OpenSubdiv/examples/ptexViewer/shader_gl3.glsl

591 lines
18 KiB
Plaintext
Raw Normal View History

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
layout(std140) uniform Transform {
mat4 ModelViewMatrix;
mat4 ProjectionMatrix;
mat4 ModelViewProjectionMatrix;
mat4 ModelViewInverseMatrix;
};
//--------------------------------------------------------------
// Common
//--------------------------------------------------------------
uniform isamplerBuffer g_ptexIndicesBuffer;
uniform int nonAdaptiveLevel;
vec4 PTexLookup(vec4 patchCoord,
sampler2DArray data,
samplerBuffer packings,
isamplerBuffer pages)
{
vec2 uv = patchCoord.xy;
int faceID = int(patchCoord.w);
int page = texelFetch(pages, faceID).x;
vec4 packing = texelFetch(packings, faceID);
vec3 coords = vec3( packing.x + uv.x * packing.z,
packing.y + uv.y * packing.w,
page);
return texture(data, coords);
}
#ifdef USE_PTEX_DISPLACEMENT
#undef OSD_DISPLACEMENT_CALLBACK
#define OSD_DISPLACEMENT_CALLBACK \
outpt.v.position = \
displacement(outpt.v.position, \
outpt.v.normal, \
outpt.v.patchCoord);
uniform sampler2DArray textureDisplace_Data;
uniform samplerBuffer textureDisplace_Packing;
uniform isamplerBuffer textureDisplace_Pages;
vec4 displacement(vec4 position, vec3 normal, vec4 patchCoord)
{
float disp = PTexLookup(patchCoord,
textureDisplace_Data,
textureDisplace_Packing,
textureDisplace_Pages).x;
return position + vec4(disp * normal, 0);
}
#endif
//--------------------------------------------------------------
// Vertex Shader
//--------------------------------------------------------------
#ifdef VERTEX_SHADER
layout (location=0) in vec4 position;
layout (location=1) in vec3 normal;
out vec4 vPosition;
out vec3 vNormal;
void main()
{
vPosition = ModelViewMatrix * position;
vNormal = (ModelViewMatrix * vec4(normal, 0)).xyz;
}
#endif
//--------------------------------------------------------------
// Geometry Shader
//--------------------------------------------------------------
#ifdef GEOMETRY_SHADER
//uniform int nonAdaptiveLevel;
#ifdef PRIM_QUAD
layout(lines_adjacency) in;
layout(triangle_strip, max_vertices = 4) out;
#define EDGE_VERTS 4
in vec4 vPosition[4];
in vec3 vNormal[4];
#endif // PRIM_QUAD
#ifdef PRIM_TRI
layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;
#define EDGE_VERTS 3
in vec4 vPosition[3];
in vec3 vNormal[3];
#endif // PRIM_TRI
out vec4 gPosition;
out vec4 gPatchCoord;
out vec3 gNormal;
noperspective out vec4 gEdgeDistance;
// --------------------------------------
void emit(int index, vec4 position, vec3 normal, vec4 patchCoord)
{
gPosition = position;
gPatchCoord = patchCoord;
gNormal = normal;
gl_Position = ProjectionMatrix * gPosition;
EmitVertex();
}
const float VIEWPORT_SCALE = 1024.0; // XXXdyu
float edgeDistance(vec4 p, vec4 p0, vec4 p1)
{
return VIEWPORT_SCALE *
abs((p.x - p0.x) * (p1.y - p0.y) -
(p.y - p0.y) * (p1.x - p0.x)) / length(p1.xy - p0.xy);
}
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
void emit(int index, vec4 position, vec3 normal, vec4 patchCoord, vec4 edgeVerts[EDGE_VERTS])
{
gEdgeDistance[0] =
edgeDistance(edgeVerts[index], edgeVerts[0], edgeVerts[1]);
gEdgeDistance[1] =
edgeDistance(edgeVerts[index], edgeVerts[1], edgeVerts[2]);
#ifdef PRIM_TRI
gEdgeDistance[2] =
edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[0]);
#endif
#ifdef PRIM_QUAD
gEdgeDistance[2] =
edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[3]);
gEdgeDistance[3] =
edgeDistance(edgeVerts[index], edgeVerts[3], edgeVerts[0]);
#endif
emit(index, position, normal, patchCoord);
}
#endif
// --------------------------------------
vec4 GeneratePatchCoord(vec2 localUV) // for non-adpative
{
ivec2 ptexIndex = texelFetch(g_ptexIndicesBuffer, gl_PrimitiveID).xy;
int faceID = abs(ptexIndex.x);
int lv = 1 << nonAdaptiveLevel;
if (ptexIndex.x < 0) lv >>= 1;
int u = ptexIndex.y >> 16;
int v = (ptexIndex.y & 0xffff);
vec2 uv = localUV;
uv = (uv * vec2(1.0)/lv) + vec2(u, v)/lv;
return vec4(uv.x, uv.y, lv+0.5, faceID+0.5);
}
void main()
{
gl_PrimitiveID = gl_PrimitiveIDIn;
#ifdef PRIM_QUAD
vec4 patchCoord[4];
vec4 position[4];
vec3 normal[4];
// need to generate patch coord for non-patch quads
patchCoord[0] = GeneratePatchCoord(vec2(0, 0));
patchCoord[1] = GeneratePatchCoord(vec2(1, 0));
patchCoord[2] = GeneratePatchCoord(vec2(1, 1));
patchCoord[3] = GeneratePatchCoord(vec2(0, 1));
#ifdef USE_PTEX_DISPLACEMENT
position[0] = displacement(vPosition[0], vNormal[0], patchCoord[0]);
position[1] = displacement(vPosition[1], vNormal[1], patchCoord[1]);
position[2] = displacement(vPosition[2], vNormal[2], patchCoord[2]);
position[3] = displacement(vPosition[3], vNormal[3], patchCoord[3]);
#else
position[0] = vPosition[0];
position[1] = vPosition[1];
position[2] = vPosition[2];
position[3] = vPosition[3];
#endif
#ifdef FLAT_NORMALS
// XXX: need to use vec C to get triangle normal.
vec3 A = (position[0] - position[1]).xyz;
vec3 B = (position[3] - position[1]).xyz;
vec3 C = (position[2] - position[1]).xyz;
normal[0] = normalize(cross(B, A));
normal[1] = normal[0];
normal[2] = normal[0];
normal[3] = normal[0];
#else
normal[0] = vNormal[0];
normal[1] = vNormal[1];
normal[2] = vNormal[2];
normal[3] = vNormal[3];
#endif
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
vec4 edgeVerts[EDGE_VERTS];
edgeVerts[0] = ProjectionMatrix * vPosition[0];
edgeVerts[1] = ProjectionMatrix * vPosition[1];
edgeVerts[2] = ProjectionMatrix * vPosition[2];
edgeVerts[3] = ProjectionMatrix * vPosition[3];
edgeVerts[0].xy /= edgeVerts[0].w;
edgeVerts[1].xy /= edgeVerts[1].w;
edgeVerts[2].xy /= edgeVerts[2].w;
edgeVerts[3].xy /= edgeVerts[3].w;
emit(0, position[0], normal[0], patchCoord[0], edgeVerts);
emit(1, position[1], normal[1], patchCoord[1], edgeVerts);
emit(3, position[3], normal[3], patchCoord[3], edgeVerts);
emit(2, position[2], normal[2], patchCoord[2], edgeVerts);
#else
gEdgeDistance = vec4(0);
emit(0, position[0], normal[0], patchCoord[0]);
emit(1, position[1], normal[1], patchCoord[1]);
emit(3, position[3], normal[3], patchCoord[3]);
emit(2, position[2], normal[2], patchCoord[2]);
#endif
#endif // PRIM_QUAD
#ifdef PRIM_TRI
vec4 position[3];
vec4 patchCoord[3];
vec3 normal[3];
// patch coords are computed in tessellation shader
patchCoord[0] = vPatchCoord[0];
patchCoord[1] = vPatchCoord[1];
patchCoord[2] = vPatchCoord[2];
#ifdef USE_PTEX_DISPLACEMENT
position[0] = displacement(vPosition[0], vNormal[0], patchCoord[0]);
position[1] = displacement(vPosition[1], vNormal[1], patchCoord[1]);
position[2] = displacement(vPosition[2], vNormal[2], patchCoord[2]);
#else
position[0] = vPosition[0];
position[1] = vPosition[1];
position[2] = vPosition[2];
#endif
#ifdef FLAT_NORMALS // emit flat normals for displaced surface
vec3 A = (position[0] - position[1]).xyz;
vec3 B = (position[2] - position[1]).xyz;
normal[0] = normalize(cross(B, A));
normal[1] = normal[0];
normal[2] = normal[0];
#else
normal[0] = gNormal[0];
normal[1] = gNormal[1];
normal[2] = gNormal[2];
#endif
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
vec4 edgeVerts[EDGE_VERTS];
edgeVerts[0] = ProjectionMatrix * vPosition[0];
edgeVerts[1] = ProjectionMatrix * vPosition[1];
edgeVerts[2] = ProjectionMatrix * vPosition[2];
edgeVerts[0].xy /= edgeVerts[0].w;
edgeVerts[1].xy /= edgeVerts[1].w;
edgeVerts[2].xy /= edgeVerts[2].w;
emit(0, position[0], normal[0], patchCoord[0], edgeVerts);
emit(1, position[1], normal[1], patchCoord[1], edgeVerts);
emit(2, position[2], normal[2], patchCoord[2], edgeVerts);
#else
gEdgeDistance = vec4(0);
emit(0, position[0], normal[0], patchCoord[0]);
emit(1, position[1], normal[1], patchCoord[1]);
emit(2, position[2], normal[2], patchCoord[2]);
#endif
#endif // PRIM_TRI
EndPrimitive();
}
#endif
//--------------------------------------------------------------
// Fragment Shader
//--------------------------------------------------------------
#ifdef FRAGMENT_SHADER
in vec4 gPosition;
in vec3 gNormal;
in vec4 gPatchCoord;
noperspective in vec4 gEdgeDistance;
out vec4 outColor;
uniform int ptexFaceOffset;
#ifdef USE_PTEX_COLOR
uniform sampler2DArray textureImage_Data;
uniform samplerBuffer textureImage_Packing;
uniform isamplerBuffer textureImage_Pages;
#endif
#ifdef USE_PTEX_OCCLUSION
uniform sampler2DArray textureOcclusion_Data;
uniform samplerBuffer textureOcclusion_Packing;
uniform isamplerBuffer textureOcclusion_Pages;
#endif
#ifdef USE_PTEX_SPECULAR
uniform sampler2DArray textureSpecular_Data;
uniform samplerBuffer textureSpecular_Packing;
uniform isamplerBuffer textureSpecular_Pages;
#endif
#define NUM_LIGHTS 2
struct LightSource {
vec4 position;
vec4 ambient;
vec4 diffuse;
vec4 specular;
};
layout(std140) uniform Lighting {
LightSource lightSource[NUM_LIGHTS];
};
uniform bool overrideColorEnable = false;
uniform vec4 overrideColor;
#ifdef USE_PTEX_NORMAL
uniform sampler2DArray textureDisplace_Data;
uniform samplerBuffer textureDisplace_Packing;
uniform isamplerBuffer textureDisplace_Pages;
vec3
perturbNormalFromDisplacement(vec3 position, vec3 normal, vec4 patchCoord)
{
// by Morten S. Mikkelsen
// http://jbit.net/~sparky/sfgrad_bump/mm_sfgrad_bump.pdf
// slightly modified for ptex guttering
vec3 vSigmaS = dFdx(position);
vec3 vSigmaT = dFdy(position);
vec3 vN = normal;
vec3 vR1 = cross(vSigmaT, vN);
vec3 vR2 = cross(vN, vSigmaS);
float fDet = dot(vSigmaS, vR1);
#if 0
// not work well with ptex
float dBs = dFdx(disp);
float dBt = dFdy(disp);
#else
vec2 texDx = dFdx(patchCoord.xy);
vec2 texDy = dFdy(patchCoord.xy);
// limit forward differencing to the width of ptex gutter
const float resolution = 128.0;
float d = min(1, (0.5/resolution)/max(length(texDx), length(texDy)));
vec4 STll = patchCoord;
vec4 STlr = patchCoord + d * vec4(texDx.x, texDx.y, 0, 0);
vec4 STul = patchCoord + d * vec4(texDy.x, texDy.y, 0, 0);
float Hll = PTexLookup(STll, textureDisplace_Data, textureDisplace_Packing, textureDisplace_Pages).x;
float Hlr = PTexLookup(STlr, textureDisplace_Data, textureDisplace_Packing, textureDisplace_Pages).x;
float Hul = PTexLookup(STul, textureDisplace_Data, textureDisplace_Packing, textureDisplace_Pages).x;
float dBs = (Hlr - Hll)/d;
float dBt = (Hul - Hll)/d;
#endif
vec3 vSurfGrad = sign(fDet) * (dBs * vR1 + dBt * vR2);
return normalize(abs(fDet) * vN - vSurfGrad);
}
#endif // USE_PTEX_NORMAL
uniform sampler2D diffuseEnvironmentMap;
uniform sampler2D specularEnvironmentMap;
vec4 getEnvironmentHDR(sampler2D sampler, vec3 dir)
{
dir = (ModelViewInverseMatrix * vec4(dir, 0)).xyz;
vec2 uv = vec2((atan(dir.x,dir.z)/3.1415926535897+1)*0.5, (1-dir.y)*0.5);
vec4 tex = texture(sampler, uv);
tex = vec4(pow(tex.xyz, vec3(0.4545)), 1);
return tex;
}
vec4
lighting(vec3 Peye, vec3 Neye)
{
vec4 color = vec4(0);
#ifdef USE_PTEX_OCCLUSION
float occ = PTexLookup(gPatchCoord,
textureOcclusion_Data,
textureOcclusion_Packing,
textureOcclusion_Pages).x;
#else
float occ = 0.0;
#endif
vec3 n = Neye;
for (int i = 0; i < NUM_LIGHTS; ++i) {
vec4 Plight = lightSource[i].position;
vec3 l = (Plight.w == 0.0)
? normalize(Plight.xyz) : normalize(Plight.xyz - Peye);
vec3 h = normalize(l + vec3(0,0,1)); // directional viewer
float d = max(0.0, dot(n, l));
float s = 0.0; //pow(max(0.0, dot(n, h)), 16.0f);
color += (1.0-occ) * ((lightSource[i].ambient +
d * lightSource[i].diffuse +
s * lightSource[i].specular));
}
color.a = 1;
return color;
}
vec4
edgeColor(vec4 Cfill, vec4 edgeDistance)
{
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
#ifdef PRIM_TRI
float d =
min(gEdgeDistance[0], min(gEdgeDistance[1], gEdgeDistance[2]));
#endif
#ifdef PRIM_QUAD
float d =
min(min(gEdgeDistance[0], gEdgeDistance[1]),
min(gEdgeDistance[2], gEdgeDistance[3]));
#endif
vec4 Cedge = vec4(1.0, 1.0, 0.0, 1.0);
float p = exp2(-2 * d * d);
#if defined(GEOMETRY_OUT_WIRE)
if (p < 0.25) discard;
#endif
Cfill.rgb = mix(Cfill.rgb, Cedge.rgb, p);
#endif
return Cfill;
}
void
main()
{
#ifdef USE_PTEX_COLOR
vec4 texColor = PTexLookup(gPatchCoord,
textureImage_Data,
textureImage_Packing,
textureImage_Pages);
// texColor = vec4(pow(texColor.xyz, vec3(0.4545)), 1);
#else
vec4 texColor = vec4(1);
#endif
#ifdef USE_PTEX_NORMAL
vec3 normal = perturbNormalFromDisplacement(gPosition.xyz,
gNormal,
gPatchCoord);
#else
vec3 normal = gNormal;
#endif
#if 0
if (overrideColorEnable) {
texColor = overrideColor;
vec4 Cf = texColor * lighting(gPosition.xyz, normal);
outColor = edgeColor(Cf, gEdgeDistance);
return;
}
#endif
#ifdef USE_IBL
#ifdef USE_PTEX_OCCLUSION
float occ = PTexLookup(gPatchCoord,
textureOcclusion_Data,
textureOcclusion_Packing,
textureOcclusion_Pages).x;
#else
float occ = 0.0;
#endif
#ifdef USE_PTEX_SPECULAR
float specular = PTexLookup(gPatchCoord,
textureSpecular_Data,
textureSpecular_Packing,
textureSpecular_Pages).x;
#else
float specular = 1.0;
#endif
vec4 a = vec4(0, 0, 0, 1); //ambientColor;
vec4 d = getEnvironmentHDR(diffuseEnvironmentMap, normal) * 1.4;
vec3 eye = normalize(gPosition.xyz - vec3(0,0,0));
vec3 reflect = reflect(eye, normal);
vec4 s = getEnvironmentHDR(specularEnvironmentMap, reflect);
const float fresnelBias = 0;
const float fresnelScale = 1.0;
const float fresnelPower = 2.0;
float fresnel = fresnelBias + fresnelScale * pow(1.0+dot(normal,eye), fresnelPower);
a *= (1.0-occ);
d *= (1.0-occ);
s *= min(specular, (1.0-occ)) * fresnel;
vec4 Cf = (a + d) * texColor + s * 0.5;
#else
vec4 Cf = texColor * lighting(gPosition.xyz, normal);
#endif
outColor = edgeColor(Cf, gEdgeDistance);
}
#endif