OpenSubdiv/examples/common/cudaInit.h

112 lines
4.2 KiB
C
Raw Normal View History

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
2013-07-18 21:19:50 +00:00
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef OSD_CUDA_INIT_H
#define OSD_CUDA_INIT_H
#include <algorithm>
#include <cstdio>
// From "NVIDIA GPU Computing SDK 4.2/C/common/inc/cutil_inline_runtime.h":
// Beginning of GPU Architecture definitions
inline int _ConvertSMVer2Cores_local(int major, int minor)
{
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
typedef struct {
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
int Cores;
} sSMtoCores;
sSMtoCores nGpuArchCoresPerSM[] =
{ { 0x10, 8 }, // Tesla Generation (SM 1.0) G80 class
{ 0x11, 8 }, // Tesla Generation (SM 1.1) G8x class
{ 0x12, 8 }, // Tesla Generation (SM 1.2) G9x class
{ 0x13, 8 }, // Tesla Generation (SM 1.3) GT200 class
{ 0x20, 32 }, // Fermi Generation (SM 2.0) GF100 class
{ 0x21, 48 }, // Fermi Generation (SM 2.1) GF10x class
{ 0x30, 192}, // Fermi Generation (SM 3.0) GK10x class
{ -1, -1 }
};
int index = 0;
while (nGpuArchCoresPerSM[index].SM != -1) {
if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor) ) {
return nGpuArchCoresPerSM[index].Cores;
}
index++;
}
printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor);
return -1;
}
// end of GPU Architecture definitions
// This function returns the best GPU (with maximum GFLOPS)
inline int cutGetMaxGflopsDeviceId()
{
int current_device = 0, sm_per_multiproc = 0;
int max_compute_perf = 0, max_perf_device = 0;
int device_count = 0, best_SM_arch = 0;
cudaDeviceProp deviceProp;
cudaGetDeviceCount( &device_count );
// Find the best major SM Architecture GPU device
while ( current_device < device_count ) {
cudaGetDeviceProperties( &deviceProp, current_device );
if (deviceProp.major > 0 && deviceProp.major < 9999) {
best_SM_arch = std::max(best_SM_arch, deviceProp.major);
}
current_device++;
}
// Find the best CUDA capable GPU device
current_device = 0;
while( current_device < device_count ) {
cudaGetDeviceProperties( &deviceProp, current_device );
if (deviceProp.major == 9999 && deviceProp.minor == 9999) {
sm_per_multiproc = 1;
} else {
sm_per_multiproc = _ConvertSMVer2Cores_local(deviceProp.major, deviceProp.minor);
}
int compute_perf = deviceProp.multiProcessorCount * sm_per_multiproc * deviceProp.clockRate;
if( compute_perf > max_compute_perf ) {
// If we find GPU with SM major > 2, search only these
if ( best_SM_arch > 2 ) {
// If our device==dest_SM_arch, choose this, or else pass
if (deviceProp.major == best_SM_arch) {
max_compute_perf = compute_perf;
max_perf_device = current_device;
}
} else {
max_compute_perf = compute_perf;
max_perf_device = current_device;
}
}
++current_device;
}
return max_perf_device;
}
#endif //OSD_CUDA_INIT_H