OpenSubdiv/opensubdiv/far/patchMap.h

338 lines
11 KiB
C
Raw Normal View History

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
2013-07-18 21:19:50 +00:00
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef FAR_PATCH_MAP_H
#define FAR_PATCH_MAP_H
#include "../version.h"
#include "../far/patchTables.h"
#include <cassert>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
/// \brief An quadtree-based map connecting coarse faces to their sub-patches
///
/// PatchTables::PatchArrays contain lists of patches that represent the limit
/// surface of a mesh, sorted by their topological type. These arrays break the
/// connection between coarse faces and their sub-patches.
///
/// The PatchMap provides a quad-tree based lookup structure that, given a singular
/// parametric location, can efficiently return a handle to the sub-patch that
/// contains this location.
///
class PatchMap {
public:
/// \brief Handle that can be used as unique patch identifier within PatchTables
struct Handle {
unsigned int patchArrayIdx, // OsdPatchArray containing the patch
patchIdx, // Absolute index of the patch
vertexOffset; // Offset to the first CV of the patch
};
/// \brief Constructor
///
/// @param patchTables A valid set of PatchTables
///
PatchMap( PatchTables const & patchTables );
/// \brief Returns a handle to the sub-patch of the face at the given (u,v).
/// Note : the faceid corresponds to quadrangulated face indices (ie. quads
/// count as 1 index, non-quads add as many indices as they have vertices)
///
/// @param faceid The index of the face
///
/// @param u Local u parameter
///
/// @param v Local v parameter
///
/// @return A patch handle or NULL if the face does not exist or the
/// limit surface is tagged as a hole at the given location
///
Handle const * FindPatch( int faceid, float u, float v ) const;
private:
inline void initialize( PatchTables const & patchTables );
// Quadtree node with 4 children
struct QuadNode {
struct Child {
unsigned int isSet:1, // true if the child has been set
isLeaf:1, // true if the child is a QuadNode
idx:30; // child index (either QuadNode or Handle)
};
// sets all the children to point to the patch of index patchIdx
void SetChild(int patchIdx);
// sets the child in "quadrant" to point to the node or patch of the given index
void SetChild(unsigned char quadrant, int child, bool isLeaf=true);
Child children[4];
};
typedef std::vector<QuadNode> QuadTree;
// adds a child to a parent node and pushes it back on the tree
static QuadNode * addChild( QuadTree & quadtree, QuadNode * parent, int quadrant );
// given a median, transforms the (u,v) to the quadrant they point to, and
// return the quadrant index.
//
// Quadrants indexing:
//
// (0,0) o-----o-----o
// | | |
// | 0 | 3 |
// | | |
// o-----o-----o
// | | |
// | 1 | 2 |
// | | |
// o-----o-----o (1,1)
//
template <class T> static int resolveQuadrant(T & median, T & u, T & v);
std::vector<Handle> _handles; // all the patches in the PatchTable
std::vector<QuadNode> _quadtree; // quadtree nodes
};
// Constructor
inline
PatchMap::PatchMap( PatchTables const & patchTables ) {
initialize( patchTables );
}
// sets all the children to point to the patch of index patchIdx
inline void
PatchMap::QuadNode::SetChild(int patchIdx) {
for (int i=0; i<4; ++i) {
children[i].isSet=true;
children[i].isLeaf=true;
children[i].idx=patchIdx;
}
}
// sets the child in "quadrant" to point to the node or patch of the given index
inline void
PatchMap::QuadNode::SetChild(unsigned char quadrant, int idx, bool isLeaf) {
assert(quadrant<4);
children[quadrant].isSet = true;
children[quadrant].isLeaf = isLeaf;
children[quadrant].idx = idx;
}
// adds a child to a parent node and pushes it back on the tree
inline PatchMap::QuadNode *
PatchMap::addChild( QuadTree & quadtree, QuadNode * parent, int quadrant ) {
quadtree.push_back(QuadNode());
2013-06-14 16:54:38 +00:00
int idx = (int)quadtree.size()-1;
parent->SetChild(quadrant, idx, false);
return &(quadtree[idx]);
}
// given a median, transforms the (u,v) to the quadrant they point to, and
// return the quadrant index.
template <class T> int
PatchMap::resolveQuadrant(T & median, T & u, T & v) {
int quadrant = -1;
if (u<median) {
if (v<median) {
quadrant = 0;
} else {
quadrant = 1;
v-=median;
}
} else {
if (v<median) {
quadrant = 3;
} else {
quadrant = 2;
v-=median;
}
u-=median;
}
return quadrant;
}
/// Returns a handle to the sub-patch of the face at the given (u,v).
inline PatchMap::Handle const *
PatchMap::FindPatch( int faceid, float u, float v ) const {
if (faceid>=(int)_quadtree.size())
return NULL;
assert( (u>=0.0f) and (u<=1.0f) and (v>=0.0f) and (v<=1.0f) );
QuadNode const * node = &_quadtree[faceid];
float half = 0.5f;
// 0xFF : we should never have depths greater than k_InfinitelySharp
for (int depth=0; depth<0xFF; ++depth) {
float delta = half * 0.5f;
int quadrant = resolveQuadrant( half, u, v );
assert(quadrant>=0);
// is the quadrant a hole ?
if (not node->children[quadrant].isSet)
return 0;
if (node->children[quadrant].isLeaf) {
return &_handles[node->children[quadrant].idx];
} else {
node = &_quadtree[node->children[quadrant].idx];
}
half = delta;
}
assert(0);
return 0;
}
// Constructor
inline void
PatchMap::initialize( PatchTables const & patchTables ) {
int nfaces = 0, npatches = (int)patchTables.GetNumPatches();
if (not npatches)
return;
PatchTables::PatchArrayVector const & patchArrays =
patchTables.GetPatchArrayVector();
PatchTables::PatchParamTable const & paramTable =
patchTables.GetPatchParamTable();
// populate subpatch handles vector
_handles.resize(npatches);
for (int arrayIdx=0, current=0; arrayIdx<(int)patchArrays.size(); ++arrayIdx) {
PatchTables::PatchArray const & parray = patchArrays[arrayIdx];
int ringsize = parray.GetDescriptor().GetNumControlVertices();
for (unsigned int j=0; j < parray.GetNumPatches(); ++j) {
PatchParam const & param = paramTable[parray.GetPatchIndex()+j];
Handle & h = _handles[current];
h.patchArrayIdx = arrayIdx;
h.patchIdx = (unsigned int)current;
h.vertexOffset = j * ringsize;
nfaces = std::max(nfaces, (int)param.faceIndex);
++current;
}
}
++nfaces;
// temporary vector to hold the quadtree while under construction
std::vector<QuadNode> quadtree;
// reserve memory for the octree nodes (size is a worse-case approximation)
quadtree.reserve( nfaces + npatches );
// each coarse face has a root node associated to it that we need to initialize
quadtree.resize(nfaces);
// populate the quadtree from the FarPatchArrays sub-patches
for (int i=0, handleIdx=0; i<(int)patchArrays.size(); ++i) {
PatchTables::PatchArray const & parray = patchArrays[i];
for (unsigned int j=0; j < parray.GetNumPatches(); ++j, ++handleIdx) {
PatchParam const & param = paramTable[parray.GetPatchIndex()+j];
PatchParam::BitField bits = param.bitField;
unsigned char depth = bits.GetDepth();
QuadNode * node = &quadtree[ param.faceIndex ];
if (depth==(bits.NonQuadRoot() ? 1 : 0)) {
// special case : regular BSpline face w/ no sub-patches
node->SetChild( handleIdx );
continue;
}
int u = bits.GetU(),
v = bits.GetV(),
pdepth = bits.NonQuadRoot() ? depth-2 : depth-1,
half = 1 << pdepth;
for (unsigned char k=0; k<depth; ++k) {
int delta = half >> 1;
int quadrant = resolveQuadrant(half, u, v);
assert(quadrant>=0);
half = delta;
if (k==pdepth) {
// we have reached the depth of the sub-patch : add a leaf
assert( not node->children[quadrant].isSet );
node->SetChild(quadrant, handleIdx, true);
break;
} else {
// travel down the child node of the corresponding quadrant
if (not node->children[quadrant].isSet) {
// create a new branch in the quadrant
node = addChild(quadtree, node, quadrant);
} else {
// travel down an existing branch
node = &(quadtree[ node->children[quadrant].idx ]);
}
}
}
}
}
// copy the resulting quadtree to eliminate un-unused vector capacity
_quadtree = quadtree;
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_PATCH_PARAM */