OpenSubdiv/opensubdiv/far/topologyRefinerFactory.cpp

445 lines
17 KiB
C++
Raw Normal View History

//
// Copyright 2014 DreamWorks Animation LLC.
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../far/topologyRefinerFactory.h"
#include "../far/topologyRefiner.h"
#include "../sdc/types.h"
#include "../vtr/level.h"
#include <cstdio>
#ifdef _MSC_VER
#define snprintf _snprintf
#endif
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
//
// Methods for the Factory base class -- general enough to warrant including
// in the base class rather than the subclass template (and so replicated for
// each usage)
//
//
bool
TopologyRefinerFactoryBase::prepareComponentTopologySizing(
TopologyRefiner& refiner) {
Vtr::internal::Level& baseLevel = refiner.getLevel(0);
//
// At minimum we require face-vertices (the total count of which can be
// determined from the offsets accumulated during sizing pass) and we
// need to resize members related to them to be populated during
// assignment:
//
int vCount = baseLevel.getNumVertices();
int fCount = baseLevel.getNumFaces();
if (vCount == 0) {
Error(FAR_RUNTIME_ERROR,
"Failure in TopologyRefinerFactory<>::Create() -- "
"mesh contains no vertices.");
return false;
}
if (fCount == 0) {
Error(FAR_RUNTIME_ERROR,
"Failure in TopologyRefinerFactory<>::Create() -- "
"meshes without faces not yet supported.");
return false;
}
// Make sure no face was defined that would lead to a valence overflow --
// the max valence has been initialized with the maximum number of
// face-vertices:
if (baseLevel.getMaxValence() > Vtr::VALENCE_LIMIT) {
char msg[1024];
snprintf(msg, 1024,
"Failure in TopologyRefinerFactory<>::Create() -- "
"face with %d vertices > %d max.",
baseLevel.getMaxValence(), Vtr::VALENCE_LIMIT);
Error(FAR_RUNTIME_ERROR, msg);
return false;
}
int fVertCount = baseLevel.getNumFaceVertices(fCount - 1) +
baseLevel.getOffsetOfFaceVertices(fCount - 1);
if (fVertCount == 0) {
Error(FAR_RUNTIME_ERROR,
"Failure in TopologyRefinerFactory<>::Create() -- "
"mesh contains no face-vertices.");
return false;
}
if ((refiner.GetSchemeType() == Sdc::SCHEME_LOOP) &&
(fVertCount != (3 * fCount))) {
Error(FAR_RUNTIME_ERROR,
"Failure in TopologyRefinerFactory<>::Create() -- "
"non-triangular faces not supported by Loop scheme.");
return false;
}
baseLevel.resizeFaceVertices(fVertCount);
//
// If edges were sized, all other topological relations must be sized
// with it, in which case we allocate those members to be populated.
// Otherwise, sizing of the other topology members is deferred until
// the face-vertices are assigned and the resulting relationships
// determined:
//
int eCount = baseLevel.getNumEdges();
if (eCount > 0) {
baseLevel.resizeFaceEdges(baseLevel.getNumFaceVerticesTotal());
baseLevel.resizeEdgeVertices();
baseLevel.resizeEdgeFaces( baseLevel.getNumEdgeFaces(eCount-1) +
baseLevel.getOffsetOfEdgeFaces(eCount-1));
baseLevel.resizeVertexFaces(baseLevel.getNumVertexFaces(vCount-1) +
baseLevel.getOffsetOfVertexFaces(vCount-1));
baseLevel.resizeVertexEdges(baseLevel.getNumVertexEdges(vCount-1) +
baseLevel.getOffsetOfVertexEdges(vCount-1));
assert(baseLevel.getNumFaceEdgesTotal() > 0);
assert(baseLevel.getNumEdgeVerticesTotal() > 0);
assert(baseLevel.getNumEdgeFacesTotal() > 0);
assert(baseLevel.getNumVertexFacesTotal() > 0);
assert(baseLevel.getNumVertexEdgesTotal() > 0);
}
return true;
}
bool
TopologyRefinerFactoryBase::prepareComponentTopologyAssignment(
TopologyRefiner& refiner, bool fullValidation,
TopologyCallback callback, void const * callbackData) {
Vtr::internal::Level& baseLevel = refiner.getLevel(0);
bool completeMissingTopology = (baseLevel.getNumEdges() == 0);
if (completeMissingTopology) {
if (! baseLevel.completeTopologyFromFaceVertices()) {
char msg[1024];
snprintf(msg, 1024,
"Failure in TopologyRefinerFactory<>::Create() -- "
"vertex with valence %d > %d max.",
baseLevel.getMaxValence(), Vtr::VALENCE_LIMIT);
Error(FAR_RUNTIME_ERROR, msg);
return false;
}
} else {
if (baseLevel.getMaxValence() == 0) {
Error(FAR_RUNTIME_ERROR,
"Failure in TopologyRefinerFactory<>::Create() -- "
"maximum valence not assigned.");
return false;
}
}
if (fullValidation) {
if (! baseLevel.validateTopology(callback, callbackData)) {
if (completeMissingTopology) {
Error(FAR_RUNTIME_ERROR,
"Failure in TopologyRefinerFactory<>::Create() -- "
"invalid topology detected from partial specification.");
} else {
Error(FAR_RUNTIME_ERROR,
"Failure in TopologyRefinerFactory<>::Create() -- "
"invalid topology detected as fully specified.");
}
return false;
}
}
// Now that we have a valid base level, initialize the Refiner's
// component inventory:
refiner.initializeInventory();
return true;
}
bool
TopologyRefinerFactoryBase::prepareComponentTagsAndSharpness(
TopologyRefiner& refiner) {
//
// This method combines the initialization of internal component tags
// with the sharpening of edges and vertices according to the given
// boundary interpolation rule in the Options.
// Since both involve traversing the edge and vertex lists and noting
// the presence of boundaries -- best to do both at once...
//
Vtr::internal::Level& baseLevel = refiner.getLevel(0);
Sdc::Options options = refiner.GetSchemeOptions();
Sdc::Crease creasing(options);
bool makeBoundaryFacesHoles =
(options.GetVtxBoundaryInterpolation() ==
Sdc::Options::VTX_BOUNDARY_NONE) &&
(Sdc::SchemeTypeTraits::GetLocalNeighborhoodSize(
refiner.GetSchemeType()) > 0);
bool sharpenCornerVerts =
(options.GetVtxBoundaryInterpolation() ==
Sdc::Options::VTX_BOUNDARY_EDGE_AND_CORNER);
bool sharpenNonManFeatures = true;
//
// Before initializing edge and vertex tags, tag any qualifying boundary
// faces as holes before the sharpness of incident vertices and edges is
// affected by boundary interpolation rules.
//
// Faces will be excluded (tagged as holes) if they contain a vertex on a
// boundary that did not have all of its incident boundary edges sharpened
// (not just the boundary edges within the face), so inspect the vertices
// and tag their incident faces when necessary:
//
if (makeBoundaryFacesHoles) {
for (Vtr::Index vIndex = 0; vIndex < baseLevel.getNumVertices();
++vIndex) {
Vtr::ConstIndexArray vEdges = baseLevel.getVertexEdges(vIndex);
Vtr::ConstIndexArray vFaces = baseLevel.getVertexFaces(vIndex);
// Ignore manifold interior vertices:
if ((vEdges.size() == vFaces.size()) &&
!baseLevel.getVertexTag(vIndex)._nonManifold) {
continue;
}
bool excludeFaces = false;
for (int i = 0; !excludeFaces && (i < vEdges.size()); ++i) {
excludeFaces = (baseLevel.getNumEdgeFaces(vEdges[i]) == 1) &&
!Sdc::Crease::IsInfinite(
baseLevel.getEdgeSharpness(vEdges[i]));
}
if (excludeFaces) {
for (int i = 0; i < vFaces.size(); ++i) {
baseLevel.getFaceTag(vFaces[i])._hole = true;
}
// Need to tag Refiner (the Level does not keep track of this)
refiner._hasHoles = true;
}
}
}
//
// Process the Edge tags first, as Vertex tags (notably the Rule) are
// dependent on properties of their incident edges.
//
for (Vtr::Index eIndex = 0; eIndex < baseLevel.getNumEdges(); ++eIndex) {
Vtr::internal::Level::ETag& eTag = baseLevel.getEdgeTag(eIndex);
float& eSharpness = baseLevel.getEdgeSharpness(eIndex);
eTag._boundary = (baseLevel.getNumEdgeFaces(eIndex) < 2);
if (eTag._boundary || (eTag._nonManifold && sharpenNonManFeatures)) {
eSharpness = Sdc::Crease::SHARPNESS_INFINITE;
}
eTag._infSharp = Sdc::Crease::IsInfinite(eSharpness);
eTag._semiSharp = Sdc::Crease::IsSharp(eSharpness) && !eTag._infSharp;
}
//
// Process the Vertex tags now -- for some tags (semi-sharp and its rule)
// we need to inspect all incident edges:
//
int schemeRegularInteriorValence =
Sdc::SchemeTypeTraits::GetRegularVertexValence(refiner.GetSchemeType());
int schemeRegularBoundaryValence = schemeRegularInteriorValence / 2;
for (Vtr::Index vIndex = 0; vIndex < baseLevel.getNumVertices(); ++vIndex) {
Vtr::internal::Level::VTag& vTag = baseLevel.getVertexTag(vIndex);
float& vSharpness = baseLevel.getVertexSharpness(vIndex);
Vtr::ConstIndexArray vEdges = baseLevel.getVertexEdges(vIndex);
Vtr::ConstIndexArray vFaces = baseLevel.getVertexFaces(vIndex);
//
// Take inventory of properties of incident edges that affect this
// vertex:
//
int boundaryEdgeCount = 0;
int infSharpEdgeCount = 0;
int semiSharpEdgeCount = 0;
int nonManifoldEdgeCount = 0;
for (int i = 0; i < vEdges.size(); ++i) {
Vtr::internal::Level::ETag const& eTag =
baseLevel.getEdgeTag(vEdges[i]);
boundaryEdgeCount += eTag._boundary;
infSharpEdgeCount += eTag._infSharp;
semiSharpEdgeCount += eTag._semiSharp;
nonManifoldEdgeCount += eTag._nonManifold;
}
int sharpEdgeCount = infSharpEdgeCount + semiSharpEdgeCount;
//
// Sharpen the vertex before using it in conjunction with incident edge
// properties to determine the semi-sharp tag and rule:
//
bool isTopologicalCorner = (vFaces.size() == 1) && (vEdges.size() == 2);
bool isSharpenedCorner = isTopologicalCorner && sharpenCornerVerts;
if (isSharpenedCorner) {
vSharpness = Sdc::Crease::SHARPNESS_INFINITE;
} else if (vTag._nonManifold && sharpenNonManFeatures) {
//
// We avoid sharpening non-manifold vertices when they occur on
// interior non-manifold creases, i.e. a pair of opposing non-
// manifold edges with more than two incident faces. In these
// cases there are more incident faces than edges (1 more for
// each additional "fin") and no boundaries.
//
if (! ((nonManifoldEdgeCount == 2) && (boundaryEdgeCount == 0) &&
(vFaces.size() > vEdges.size()))) {
vSharpness = Sdc::Crease::SHARPNESS_INFINITE;
}
}
vTag._infSharp = Sdc::Crease::IsInfinite(vSharpness);
vTag._semiSharp = Sdc::Crease::IsSemiSharp(vSharpness);
vTag._semiSharpEdges = (semiSharpEdgeCount > 0);
vTag._rule = (Vtr::internal::Level::VTag::VTagSize)
creasing.DetermineVertexVertexRule(vSharpness, sharpEdgeCount);
//
// Assign topological tags -- note that the "xordinary" tag is not
// assigned if non-manifold:
//
vTag._boundary = (boundaryEdgeCount > 0);
vTag._corner = isTopologicalCorner && vTag._infSharp;
if (vTag._nonManifold) {
vTag._xordinary = false;
} else if (vTag._corner) {
vTag._xordinary = false;
} else if (vTag._boundary) {
vTag._xordinary = (vFaces.size() != schemeRegularBoundaryValence);
} else {
vTag._xordinary = (vFaces.size() != schemeRegularInteriorValence);
}
vTag._incomplete = 0;
//
// Assign tags specific to inf-sharp features to identify regular
// topologies partitioned by inf-sharp creases -- must be no semi-
// harp features here (and manifold for now):
//
vTag._infSharpEdges = (infSharpEdgeCount > 0);
vTag._infSharpCrease = false;
vTag._infIrregular = vTag._infSharp || vTag._infSharpEdges;
if (vTag._infSharpEdges) {
// Ignore semi-sharp vertex sharpness when computing the
// inf-sharp Rule:
Sdc::Crease::Rule infRule = creasing.DetermineVertexVertexRule(
(vTag._infSharp ? vSharpness : 0.0f), infSharpEdgeCount);
if (infRule == Sdc::Crease::RULE_CREASE) {
vTag._infSharpCrease = true;
// A "regular" inf-crease can only occur along a manifold
// regular boundary or by bisecting a manifold interior
// region (it is also possible along non-manifold vertices
// in some cases, but that requires much more effort to
// detect -- perhaps later...)
//
if (!vTag._xordinary && !vTag._nonManifold) {
if (vTag._boundary) {
vTag._infIrregular = false;
} else {
assert((schemeRegularInteriorValence == 4) ||
(schemeRegularInteriorValence == 6));
if (schemeRegularInteriorValence == 4) {
vTag._infIrregular =
(baseLevel.getEdgeTag(vEdges[0])._infSharp !=
baseLevel.getEdgeTag(vEdges[2])._infSharp);
} else if (schemeRegularInteriorValence == 6) {
vTag._infIrregular =
(baseLevel.getEdgeTag(vEdges[0])._infSharp !=
baseLevel.getEdgeTag(vEdges[3])._infSharp) ||
(baseLevel.getEdgeTag(vEdges[1])._infSharp !=
baseLevel.getEdgeTag(vEdges[4])._infSharp);
}
}
}
} else if (infRule == Sdc::Crease::RULE_CORNER) {
// A regular set of inf-corners occurs when all edges are
// sharp and not a smooth corner:
//
if ((infSharpEdgeCount == vEdges.size() &&
((vEdges.size() > 2) || vTag._infSharp))) {
vTag._infIrregular = false;
}
}
}
//
// If any irregular faces are present, mark whether or not a vertex
// is incident any irregular face:
//
if (refiner._hasIrregFaces) {
int regSize = refiner._regFaceSize;
for (int i = 0; i < vFaces.size(); ++i) {
if (baseLevel.getFaceVertices(vFaces[i]).size() != regSize) {
vTag._incidIrregFace = true;
break;
}
}
}
}
return true;
}
bool
TopologyRefinerFactoryBase::prepareFaceVaryingChannels(
TopologyRefiner& refiner) {
Vtr::internal::Level& baseLevel = refiner.getLevel(0);
int regVertexValence =
Sdc::SchemeTypeTraits::GetRegularVertexValence(refiner.GetSchemeType());
int regBoundaryValence = regVertexValence / 2;
for (int channel=0; channel<refiner.GetNumFVarChannels(); ++channel) {
if (baseLevel.getNumFVarValues(channel) == 0) {
char msg[1024];
snprintf(msg, 1024,
"Failure in TopologyRefinerFactory<>::Create() -- "
"face-varying channel %d has no values.", channel);
Error(FAR_RUNTIME_ERROR, msg);
return false;
}
baseLevel.completeFVarChannelTopology(channel, regBoundaryValence);
}
return true;
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv