|
|
|
static bool EvalStencils(
|
2015-05-29 16:21:14 +00:00
|
|
|
SRC_BUFFER *srcBuffer, BufferDescriptor const &srcDesc,
|
|
|
|
DST_BUFFER *dstBuffer, BufferDescriptor const &dstDesc,
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
STENCIL_TABLE const *stencilTable,
|
|
|
|
GLXFBEvaluator const *instance,
|
|
|
|
void * deviceContext = NULL) {
|
|
|
|
|
2015-05-09 00:31:26 +00:00
|
|
|
if (instance) {
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
return instance->EvalStencils(srcBuffer, srcDesc,
|
|
|
|
dstBuffer, dstDesc,
|
2015-05-09 00:31:26 +00:00
|
|
|
stencilTable);
|
|
|
|
} else {
|
|
|
|
// Create an instance on demand (slow)
|
|
|
|
(void)deviceContext; // unused
|
2015-05-28 00:23:36 +00:00
|
|
|
instance = Create(srcDesc, dstDesc,
|
2015-05-29 16:21:14 +00:00
|
|
|
BufferDescriptor(),
|
|
|
|
BufferDescriptor());
|
2015-05-09 00:31:26 +00:00
|
|
|
if (instance) {
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
bool r = instance->EvalStencils(srcBuffer, srcDesc,
|
|
|
|
dstBuffer, dstDesc,
|
2015-05-09 00:31:26 +00:00
|
|
|
stencilTable);
|
|
|
|
delete instance;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-05-28 00:23:36 +00:00
|
|
|
/// \brief Generic static stencil function. This function has a same
|
|
|
|
/// signature as other device kernels have so that it can be called
|
|
|
|
/// transparently from OsdMesh template interface.
|
|
|
|
///
|
|
|
|
/// @param srcBuffer Input primvar buffer.
|
|
|
|
/// must have BindVBO() method returning a
|
|
|
|
/// const float pointer for read
|
|
|
|
///
|
|
|
|
/// @param srcDesc vertex buffer descriptor for the input buffer
|
|
|
|
///
|
|
|
|
/// @param dstBuffer Output primvar buffer
|
|
|
|
/// must have BindVBO() method returning a
|
|
|
|
/// float pointer for write
|
|
|
|
///
|
|
|
|
/// @param dstDesc vertex buffer descriptor for the output buffer
|
|
|
|
///
|
|
|
|
/// @param duBuffer Output U-derivative buffer
|
|
|
|
/// must have BindVBO() method returning a
|
|
|
|
/// float pointer for write
|
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param duDesc vertex buffer descriptor for the du output buffer
|
2015-05-28 00:23:36 +00:00
|
|
|
///
|
|
|
|
/// @param dvBuffer Output V-derivative buffer
|
|
|
|
/// must have BindVBO() method returning a
|
|
|
|
/// float pointer for write
|
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param dvDesc vertex buffer descriptor for the dv output buffer
|
|
|
|
///
|
2015-05-28 00:23:36 +00:00
|
|
|
/// @param stencilTable stencil table to be applied. The table must have
|
|
|
|
/// Texture Buffer Object interfaces.
|
|
|
|
///
|
|
|
|
/// @param instance cached compiled instance. Clients are supposed to
|
|
|
|
/// pre-compile an instance of this class and provide
|
|
|
|
/// to this function. If it's null the kernel still
|
|
|
|
/// compute by instantiating on-demand kernel although
|
|
|
|
/// it may cause a performance problem.
|
|
|
|
///
|
|
|
|
/// @param deviceContext not used in the GLSLTransformFeedback kernel
|
|
|
|
///
|
|
|
|
template <typename SRC_BUFFER, typename DST_BUFFER, typename STENCIL_TABLE>
|
|
|
|
static bool EvalStencils(
|
2015-05-29 16:21:14 +00:00
|
|
|
SRC_BUFFER *srcBuffer, BufferDescriptor const &srcDesc,
|
|
|
|
DST_BUFFER *dstBuffer, BufferDescriptor const &dstDesc,
|
|
|
|
DST_BUFFER *duBuffer, BufferDescriptor const &duDesc,
|
|
|
|
DST_BUFFER *dvBuffer, BufferDescriptor const &dvDesc,
|
2015-05-28 00:23:36 +00:00
|
|
|
STENCIL_TABLE const *stencilTable,
|
|
|
|
GLXFBEvaluator const *instance,
|
|
|
|
void * deviceContext = NULL) {
|
|
|
|
|
|
|
|
if (instance) {
|
|
|
|
return instance->EvalStencils(srcBuffer, srcDesc,
|
|
|
|
dstBuffer, dstDesc,
|
|
|
|
duBuffer, duDesc,
|
|
|
|
dvBuffer, dvDesc,
|
|
|
|
stencilTable);
|
|
|
|
} else {
|
|
|
|
// Create an instance on demand (slow)
|
|
|
|
(void)deviceContext; // unused
|
|
|
|
instance = Create(srcDesc, dstDesc, duDesc, dvDesc);
|
|
|
|
if (instance) {
|
|
|
|
bool r = instance->EvalStencils(srcBuffer, srcDesc,
|
|
|
|
dstBuffer, dstDesc,
|
|
|
|
duBuffer, duDesc,
|
|
|
|
dvBuffer, dvDesc,
|
|
|
|
stencilTable);
|
|
|
|
delete instance;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Generic eval stencils function.
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
///
|
|
|
|
/// @param srcBuffer Input primvar buffer.
|
|
|
|
/// must have BindVBO() method returning a GL
|
|
|
|
/// buffer object of source data
|
|
|
|
///
|
|
|
|
/// @param srcDesc vertex buffer descriptor for the input buffer
|
|
|
|
///
|
|
|
|
/// @param dstBuffer Output primvar buffer
|
|
|
|
/// must have BindVBO() method returning a GL
|
|
|
|
/// buffer object for destination data
|
|
|
|
///
|
|
|
|
/// @param dstDesc vertex buffer descriptor for the output buffer
|
|
|
|
///
|
|
|
|
/// @param stencilTable stencil table to be applied.
|
|
|
|
///
|
|
|
|
template <typename SRC_BUFFER, typename DST_BUFFER, typename STENCIL_TABLE>
|
|
|
|
bool EvalStencils(
|
2015-05-29 16:21:14 +00:00
|
|
|
SRC_BUFFER *srcBuffer, BufferDescriptor const &srcDesc,
|
|
|
|
DST_BUFFER *dstBuffer, BufferDescriptor const &dstDesc,
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
STENCIL_TABLE const *stencilTable) const {
|
|
|
|
|
|
|
|
return EvalStencils(srcBuffer->BindVBO(), srcDesc,
|
|
|
|
dstBuffer->BindVBO(), dstDesc,
|
2015-05-29 16:21:14 +00:00
|
|
|
0, BufferDescriptor(),
|
|
|
|
0, BufferDescriptor(),
|
2015-05-09 00:31:26 +00:00
|
|
|
stencilTable->GetSizesTexture(),
|
|
|
|
stencilTable->GetOffsetsTexture(),
|
|
|
|
stencilTable->GetIndicesTexture(),
|
|
|
|
stencilTable->GetWeightsTexture(),
|
2015-05-28 00:23:36 +00:00
|
|
|
0,
|
|
|
|
0,
|
2015-05-09 00:31:26 +00:00
|
|
|
/* start = */ 0,
|
|
|
|
/* end = */ stencilTable->GetNumStencils());
|
|
|
|
}
|
|
|
|
|
2015-05-28 00:23:36 +00:00
|
|
|
/// \brief Generic eval stencils function with derivative evaluation.
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
///
|
2015-05-28 00:23:36 +00:00
|
|
|
/// @param srcBuffer Input primvar buffer.
|
|
|
|
/// must have BindVBO() method returning a GL
|
|
|
|
/// buffer object of source data
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
///
|
|
|
|
/// @param srcDesc vertex buffer descriptor for the input buffer
|
|
|
|
///
|
2015-05-28 00:23:36 +00:00
|
|
|
/// @param dstBuffer Output primvar buffer
|
|
|
|
/// must have BindVBO() method returning a GL
|
|
|
|
/// buffer object for destination data
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
///
|
|
|
|
/// @param dstDesc vertex buffer descriptor for the output buffer
|
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param duBuffer GL buffer of output U-derivatives.
|
|
|
|
///
|
|
|
|
/// @param duDesc vertex buffer descriptor for the duBuffer
|
|
|
|
///
|
|
|
|
/// @param dvBuffer GL buffer of output V-derivatives.
|
|
|
|
///
|
|
|
|
/// @param dvDesc vertex buffer descriptor for the dvBuffer
|
|
|
|
///
|
2015-05-28 00:23:36 +00:00
|
|
|
/// @param stencilTable stencil table to be applied.
|
|
|
|
///
|
|
|
|
template <typename SRC_BUFFER, typename DST_BUFFER, typename STENCIL_TABLE>
|
|
|
|
bool EvalStencils(
|
2015-05-29 16:21:14 +00:00
|
|
|
SRC_BUFFER *srcBuffer, BufferDescriptor const &srcDesc,
|
|
|
|
DST_BUFFER *dstBuffer, BufferDescriptor const &dstDesc,
|
|
|
|
DST_BUFFER *duBuffer, BufferDescriptor const &duDesc,
|
|
|
|
DST_BUFFER *dvBuffer, BufferDescriptor const &dvDesc,
|
2015-05-28 00:23:36 +00:00
|
|
|
STENCIL_TABLE const *stencilTable) const {
|
|
|
|
|
|
|
|
return EvalStencils(srcBuffer->BindVBO(), srcDesc,
|
|
|
|
dstBuffer->BindVBO(), dstDesc,
|
|
|
|
duBuffer->BindVBO(), duDesc,
|
|
|
|
dvBuffer->BindVBO(), dvDesc,
|
|
|
|
stencilTable->GetSizesTexture(),
|
|
|
|
stencilTable->GetOffsetsTexture(),
|
|
|
|
stencilTable->GetIndicesTexture(),
|
|
|
|
stencilTable->GetWeightsTexture(),
|
|
|
|
stencilTable->GetDuWeightsTexture(),
|
|
|
|
stencilTable->GetDvWeightsTexture(),
|
|
|
|
/* start = */ 0,
|
|
|
|
/* end = */ stencilTable->GetNumStencils());
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief dispatch eval stencils function with derivatives.
|
|
|
|
/// dispatch the GLSL XFB kernel on on GPU asynchronously.
|
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param srcBuffer GL buffer of input primvars.
|
2015-05-28 00:23:36 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param srcDesc vertex buffer descriptor for the srcBuffer
|
2015-05-28 00:23:36 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param dstBuffer GL buffer of output primvars.
|
2015-05-28 00:23:36 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param dstDesc vertex buffer descriptor for the dstBuffer
|
2015-05-28 00:23:36 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param duBuffer GL buffer of output U-derivatives.
|
2015-05-28 00:23:36 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param duDesc vertex buffer descriptor for the duBuffer
|
2015-05-28 00:23:36 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param dvBuffer GL buffer of output V-derivatives.
|
2015-05-28 00:23:36 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param dvDesc vertex buffer descriptor for the dvBuffer
|
|
|
|
///
|
|
|
|
/// @param sizesBuffer GL buffer of the sizes in the stencil table
|
|
|
|
///
|
|
|
|
/// @param offsetsBuffer GL buffer of the offsets in the stencil table
|
2015-05-28 00:23:36 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param indicesBuffer GL buffer of the indices in the stencil table
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param weightsBuffer GL buffer of the weights in the stencil table
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param duWeightsBuffer GL buffer of the du weights in the stencil table
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param dvWeightsBuffer GL buffer of the dv weights in the stencil table
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param start start index of stencil table
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
///
|
2015-06-19 01:11:23 +00:00
|
|
|
/// @param end end index of stencil table
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
///
|
2015-05-29 16:21:14 +00:00
|
|
|
bool EvalStencils(GLuint srcBuffer, BufferDescriptor const &srcDesc,
|
|
|
|
GLuint dstBuffer, BufferDescriptor const &dstDesc,
|
|
|
|
GLuint duBuffer, BufferDescriptor const &duDesc,
|
|
|
|
GLuint dvBuffer, BufferDescriptor const &dvDesc,
|
2015-05-09 00:31:26 +00:00
|
|
|
GLuint sizesBuffer,
|
|
|
|
GLuint offsetsBuffer,
|
|
|
|
GLuint indicesBuffer,
|
|
|
|
GLuint weightsBuffer,
|
2015-05-28 00:23:36 +00:00
|
|
|
GLuint duWeightsBuffer,
|
|
|
|
GLuint dvWeightsBuffer,
|
2015-05-09 00:31:26 +00:00
|
|
|
int start,
|
|
|
|
int end) const;
|
|
|
|
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
/// ----------------------------------------------------------------------
|
|
|
|
///
|
|
|
|
/// Limit evaluations with PatchTable
|
|
|
|
///
|
|
|
|
/// ----------------------------------------------------------------------
|
|
|
|
///
|
|
|
|
/// \brief Generic limit eval function. This function has a same
|
|
|
|
/// signature as other device kernels have so that it can be called
|
|
|
|
/// in the same way.
|
|
|
|
///
|
|
|
|
/// @param srcBuffer Input primvar buffer.
|
|
|
|
/// must have BindVBO() method returning a GL
|
|
|
|
/// buffer object of source data
|
|
|
|
///
|
|
|
|
/// @param srcDesc vertex buffer descriptor for the input buffer
|
|
|
|
///
|
|
|
|
/// @param dstBuffer Output primvar buffer
|
|
|
|
/// must have BindVBO() method returning a GL
|
|
|
|
/// buffer object of destination data
|
|
|
|
///
|
|
|
|
/// @param dstDesc vertex buffer descriptor for the output buffer
|
|
|
|
///
|
|
|
|
/// @param numPatchCoords number of patchCoords.
|
|
|
|
///
|
|
|
|
/// @param patchCoords array of locations to be evaluated.
|
|
|
|
/// must have BindVBO() method returning an
|
|
|
|
/// array of PatchCoord struct in VBO.
|
|
|
|
///
|
|
|
|
/// @param patchTable GLPatchTable or equivalent
|
|
|
|
///
|
|
|
|
/// @param instance cached compiled instance. Clients are supposed to
|
|
|
|
/// pre-compile an instance of this class and provide
|
|
|
|
/// to this function. If it's null the kernel still
|
|
|
|
/// compute by instantiating on-demand kernel although
|
|
|
|
/// it may cause a performance problem.
|
|
|
|
///
|
|
|
|
/// @param deviceContext not used in the GLXFB evaluator
|
|
|
|
///
|
|
|
|
template <typename SRC_BUFFER, typename DST_BUFFER,
|
|
|
|
typename PATCHCOORD_BUFFER, typename PATCH_TABLE>
|
|
|
|
static bool EvalPatches(
|
2015-05-29 16:21:14 +00:00
|
|
|
SRC_BUFFER *srcBuffer, BufferDescriptor const &srcDesc,
|
|
|
|
DST_BUFFER *dstBuffer, BufferDescriptor const &dstDesc,
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
int numPatchCoords,
|
|
|
|
PATCHCOORD_BUFFER *patchCoords,
|
|
|
|
PATCH_TABLE *patchTable,
|
|
|
|
GLXFBEvaluator const *instance,
|
|
|
|
void * deviceContext = NULL) {
|
|
|
|
|
|
|
|
if (instance) {
|
|
|
|
return instance->EvalPatches(srcBuffer, srcDesc,
|
|
|
|
dstBuffer, dstDesc,
|
|
|
|
numPatchCoords, patchCoords,
|
|
|
|
patchTable);
|
|
|
|
} else {
|
|
|
|
// Create an instance on demand (slow)
|
|
|
|
(void)deviceContext; // unused
|
2015-05-28 00:23:36 +00:00
|
|
|
instance = Create(srcDesc, dstDesc,
|
2015-05-29 16:21:14 +00:00
|
|
|
BufferDescriptor(),
|
|
|
|
BufferDescriptor());
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
if (instance) {
|
|
|
|
bool r = instance->EvalPatches(srcBuffer, srcDesc,
|
|
|
|
dstBuffer, dstDesc,
|
|
|
|
numPatchCoords, patchCoords,
|
|
|
|
patchTable);
|
|
|
|
delete instance;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Generic limit eval function. This function has a same
|
|
|
|
/// signature as other device kernels have so that it can be called
|
|
|
|
/// in the same way.
|
|
|
|
///
|
|
|
|
/// @param srcBuffer Input primvar buffer.
|
|
|
|
/// must have BindVBO() method returning a GL
|
|
|
|
/// buffer object of source data
|
|
|
|
///
|
|
|
|
/// @param srcDesc vertex buffer descriptor for the input buffer
|
|
|
|
///
|
|
|
|
/// @param dstBuffer Output primvar buffer
|
|
|
|
/// must have BindVBO() method returning a GL
|
|
|
|
/// buffer object of destination data
|
|
|
|
///
|
|
|
|
/// @param dstDesc vertex buffer descriptor for the output buffer
|
|
|
|
///
|
|
|
|
/// @param duBuffer
|
|
|
|
///
|
|
|
|
/// @param duDesc
|
|
|
|
///
|
|
|
|
/// @param dvBuffer
|
|
|
|
///
|
|
|
|
/// @param dvDesc
|
|
|
|
///
|
|
|
|
/// @param numPatchCoords number of patchCoords.
|
|
|
|
///
|
|
|
|
/// @param patchCoords array of locations to be evaluated.
|
|
|
|
/// must have BindVBO() method returning an
|
|
|
|
/// array of PatchCoord struct in VBO.
|
|
|
|
///
|
|
|
|
/// @param patchTable GLPatchTable or equivalent
|
|
|
|
///
|
|
|
|
/// @param instance cached compiled instance. Clients are supposed to
|
|
|
|
/// pre-compile an instance of this class and provide
|
|
|
|
/// to this function. If it's null the kernel still
|
|
|
|
/// compute by instantiating on-demand kernel although
|
|
|
|
/// it may cause a performance problem.
|
|
|
|
///
|
|
|
|
/// @param deviceContext not used in the GLXFB evaluator
|
|
|
|
///
|
|
|
|
template <typename SRC_BUFFER, typename DST_BUFFER,
|
|
|
|
typename PATCHCOORD_BUFFER, typename PATCH_TABLE>
|
|
|
|
static bool EvalPatches(
|
2015-05-29 16:21:14 +00:00
|
|
|
SRC_BUFFER *srcBuffer, BufferDescriptor const &srcDesc,
|
|
|
|
DST_BUFFER *dstBuffer, BufferDescriptor const &dstDesc,
|
|
|
|
DST_BUFFER *duBuffer, BufferDescriptor const &duDesc,
|
|
|
|
DST_BUFFER *dvBuffer, BufferDescriptor const &dvDesc,
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
int numPatchCoords,
|
|
|
|
PATCHCOORD_BUFFER *patchCoords,
|
|
|
|
PATCH_TABLE *patchTable,
|
|
|
|
GLXFBEvaluator const *instance,
|
|
|
|
void * deviceContext = NULL) {
|
|
|
|
|
|
|
|
if (instance) {
|
|
|
|
return instance->EvalPatches(srcBuffer, srcDesc,
|
|
|
|
dstBuffer, dstDesc,
|
|
|
|
duBuffer, duDesc,
|
|
|
|
dvBuffer, dvDesc,
|
|
|
|
numPatchCoords, patchCoords,
|
|
|
|
patchTable);
|
|
|
|
} else {
|
|
|
|
// Create an instance on demand (slow)
|
|
|
|
(void)deviceContext; // unused
|
2015-05-28 00:23:36 +00:00
|
|
|
instance = Create(srcDesc, dstDesc, duDesc, dvDesc);
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
if (instance) {
|
|
|
|
bool r = instance->EvalPatches(srcBuffer, srcDesc,
|
|
|
|
dstBuffer, dstDesc,
|
|
|
|
duBuffer, duDesc,
|
|
|
|
dvBuffer, dvDesc,
|
|
|
|
numPatchCoords, patchCoords,
|
|
|
|
patchTable);
|
|
|
|
delete instance;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Generic limit eval function. This function has a same
|
|
|
|
/// signature as other device kernels have so that it can be called
|
|
|
|
/// in the same way.
|
|
|
|
///
|
|
|
|
/// @param srcBuffer Input primvar buffer.
|
|
|
|
/// must have BindCudaBuffer() method returning a
|
|
|
|
/// const float pointer for read
|
|
|
|
///
|
|
|
|
/// @param srcDesc vertex buffer descriptor for the input buffer
|
|
|
|
///
|
|
|
|
/// @param dstBuffer Output primvar buffer
|
|
|
|
/// must have BindCudaBuffer() method returning a
|
|
|
|
/// float pointer for write
|
|
|
|
///
|
|
|
|
/// @param dstDesc vertex buffer descriptor for the output buffer
|
|
|
|
///
|
|
|
|
/// @param numPatchCoords number of patchCoords.
|
|
|
|
///
|
|
|
|
/// @param patchCoords array of locations to be evaluated.
|
|
|
|
/// must have BindCudaBuffer() method returning an
|
|
|
|
/// array of PatchCoord struct in cuda memory.
|
|
|
|
///
|
|
|
|
/// @param patchTable GLPatchTable or equivalent
|
|
|
|
///
|
|
|
|
template <typename SRC_BUFFER, typename DST_BUFFER,
|
|
|
|
typename PATCHCOORD_BUFFER, typename PATCH_TABLE>
|
|
|
|
bool EvalPatches(
|
2015-05-29 16:21:14 +00:00
|
|
|
SRC_BUFFER *srcBuffer, BufferDescriptor const &srcDesc,
|
|
|
|
DST_BUFFER *dstBuffer, BufferDescriptor const &dstDesc,
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
int numPatchCoords,
|
|
|
|
PATCHCOORD_BUFFER *patchCoords,
|
|
|
|
PATCH_TABLE *patchTable) const {
|
|
|
|
|
|
|
|
return EvalPatches(srcBuffer->BindVBO(), srcDesc,
|
|
|
|
dstBuffer->BindVBO(), dstDesc,
|
2015-05-29 16:21:14 +00:00
|
|
|
0, BufferDescriptor(),
|
|
|
|
0, BufferDescriptor(),
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
numPatchCoords,
|
|
|
|
patchCoords->BindVBO(),
|
|
|
|
patchTable->GetPatchArrays(),
|
|
|
|
patchTable->GetPatchIndexTextureBuffer(),
|
|
|
|
patchTable->GetPatchParamTextureBuffer());
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Generic limit eval function with derivatives. This function has
|
|
|
|
/// a same signature as other device kernels have so that it can be
|
|
|
|
/// called in the same way.
|
|
|
|
///
|
|
|
|
/// @param srcBuffer Input primvar buffer.
|
|
|
|
/// must have BindCudaBuffer() method returning a
|
|
|
|
/// const float pointer for read
|
|
|
|
///
|
|
|
|
/// @param srcDesc vertex buffer descriptor for the input buffer
|
|
|
|
///
|
|
|
|
/// @param dstBuffer Output primvar buffer
|
|
|
|
/// must have BindCudaBuffer() method returning a
|
|
|
|
/// float pointer for write
|
|
|
|
///
|
|
|
|
/// @param dstDesc vertex buffer descriptor for the output buffer
|
|
|
|
///
|
|
|
|
/// @param duBuffer Output s-derivatives buffer
|
|
|
|
/// must have BindCudaBuffer() method returning a
|
|
|
|
/// float pointer for write
|
|
|
|
///
|
|
|
|
/// @param duDesc vertex buffer descriptor for the duBuffer
|
|
|
|
///
|
|
|
|
/// @param dvBuffer Output t-derivatives buffer
|
|
|
|
/// must have BindCudaBuffer() method returning a
|
|
|
|
/// float pointer for write
|
|
|
|
///
|
|
|
|
/// @param dvDesc vertex buffer descriptor for the dvBuffer
|
|
|
|
///
|
|
|
|
/// @param numPatchCoords number of patchCoords.
|
|
|
|
///
|
|
|
|
/// @param patchCoords array of locations to be evaluated.
|
|
|
|
///
|
|
|
|
/// @param patchTable GLPatchTable or equivalent
|
|
|
|
///
|
|
|
|
template <typename SRC_BUFFER, typename DST_BUFFER,
|
|
|
|
typename PATCHCOORD_BUFFER, typename PATCH_TABLE>
|
|
|
|
bool EvalPatches(
|
2015-05-29 16:21:14 +00:00
|
|
|
SRC_BUFFER *srcBuffer, BufferDescriptor const &srcDesc,
|
|
|
|
DST_BUFFER *dstBuffer, BufferDescriptor const &dstDesc,
|
|
|
|
DST_BUFFER *duBuffer, BufferDescriptor const &duDesc,
|
|
|
|
DST_BUFFER *dvBuffer, BufferDescriptor const &dvDesc,
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
int numPatchCoords,
|
|
|
|
PATCHCOORD_BUFFER *patchCoords,
|
|
|
|
PATCH_TABLE *patchTable) const {
|
|
|
|
|
|
|
|
return EvalPatches(srcBuffer->BindVBO(), srcDesc,
|
|
|
|
dstBuffer->BindVBO(), dstDesc,
|
|
|
|
duBuffer->BindVBO(), duDesc,
|
|
|
|
dvBuffer->BindVBO(), dvDesc,
|
|
|
|
numPatchCoords,
|
|
|
|
patchCoords->BindVBO(),
|
|
|
|
patchTable->GetPatchArrays(),
|
|
|
|
patchTable->GetPatchIndexTextureBuffer(),
|
|
|
|
patchTable->GetPatchParamTextureBuffer());
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:21:14 +00:00
|
|
|
bool EvalPatches(GLuint srcBuffer, BufferDescriptor const &srcDesc,
|
|
|
|
GLuint dstBuffer, BufferDescriptor const &dstDesc,
|
|
|
|
GLuint duBuffer, BufferDescriptor const &duDesc,
|
|
|
|
GLuint dvBuffer, BufferDescriptor const &dvDesc,
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
int numPatchCoords,
|
|
|
|
GLuint patchCoordsBuffer,
|
|
|
|
const PatchArrayVector &patchArrays,
|
|
|
|
GLuint patchIndexBuffer,
|
|
|
|
GLuint patchParamsBuffer) const;
|
|
|
|
|
|
|
|
/// ----------------------------------------------------------------------
|
|
|
|
///
|
|
|
|
/// Other methods
|
|
|
|
///
|
|
|
|
/// ----------------------------------------------------------------------
|
|
|
|
|
2015-05-09 00:31:26 +00:00
|
|
|
/// Configure GLSL kernel. A valid GL context must be made current before
|
|
|
|
/// calling this function. Returns false if it fails to compile the kernel.
|
2015-05-29 16:21:14 +00:00
|
|
|
bool Compile(BufferDescriptor const &srcDesc,
|
|
|
|
BufferDescriptor const &dstDesc,
|
|
|
|
BufferDescriptor const &duDesc,
|
|
|
|
BufferDescriptor const &dvDesc);
|
2015-05-09 00:31:26 +00:00
|
|
|
|
|
|
|
/// Wait the dispatched kernel finishes.
|
|
|
|
static void Synchronize(void *kernel);
|
|
|
|
|
|
|
|
private:
|
|
|
|
GLuint _srcBufferTexture;
|
|
|
|
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
struct _StencilKernel {
|
2015-05-28 00:23:36 +00:00
|
|
|
_StencilKernel();
|
|
|
|
~_StencilKernel();
|
2015-05-29 16:21:14 +00:00
|
|
|
bool Compile(BufferDescriptor const &srcDesc,
|
|
|
|
BufferDescriptor const &dstDesc,
|
|
|
|
BufferDescriptor const &duDesc,
|
|
|
|
BufferDescriptor const &dvDesc);
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
GLuint program;
|
2015-05-28 00:23:36 +00:00
|
|
|
GLint uniformSrcBufferTexture;
|
|
|
|
GLint uniformSrcOffset; // src buffer offset (in elements)
|
|
|
|
|
|
|
|
GLint uniformSizesTexture;
|
|
|
|
GLint uniformOffsetsTexture;
|
|
|
|
GLint uniformIndicesTexture;
|
|
|
|
GLint uniformWeightsTexture;
|
|
|
|
GLint uniformDuWeightsTexture;
|
|
|
|
GLint uniformDvWeightsTexture;
|
|
|
|
GLint uniformStart; // range
|
|
|
|
GLint uniformEnd;
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
} _stencilKernel;
|
|
|
|
|
|
|
|
struct _PatchKernel {
|
2015-05-28 00:23:36 +00:00
|
|
|
_PatchKernel();
|
|
|
|
~_PatchKernel();
|
2015-05-29 16:21:14 +00:00
|
|
|
bool Compile(BufferDescriptor const &srcDesc,
|
|
|
|
BufferDescriptor const &dstDesc,
|
|
|
|
BufferDescriptor const &duDesc,
|
|
|
|
BufferDescriptor const &dvDesc);
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
GLuint program;
|
2015-05-28 00:23:36 +00:00
|
|
|
GLint uniformSrcBufferTexture;
|
|
|
|
GLint uniformSrcOffset; // src buffer offset (in elements)
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
|
2015-05-28 00:23:36 +00:00
|
|
|
GLint uniformPatchArray;
|
|
|
|
GLint uniformPatchParamTexture;
|
|
|
|
GLint uniformPatchIndexTexture;
|
Osd API refactor: EvalStencils and EvalPatches
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
2015-05-26 04:51:55 +00:00
|
|
|
} _patchKernel;
|
2015-05-09 00:31:26 +00:00
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
} // end namespace Osd
|
|
|
|
|
|
|
|
} // end namespace OPENSUBDIV_VERSION
|
|
|
|
using namespace OPENSUBDIV_VERSION;
|
|
|
|
|
|
|
|
} // end namespace OpenSubdiv
|
|
|
|
|
|
|
|
|
2015-05-19 18:22:37 +00:00
|
|
|
#endif // OPENSUBDIV3_OSD_GL_XFB_EVALUATOR_H
|