OpenSubdiv/opensubdiv/far/patchTables.h

802 lines
26 KiB
C
Raw Normal View History

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
2013-07-18 21:19:50 +00:00
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef FAR_PATCH_TABLES_H
#define FAR_PATCH_TABLES_H
#include "../version.h"
#include "../far/patchDescriptor.h"
#include "../far/patchParam.h"
#include "../far/stencilTables.h"
#include "../far/types.h"
#include <cstdlib>
#include <cassert>
#include <algorithm>
#include <vector>
#include <map>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
/// \brief Container for arrays of parametric patches
///
/// PatchTables contain topology and parametric information about the patches
/// generated by the Refinement process. Patches in the tables are sorted into
/// arrays based on their PatchDescriptor Type.
///
class PatchTables {
public:
/// \brief Handle that can be used as unique patch identifier within PatchTables
class PatchHandle {
// XXXX manuelk members will eventually be private once FVar
// interpolation is implemented fully
public:
friend class PatchTables;
friend class PatchMap;
Index arrayIndex, // Array index of the patch
patchIndex, // Absolute Index of the patch
vertIndex; // Relative offset to the first CV of the patch in array
};
public:
/// \brief Copy constructor
PatchTables(PatchTables const & src);
/// \brief Destructor
~PatchTables();
/// \brief True if the patches are of feature adaptive types
bool IsFeatureAdaptive() const;
/// \brief Returns the total number of control vertex indices in the tables
int GetNumControlVerticesTotal() const {
return (int)_patchVerts.size();
}
/// \brief Returns the total number of patches stored in the tables
int GetNumPatchesTotal() const;
/// \brief Returns max vertex valence
int GetMaxValence() const { return _maxValence; }
/// \brief Returns the total number of ptex faces in the mesh
int GetNumPtexFaces() const { return _numPtexFaces; }
//@{
/// @name Direct accessors
///
/// \warning These direct accessors are left for convenience, but they are
/// likely going to be deprecated in future releases
///
typedef std::vector<Index> PatchVertsTable;
/// \brief Get the table of patch control vertices
PatchVertsTable const & GetPatchControlVerticesTable() const { return _patchVerts; }
/// \brief Returns the PatchParamTable (PatchParams order matches patch array sorting)
PatchParamTable const & GetPatchParamTable() const { return _paramTable; }
/// \brief Returns a sharpness index table for each patch (if exists)
std::vector<Index> const &GetSharpnessIndexTable() const { return _sharpnessIndices; }
/// \brief Returns sharpness values table
std::vector<float> const &GetSharpnessValues() const { return _sharpnessValues; }
typedef std::vector<unsigned int> QuadOffsetsTable;
/// \brief Returns the quad-offsets table
QuadOffsetsTable const & GetQuadOffsetsTable() const {
return _quadOffsetsTable;
}
//@}
2013-05-10 17:44:03 +00:00
//@{
/// @name Individual patches
///
/// \anchor individual_patches
///
/// \brief Accessors for individual patches
///
2013-05-10 17:44:03 +00:00
/// \brief Returns the PatchDescriptor for the patches in array 'array'
PatchDescriptor GetPatchDescriptor(PatchHandle const & handle) const;
/// \brief Returns the control vertex indices for the patch identified by 'handle'
IndexArray const GetPatchVertices(PatchHandle const & handle) const;
/// \brief Returns a PatchParam for the patch identified by 'handle'
PatchParam GetPatchParam(PatchHandle const & handle) const;
/// \brief Returns the control vertex indices for the patch 'patch' in array 'array'
IndexArray const GetPatchVertices(int array, int patch) const;
/// \brief Returns the PatchParam for the patch 'patch' in array 'array'
PatchParam GetPatchParam(int array, int patch) const;
//@}
//@{
/// @name Arrays of patches
///
/// \anchor arrays_of_patches
///
/// \brief Accessors for arrays of patches of the same type
///
/// \brief Returns the number of patch arrays in the table
int GetNumPatchArrays() const;
/// \brief Returns the number of patches in patch array 'array'
int GetNumPatches(int array) const;
/// \brief Returns the number of control vertices in patch array 'array'
int GetNumControlVertices(int array) const;
/// \brief Returns the PatchDescriptor for the patches in array 'array'
PatchDescriptor GetPatchArrayDescriptor(int array) const;
/// \brief Returns the control vertex indices for the patches in array 'array'
IndexArray const GetPatchArrayVertices(int array) const;
/// \brief Returns the PatchParams for the patches in array 'array'
PatchParamArray const GetPatchParams(int array) const;
//@}
//@{
/// @name End-Cap patches
///
/// \anchor end_cap_patches
///
/// \brief Accessors for end-cap patch additional data
///
typedef Vtr::Array<unsigned int> QuadOffsetsArray;
/// \brief Returns the 'QuadOffsets' for the Gregory patch identified by 'handle'
QuadOffsetsArray const GetPatchQuadOffsets(PatchHandle const & handle) const;
typedef std::vector<Index> VertexValenceTable;
/// \brief Returns the 'VertexValences' table (vertex neighborhoods table)
VertexValenceTable const & GetVertexValenceTable() const {
return _vertexValenceTable;
}
/// \brief Returns a stencil table for the control vertices of end-cap patches
StencilTables const * GetEndCapStencilTables() const { return _endcapStencilTables; }
Index GetEndCapStencilIndex(PatchHandle const & handle) const {
return handle.vertIndex;
}
//@}
//@{
/// @name Single-crease patches
///
/// \anchor single_crease_patches
///
/// \brief Accessors for single-crease patch edge sharpness
///
/// \brief Returns the crease sharpness for the patch identified by 'handle'
/// if it is a single-crease patch, or 0.0f
float GetSingleCreasePatchSharpnessValue(PatchHandle const & handle) const;
/// \brief Returns the crease sharpness for the patch 'patch' in array 'array'
/// if it is a single-crease patch, or 0.0f
float GetSingleCreasePatchSharpnessValue(int array, int patch) const;
//@}
//@{
/// @name Face-varying
///
/// \anchor face_varying
///
/// \brief Face-varying patch vertex indices tables
///
/// FVarPatchTables contain the topology for face-varying primvar data
/// channels. The patch ordering matches that of PatchTables PatchArrays.
///
/// \note bi-cubic face-varying limit interpolation is not implemented yet :
/// this code will change soon
///
class FVarPatchTables {
public:
/// \brief Returns the number of face-varying primvar channels
int GetNumChannels() const {
return (int)_channels.size();
}
/// \brief Returns the face-varying patches vertex indices
///
/// @param channel Then face-varying primvar channel index
///
std::vector<Index> const & GetPatchVertices(int channel) const {
return _channels[channel].patchVertIndices;
}
private:
friend class PatchTables;
friend class PatchTablesFactory;
struct Channel {
friend class PatchTablesFactory;
std::vector<Index> patchVertIndices; // face-varying vertex indices
};
private:
std::vector<Channel> _channels; // face-varying primvar channels
};
/// \brief Returns the face-varying patches
FVarPatchTables const * GetFVarPatchTables() const { return _fvarPatchTables; }
//@}
public:
//
// Interpolation methods
//
/// \brief Interpolate the (s,t) parametric location of a *bilinear* patch
///
/// \note This method can only be used on uniform PatchTables of quads (see
/// IsFeatureAdaptive() method)
///
/// @param handle A patch handle indentifying the sub-patch containing the
/// (s,t) location
///
/// @param s Patch coordinate (in coarse face normalized space)
///
/// @param t Patch coordinate (in coarse face normalized space)
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> void Interpolate(PatchHandle const & handle,
float s, float t, T const & src, U & dst) const;
/// \brief Interpolate the (s,t) parametric location of a bilinear (quad)
/// patch
///
template <class T, class U> static void
InterpolateBilinear(Index const * cvs, float s, float t,
T const & src, U & dst);
/// \brief Interpolate the (s,t) parametric location of a regular bicubic
/// patch
///
/// @param cvs Array of 16 control vertex indices
///
/// @param Q Array of 16 bicubic weights for the control vertices
///
/// @param Qd1 Array of 16 bicubic 's' tangent weights for the control
/// vertices
///
/// @param Qd2 Array of 16 bicubic 't' tangent weights for the control
/// vertices
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> static void
InterpolateRegularPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2, T const & src, U & dst);
/// \brief Interpolate the (s,t) parametric location of a boundary bicubic
/// patch
///
/// @param cvs Array of 12 control vertex indices
///
/// @param Q Array of 12 bicubic weights for the control vertices
///
/// @param Qd1 Array of 12 bicubic 's' tangent weights for the control
/// vertices
///
/// @param Qd2 Array of 12 bicubic 't' tangent weights for the control
/// vertices
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> static void
InterpolateBoundaryPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2, T const & src, U & dst);
/// \brief Interpolate the (s,t) parametric location of a corner bicubic
/// patch
///
/// @param cvs Array of 9 control vertex indices
///
/// @param Q Array of 9 bicubic weights for the control vertices
///
/// @param Qd1 Array of 9 bicubic 's' tangent weights for the control
/// vertices
///
/// @param Qd2 Array of 9 bicubic 't' tangent weights for the control
/// vertices
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> static void
InterpolateCornerPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2, T const & src, U & dst);
/// \brief Interpolate the (s,t) parametric location of a Gregory bicubic
/// patch
///
/// @param basisStencils Stencil tables driving the 20 CV basis of the patches
///
/// @param stencilIndex Index of the first CV stencil in the basis stencils tables
///
/// @param s Patch coordinate (in coarse face normalized space)
///
/// @param t Patch coordinate (in coarse face normalized space)
///
/// @param Q Array of 9 bicubic weights for the control vertices
///
/// @param Qd1 Array of 9 bicubic 's' tangent weights for the control
/// vertices
///
/// @param Qd2 Array of 9 bicubic 't' tangent weights for the control
/// vertices
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> static void
InterpolateGregoryPatch(StencilTables const * basisStencils, int stencilIndex,
float s, float t, float const * Q, float const *Qd1, float const *Qd2,
T const & src, U & dst);
/// \brief Interpolate the (s,t) parametric location of a *bicubic* patch
///
/// \note This method can only be used on feature adaptive PatchTables (ie.
/// IsFeatureAdaptive() is false)
///
/// @param handle A patch handle indentifying the sub-patch containing the
/// (s,t) location
///
/// @param s Patch coordinate (in coarse face normalized space)
///
/// @param t Patch coordinate (in coarse face normalized space)
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> void Limit(PatchHandle const & handle,
float s, float t, T const & src, U & dst) const;
protected:
friend class PatchTablesFactory;
// Factory constructor
PatchTables(int maxvalence);
enum TensorBasis {
BASIS_BEZIER,
BASIS_BSPLINE
};
// Returns bi-cubic interpolation coefficients for a given (s,t) location
// on a b-spline patch
static void getBasisWeights(TensorBasis basis, PatchParam::BitField bits,
float s, float t, float point[16], float deriv1[16], float deriv2[16]);
protected:
void reservePatchArrays(int numPatchArrays);
void pushPatchArray(PatchDescriptor desc,
int npatches, Index * vidx, Index * pidx, Index * qoidx=0);
Index findPatchArray(PatchDescriptor desc);
IndexArray getPatchArrayVertices(int arrayIndex);
PatchParamArray getPatchParams(int arrayIndex);
Index * getSharpnessIndices(Index arrayIndex);
float * getSharpnessValues(Index arrayIndex);
IndexArray getFVarVerts(int arrayIndex, int channel);
private:
//
// Patch arrays
//
struct PatchArray;
PatchArray & getPatchArray(Index arrayIndex);
PatchArray const & getPatchArray(Index arrayIndex) const;
private:
typedef std::vector<PatchArray> PatchArrayVector;
//
// Topology
//
int _maxValence, // highest vertex valence found in the mesh
_numPtexFaces; // total number of ptex faces
PatchArrayVector _patchArrays; // Vector of descriptors for arrays of patches
std::vector<Index> _patchVerts; // Indices of the control vertices of the patches
PatchParamTable _paramTable; // PatchParam bitfields (one per patch)
//
// Extraordinary vertex closed-form evaluation
//
// XXXX manuelk end-cap stencils will obsolete the other tables
StencilTables const * _endcapStencilTables;
#ifdef ENDCAP_TOPOPOLGY
std::vector<Index> _endcapTopology;
#endif
QuadOffsetsTable _quadOffsetsTable; // Quad offsets (for Gregory patches)
VertexValenceTable _vertexValenceTable; // Vertex valence table (for Gregory patches)
//
// Face-varying data
//
FVarPatchTables * _fvarPatchTables; // sparse face-varying patch table (one per patch)
//
// 'single-crease' patch sharpness tables
//
std::vector<Index> _sharpnessIndices; // Indices of single-crease sharpness (one per patch)
std::vector<float> _sharpnessValues; // Sharpness values.
};
template <class T, class U>
inline void
PatchTables::InterpolateBilinear(Index const * cvs, float s, float t,
T const & src, U & dst) {
float os = 1.0f - s,
ot = 1.0f - t,
Q[4] = { os*ot, s*ot, s*t, os*t },
dQ1[4] = { t-1.0f, ot, t, -t },
dQ2[4] = { s-1.0f, -s, s, os };
for (int k=0; k<4; ++k) {
dst.AddWithWeight(src[cvs[k]], Q[k], dQ1[k], dQ2[k]);
}
}
template <class T, class U>
inline void
PatchTables::InterpolateRegularPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2,
T const & src, U & dst) {
//
// v0 -- v1 -- v2 -- v3
// |.....|.....|.....|
// |.....|.....|.....|
// v4 -- v5 -- v6 -- v7
// |.....|.....|.....|
// |.....|.....|.....|
// v8 -- v9 -- v10-- v11
// |.....|.....|.....|
// |.....|.....|.....|
// v12-- v13-- v14-- v15
//
for (int k=0; k<16; ++k) {
dst.AddWithWeight(src[cvs[k]], Q[k], Qd1[k], Qd2[k]);
}
}
template <class T, class U>
inline void
PatchTables::InterpolateBoundaryPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2,
T const & src, U & dst) {
// mirror the missing vertices (M)
//
// M0 -- M1 -- M2 -- M3 (corner)
// | | | |
// | | | |
// v0 -- v1 -- v2 -- v3 M : mirrored
// |.....|.....|.....|
// |.....|.....|.....|
// v4 -- v5 -- v6 -- v7 v : original Cv
// |.....|.....|.....|
// |.....|.....|.....|
// v8 -- v9 -- v10-- v11
//
for (int k=0; k<4; ++k) { // M0 - M3
dst.AddWithWeight(src[cvs[k]], 2.0f*Q[k], 2.0f*Qd1[k], 2.0f*Qd2[k]);
dst.AddWithWeight(src[cvs[k+4]], -1.0f*Q[k], -1.0f*Qd1[k], -1.0f*Qd2[k]);
}
for (int k=0; k<12; ++k) {
dst.AddWithWeight(src[cvs[k]], Q[k+4], Qd1[k+4], Qd2[k+4]);
}
}
template <class T, class U>
inline void
PatchTables::InterpolateCornerPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2,
T const & src, U & dst) {
// mirror the missing vertices (M)
//
// M0 -- M1 -- M2 -- M3 (corner)
// | | | |
// | | | |
// v0 -- v1 -- v2 -- M4 M : mirrored
// |.....|.....| |
// |.....|.....| |
// v3.--.v4.--.v5 -- M5 v : original Cv
// |.....|.....| |
// |.....|.....| |
// v6 -- v7 -- v8 -- M6
//
for (int k=0; k<3; ++k) { // M0 - M2
dst.AddWithWeight(src[cvs[k ]], 2.0f*Q[k], 2.0f*Qd1[k], 2.0f*Qd2[k]);
dst.AddWithWeight(src[cvs[k+3]], -1.0f*Q[k], -1.0f*Qd1[k], -1.0f*Qd2[k]);
}
for (int k=0; k<3; ++k) { // M4 - M6
int idx = (k+1)*4 + 3;
dst.AddWithWeight(src[cvs[k*3+2]], 2.0f*Q[idx], 2.0f*Qd1[idx], 2.0f*Qd2[idx]);
dst.AddWithWeight(src[cvs[k*3+1]], -1.0f*Q[idx], -1.0f*Qd1[idx], -1.0f*Qd2[idx]);
}
// M3 = -2.v1 + 4.v2 + v4 - 2.v5
dst.AddWithWeight(src[cvs[1]], -2.0f*Q[3], -2.0f*Qd1[3], -2.0f*Qd2[3]);
dst.AddWithWeight(src[cvs[2]], 4.0f*Q[3], 4.0f*Qd1[3], 4.0f*Qd2[3]);
dst.AddWithWeight(src[cvs[4]], 1.0f*Q[3], 1.0f*Qd1[3], 1.0f*Qd2[3]);
dst.AddWithWeight(src[cvs[5]], -2.0f*Q[3], -2.0f*Qd1[3], -2.0f*Qd2[3]);
for (int y=0; y<3; ++y) { // v0 - v8
for (int x=0; x<3; ++x) {
int idx = y*4+x+4;
dst.AddWithWeight(src[cvs[y*3+x]], Q[idx], Qd1[idx], Qd2[idx]);
}
}
}
template <class T, class U>
inline void
PatchTables::InterpolateGregoryPatch(StencilTables const * basisStencils,
int stencilIndex, float s, float t,
float const * Q, float const *Qd1, float const *Qd2,
T const & src, U & dst) {
float ss = 1-s,
tt = 1-t;
// remark #1572: floating-point equality and inequality comparisons are unreliable
#ifdef __INTEL_COMPILER
#pragma warning disable 1572
#endif
float d11 = s+t; if(s+t==0.0f) d11 = 1.0f;
float d12 = ss+t; if(ss+t==0.0f) d12 = 1.0f;
float d21 = s+tt; if(s+tt==0.0f) d21 = 1.0f;
float d22 = ss+tt; if(ss+tt==0.0f) d22 = 1.0f;
#ifdef __INTEL_COMPILER
#pragma warning enable 1572
#endif
float weights[4][2] = { { s/d11, t/d11 },
{ ss/d12, t/d12 },
{ s/d21, tt/d21 },
{ ss/d22, tt/d22 } };
//
// P3 e3- e2+ P2
// O--------O--------O--------O
// | | | |
// | | | |
// | | f3- | f2+ |
// | O O |
// e3+ O------O O------O e2-
// | f3+ f2- |
// | |
// | |
// | f0- f1+ |
// e0- O------O O------O e1+
// | O O |
// | | f0+ | f1- |
// | | | |
// | | | |
// O--------O--------O--------O
// P0 e0+ e1- P1
//
// XXXX manuelk re-order stencils in factory and get rid of permutation ?
int const permute[16] =
{ 0, 1, 7, 5, 2, -1, -1, 6, 16, -1, -1, 12, 15, 17, 11, 10 };
for (int i=0, fcount=0; i<16; ++i) {
int index = permute[i],
offset = stencilIndex;
if (index==-1) {
// 0-ring vertex: blend 2 extra basis CVs
int const fpermute[4][2] = { {3, 4}, {9, 8}, {19, 18}, {13, 14} };
assert(fcount < 4);
int v0 = fpermute[fcount][0],
v1 = fpermute[fcount][1];
Stencil s0 = basisStencils->GetStencil(offset + v0),
s1 = basisStencils->GetStencil(offset + v1);
float w0=weights[fcount][0],
w1=weights[fcount][1];
{
Index const * srcIndices = s0.GetVertexIndices();
float const * srcWeights = s0.GetWeights();
for (int j=0; j<s0.GetSize(); ++j) {
dst.AddWithWeight(src[srcIndices[j]],
Q[i]*w0*srcWeights[j], Qd1[i]*w0*srcWeights[j],
Qd2[i]*w0*srcWeights[j]);
}
}
{
Index const * srcIndices = s1.GetVertexIndices();
float const * srcWeights = s1.GetWeights();
for (int j=0; j<s1.GetSize(); ++j) {
dst.AddWithWeight(src[srcIndices[j]],
Q[i]*w1*srcWeights[j], Qd1[i]*w1*srcWeights[j],
Qd2[i]*w1*srcWeights[j]);
}
}
++fcount;
} else {
Stencil s = basisStencils->GetStencil(offset + index);
Index const * srcIndices = s.GetVertexIndices();
float const * srcWeights = s.GetWeights();
for (int j=0; j<s.GetSize(); ++j) {
dst.AddWithWeight( src[srcIndices[j]],
Q[i]*srcWeights[j], Qd1[i]*srcWeights[j],
Qd2[i]*srcWeights[j]);
}
}
}
}
// Interpolates the limit position of a parametric location on a bilinear patch
template <class T, class U>
inline void
PatchTables::Interpolate(PatchHandle const & handle, float s, float t,
T const & src, U & dst) const {
assert(not IsFeatureAdaptive());
IndexArray cvs = GetPatchVertices(handle);
PatchParam::BitField const & bits =
_paramTable[handle.patchIndex].bitField;
bits.Normalize(s,t);
dst.Clear();
InterpolateBilinear(cvs.begin(), s, t, src, dst);
}
// Interpolates the limit position of a parametric location on a patch
template <class T, class U>
inline void
PatchTables::Limit(PatchHandle const & handle, float s, float t,
T const & src, U & dst) const {
assert(IsFeatureAdaptive());
PatchParam::BitField const & bits = _paramTable[handle.patchIndex].bitField;
bits.Normalize(s,t);
PatchDescriptor::Type ptype =
GetPatchArrayDescriptor(handle.arrayIndex).GetType();
dst.Clear();
float Q[16], Qd1[16], Qd2[16];
if (ptype>=PatchDescriptor::REGULAR and ptype<=PatchDescriptor::CORNER) {
getBasisWeights(BASIS_BSPLINE, bits, s, t, Q, Qd1, Qd2);
IndexArray cvs = GetPatchVertices(handle);
switch (ptype) {
case PatchDescriptor::REGULAR:
InterpolateRegularPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
break;
case PatchDescriptor::SINGLE_CREASE:
// TODO: implement InterpolateSingleCreasePatch().
//InterpolateRegularPatch(cvs, Q, Qd1, Qd2, src, dst);
break;
case PatchDescriptor::BOUNDARY:
InterpolateBoundaryPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
break;
case PatchDescriptor::CORNER:
InterpolateCornerPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
break;
case PatchDescriptor::GREGORY:
case PatchDescriptor::GREGORY_BOUNDARY:
assert(0);
break;
default:
assert(0);
}
} else if (ptype==PatchDescriptor::GREGORY_BASIS) {
assert(_endcapStencilTables);
getBasisWeights(BASIS_BEZIER, bits, s, t, Q, Qd1, Qd2);
InterpolateGregoryPatch(_endcapStencilTables, handle.vertIndex,
s, t, Q, Qd1, Qd2, src, dst);
} else {
assert(0);
}
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_PATCH_TABLES */