Merge pull request #1176 from barfowl/far_tutorial_5_3

Added new tutorial for Far::LimitStencilTable
This commit is contained in:
David G Yu 2020-01-25 17:16:48 -08:00 committed by GitHub
commit 1ab19ec089
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 614 additions and 0 deletions

View File

@ -182,6 +182,7 @@ if (DOCUTILS_FOUND AND PYTHONINTERP_FOUND)
far/tutorial_4_3/far_tutorial_4_3.cpp
far/tutorial_5_1/far_tutorial_5_1.cpp
far/tutorial_5_2/far_tutorial_5_2.cpp
far/tutorial_5_3/far_tutorial_5_3.cpp
osd/tutorial_0/osd_tutorial_0.cpp
)

View File

@ -142,6 +142,12 @@ Tutorial 5.2
of a potentially large mesh by creating and evaluating separate PatchTables for selected
groups of faces of the mesh. `[code] <far_tutorial_5_2.html>`__
Tutorial 5.3
^^^^^^^^^^^^
Building on the previous tutorials for both PatchTables and StencilTables, this example
shows how to construct a LimitStencilTable to repeatedly evaluate an arbitrary
collection of points on the limit surface. `[code] <far_tutorial_5_3.html>`__
----
Osd Tutorials

View File

@ -47,6 +47,7 @@ set(TUTORIALS
tutorial_4_3
tutorial_5_1
tutorial_5_2
tutorial_5_3
)
foreach(tutorial ${TUTORIALS})

View File

@ -0,0 +1,28 @@
#
# Copyright 2020 DreamWorks Animation LLC.
#
# Licensed under the Apache License, Version 2.0 (the "Apache License")
# with the following modification; you may not use this file except in
# compliance with the Apache License and the following modification to it:
# Section 6. Trademarks. is deleted and replaced with:
#
# 6. Trademarks. This License does not grant permission to use the trade
# names, trademarks, service marks, or product names of the Licensor
# and its affiliates, except as required to comply with Section 4(c) of
# the License and to reproduce the content of the NOTICE file.
#
# You may obtain a copy of the Apache License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the Apache License with the above modification is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the Apache License for the specific
# language governing permissions and limitations under the Apache License.
#
_add_far_tutorial(
far_tutorial_5_3
far_tutorial_5_3.cpp
$<TARGET_OBJECTS:regression_common_obj>
)

View File

@ -0,0 +1,578 @@
//
// Copyright 2020 DreamWorks Animation LLC.
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
//------------------------------------------------------------------------------
// Tutorial description:
//
// This tutorial shows how to use a Far::LimitStenciTable to repeatedly
// and efficiently evaluate a set of points (and optionally derivatives)
// on the limit surface.
//
// A LimitStencilTable derives from StencilTable but is specialized to
// factor the evaluation of limit positions and derivatives into stencils.
// This allows a set of limit properties to be efficiently recomputed in
// response to changes to the vertices of the base mesh. Constructing
// the different kinds of StencilTables can have a high cost, so whether
// that cost is worth it will depend on your usage (e.g. if points are
// only computed once, using stencil tables is typically not worth the
// added cost).
//
// Any points on the limit surface can be identified for evaluation. In
// this example we create a crude tessellation similar to tutorial_5_2.
// The midpoint of each face and points near the corners of the face are
// evaluated and a triangle fan connects them.
//
#include "../../../regression/common/arg_utils.h"
#include "../../../regression/common/far_utils.h"
#include <opensubdiv/far/topologyDescriptor.h>
#include <opensubdiv/far/patchTableFactory.h>
#include <opensubdiv/far/stencilTableFactory.h>
#include <opensubdiv/far/ptexIndices.h>
#include <cassert>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <sstream>
using namespace OpenSubdiv;
using Far::Index;
//
// Global utilities in this namespace are not relevant to the tutorial.
// They simply serve to construct some default geometry to be processed
// in the form of a TopologyRefiner and vector of vertex positions.
//
namespace {
//
// Simple structs for (x,y,z) position and a 3-tuple for the set
// of vertices of a triangle:
//
struct Pos {
Pos() { }
Pos(float x, float y, float z) { p[0] = x, p[1] = y, p[2] = z; }
Pos operator+(Pos const & op) const {
return Pos(p[0] + op.p[0], p[1] + op.p[1], p[2] + op.p[2]);
}
// Clear() and AddWithWeight() required for interpolation:
void Clear( void * =0 ) { p[0] = p[1] = p[2] = 0.0f; }
void AddWithWeight(Pos const & src, float weight) {
p[0] += weight * src.p[0];
p[1] += weight * src.p[1];
p[2] += weight * src.p[2];
}
float p[3];
};
typedef std::vector<Pos> PosVector;
struct Tri {
Tri() { }
Tri(int a, int b, int c) { v[0] = a, v[1] = b, v[2] = c; }
int v[3];
};
typedef std::vector<Tri> TriVector;
//
// Functions to populate the topology and geometry arrays a simple
// shape whose positions may be transformed:
//
void
createCube(std::vector<int> & vertsPerFace,
std::vector<Index> & faceVertsPerFace,
std::vector<Pos> & positionsPerVert) {
// Local topology and position of a cube centered at origin:
static float const cubePositions[8][3] = { { -0.5f, -0.5f, -0.5f },
{ -0.5f, 0.5f, -0.5f },
{ -0.5f, 0.5f, 0.5f },
{ -0.5f, -0.5f, 0.5f },
{ 0.5f, -0.5f, -0.5f },
{ 0.5f, 0.5f, -0.5f },
{ 0.5f, 0.5f, 0.5f },
{ 0.5f, -0.5f, 0.5f } };
static int const cubeFaceVerts[6][4] = { { 0, 3, 2, 1 },
{ 4, 5, 6, 7 },
{ 0, 4, 7, 3 },
{ 1, 2, 6, 5 },
{ 0, 1, 5, 4 },
{ 3, 7, 6, 2 } };
// Initialize verts-per-face and face-vertices for each face:
vertsPerFace.resize(6);
faceVertsPerFace.resize(24);
for (int i = 0; i < 6; ++i) {
vertsPerFace[i] = 4;
for (int j = 0; j < 4; ++j) {
faceVertsPerFace[i*4+j] = cubeFaceVerts[i][j];
}
}
// Initialize vertex positions:
positionsPerVert.resize(8);
for (int i = 0; i < 8; ++i) {
float const * p = cubePositions[i];
positionsPerVert[i] = Pos(p[0], p[1], p[2]);
}
}
//
// Create a TopologyRefiner from default geometry created above:
//
Far::TopologyRefiner *
createTopologyRefinerDefault(PosVector & posVector) {
std::vector<int> topVertsPerFace;
std::vector<Index> topFaceVerts;
createCube(topVertsPerFace, topFaceVerts, posVector);
typedef Far::TopologyDescriptor Descriptor;
Sdc::SchemeType type = OpenSubdiv::Sdc::SCHEME_CATMARK;
Sdc::Options options;
options.SetVtxBoundaryInterpolation(
Sdc::Options::VTX_BOUNDARY_EDGE_AND_CORNER);
Descriptor desc;
desc.numVertices = (int) posVector.size();
desc.numFaces = (int) topVertsPerFace.size();
desc.numVertsPerFace = &topVertsPerFace[0];
desc.vertIndicesPerFace = &topFaceVerts[0];
// Instantiate a Far::TopologyRefiner from the descriptor.
Far::TopologyRefiner * refiner =
Far::TopologyRefinerFactory<Descriptor>::Create(desc,
Far::TopologyRefinerFactory<Descriptor>::Options(type,options));
assert(refiner);
return refiner;
}
//
// Create a TopologyRefiner from a specified Obj file:
// geometry created internally:
//
Far::TopologyRefiner *
createTopologyRefinerFromObj(std::string const & objFileName,
Sdc::SchemeType schemeType,
PosVector & posVector) {
const char * filename = objFileName.c_str();
const Shape * shape = 0;
std::ifstream ifs(filename);
if (ifs) {
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
std::string shapeString = ss.str();
shape = Shape::parseObj(shapeString.c_str(),
ConvertSdcTypeToShapeScheme(schemeType), false);
if (shape == 0) {
fprintf(stderr,
"Error: Cannot create Shape from .obj file '%s'\n",
filename);
return 0;
}
} else {
fprintf(stderr, "Error: Cannot open .obj file '%s'\n", filename);
return 0;
}
Sdc::SchemeType sdcType = GetSdcType(*shape);
Sdc::Options sdcOptions = GetSdcOptions(*shape);
Far::TopologyRefiner * refiner =
Far::TopologyRefinerFactory<Shape>::Create(*shape,
Far::TopologyRefinerFactory<Shape>::Options(
sdcType, sdcOptions));
if (refiner == 0) {
fprintf(stderr, "Error: Unable to construct TopologyRefiner "
"from .obj file '%s'\n", filename);
return 0;
}
int numVertices = refiner->GetNumVerticesTotal();
posVector.resize(numVertices);
std::memcpy(&posVector[0], &shape->verts[0], numVertices * sizeof(Pos));
delete shape;
return refiner;
}
//
// Simple function to export an Obj file for the limit points -- which
// provides a simple tessllation similar to tutorial_5_2.
//
int writeToObj(
Far::TopologyLevel const & baseLevel,
std::vector<Pos> const & vertexPositions,
int nextObjVertexIndex) {
for (size_t i = 0; i < vertexPositions.size(); ++i) {
float const * p = vertexPositions[i].p;
printf("v %f %f %f\n", p[0], p[1], p[2]);
}
//
// Connect the sequences of limit points (center followed by corners)
// into triangle fans for each base face:
//
for (int i = 0; i < baseLevel.GetNumFaces(); ++i) {
int faceSize = baseLevel.GetFaceVertices(i).size();
int vCenter = nextObjVertexIndex + 1;
int vCorner = vCenter + 1;
for (int k = 0; k < faceSize; ++k) {
printf("f %d %d %d\n",
vCenter, vCorner + k, vCorner + ((k + 1) % faceSize));
}
nextObjVertexIndex += faceSize + 1;
}
return nextObjVertexIndex;
}
} // end namespace
//
// Command line arguments parsed to provide run-time options:
//
class Args {
public:
std::string inputObjFile;
Sdc::SchemeType schemeType;
int maxPatchDepth;
int numPoses;
Pos poseOffset;
bool deriv1Flag;
bool noPatchesFlag;
bool noOutputFlag;
public:
Args(int argc, char ** argv) :
inputObjFile(),
schemeType(Sdc::SCHEME_CATMARK),
maxPatchDepth(3),
numPoses(0),
poseOffset(1.0f, 0.0f, 0.0f),
deriv1Flag(false),
noPatchesFlag(false),
noOutputFlag(false) {
// Parse and assign standard arguments and Obj files:
ArgOptions args;
args.Parse(argc, argv);
maxPatchDepth = args.GetLevel();
schemeType = ConvertShapeSchemeToSdcType(args.GetDefaultScheme());
const std::vector<const char *> objFiles = args.GetObjFiles();
if (!objFiles.empty()) {
for (size_t i = 1; i < objFiles.size(); ++i) {
fprintf(stderr,
"Warning: .obj file '%s' ignored\n", objFiles[i]);
}
inputObjFile = std::string(objFiles[0]);
}
// Parse remaining arguments specific to this example:
const std::vector<const char *> &rargs = args.GetRemainingArgs();
for (size_t i = 0; i < rargs.size(); ++i) {
if (!strcmp(rargs[i], "-d1")) {
deriv1Flag = true;
} else if (!strcmp(rargs[i], "-nopatches")) {
noPatchesFlag = true;
} else if (!strcmp(rargs[i], "-poses")) {
if (++i < rargs.size()) numPoses = atoi(rargs[i]);
} else if (!strcmp(rargs[i], "-offset")) {
if (++i < rargs.size()) poseOffset.p[0] = (float)atof(rargs[i]);
if (++i < rargs.size()) poseOffset.p[1] = (float)atof(rargs[i]);
if (++i < rargs.size()) poseOffset.p[2] = (float)atof(rargs[i]);
} else if (!strcmp(rargs[i], "-nooutput")) {
noOutputFlag = true;
} else {
fprintf(stderr, "Warning: Argument '%s' ignored\n", rargs[i]);
}
}
}
private:
Args() { }
};
//
// Assemble the set of locations for the limit points. The resulting
// vector of LocationArrays can contain arbitrary locations on the limit
// surface -- with multiple locations for the same patch grouped into a
// single array.
//
// In this case, for each base face, coordinates for the center and its
// corners are specified -- from which we will construct a triangle fan
// providing a crude tessellation (similar to tutorial_5_2).
//
typedef Far::LimitStencilTableFactory::LocationArray LocationArray;
int assembleLimitPointLocations(Far::TopologyRefiner const & refiner,
std::vector<LocationArray> & locations) {
//
// Coordinates for the center of the face and its corners (slightly
// inset). Unlike most of the public interface for patches, the
// LocationArray refers to parameteric coordinates as (s,t), so that
// convention will be followed here.
//
// Note that the (s,t) coordinates in a LocationArray are referred to
// by reference. The memory holding these (s,t) values must persist
// while the LimitStencilTable is constructed -- the arrays here are
// declared as static for that purpose.
//
static float const quadSCoords[5] = { 0.5f, 0.05f, 0.95f, 0.95f, 0.05f };
static float const quadTCoords[5] = { 0.5f, 0.05f, 0.05f, 0.95f, 0.95f };
static float const triSCoords[4] = { 0.33f, 0.05f, 0.95f, 0.05f };
static float const triTCoords[4] = { 0.33f, 0.05f, 0.00f, 0.95f };
static float const irregSCoords[2] = { 1.0f, 0.05f };
static float const irregTCoords[2] = { 1.0f, 0.05f };
//
// Since these are references to patches to be evaluated, we require
// use of the Ptex indices to identify the top-most parameterized
// patch, which is essential to dealing with non-quad faces (in the
// case of Catmark).
//
Far::TopologyLevel const & baseLevel = refiner.GetLevel(0);
Far::PtexIndices basePtexIndices(refiner);
int regFaceSize = Sdc::SchemeTypeTraits::GetRegularFaceSize(
refiner.GetSchemeType());
//
// For each base face, simply refer to the (s,t) arrays for regular quad
// and triangular patches with a single LocationArray. Otherwise, for
// irregular faces, the corners of the face come from different patches
// and so must be referenced in separate LocationArrays.
//
locations.clear();
int numLimitPoints = 0;
for (int i = 0; i < baseLevel.GetNumFaces(); ++i) {
int baseFaceSize = baseLevel.GetFaceVertices(i).size();
int basePtexId = basePtexIndices.GetFaceId(i);
bool faceIsRegular = (baseFaceSize == regFaceSize);
if (faceIsRegular) {
// All coordinates are on the same top-level patch:
LocationArray loc;
loc.ptexIdx = basePtexId;
loc.numLocations = baseFaceSize + 1;
if (baseFaceSize == 4) {
loc.s = quadSCoords;
loc.t = quadTCoords;
} else {
loc.s = triSCoords;
loc.t = triTCoords;
}
locations.push_back(loc);
} else {
// Center coordinate is on the first sub-patch while those on
// near the corners are on each successive sub-patch:
LocationArray loc;
loc.numLocations = 1;
for (int j = 0; j <= baseFaceSize; ++j) {
bool isPerimeter = (j > 0);
loc.ptexIdx = basePtexId + (isPerimeter ? (j-1) : 0);
loc.s = &irregSCoords[isPerimeter];
loc.t = &irregTCoords[isPerimeter];
locations.push_back(loc);
}
}
numLimitPoints += baseFaceSize + 1;
}
return numLimitPoints;
}
//
// Load command line arguments and geometry, build the LimitStencilTable
// for a set of points on the limit surface and compute those points for
// several orientations of the mesh:
//
int
main(int argc, char **argv) {
Args args(argc, argv);
//
// Create or load the base geometry (command line arguments allow a
// .obj file to be specified), providing a TopologyRefiner and a set
// of base vertex positions to work with:
//
std::vector<Pos> basePositions;
Far::TopologyRefiner * refinerPtr = args.inputObjFile.empty() ?
createTopologyRefinerDefault(basePositions) :
createTopologyRefinerFromObj(args.inputObjFile, args.schemeType,
basePositions);
assert(refinerPtr);
Far::TopologyRefiner & refiner = *refinerPtr;
Far::TopologyLevel const & baseLevel = refiner.GetLevel(0);
//
// Use of LimitStencilTable requires either explicit or implicit use
// of a PatchTable. A PatchTable is not required to construct a
// LimitStencilTable -- one will be constructed internally for use
// and discarded -- but explicit construction is recommended to control
// the many legacy options for PatchTable, rather than relying on
// internal defaults. Adaptive refinement is required in both cases
// to indicate the accuracy of the patches.
//
// Note that if a TopologyRefiner and PatchTable are not used for
// any other purpose than computing the limit points, that specifying
// the subset of faces containing those limit points in the adaptive
// refinement and PatchTable construction can avoid unnecessary
// overhead.
//
Far::PatchTable * patchTablePtr = 0;
if (args.noPatchesFlag) {
refiner.RefineAdaptive(
Far::TopologyRefiner::AdaptiveOptions(args.maxPatchDepth));
} else {
Far::PatchTableFactory::Options patchOptions(args.maxPatchDepth);
patchOptions.useInfSharpPatch = true;
patchOptions.generateLegacySharpCornerPatches = false;
patchOptions.generateVaryingTables = false;
patchOptions.generateFVarTables = false;
patchOptions.endCapType =
Far::PatchTableFactory::Options::ENDCAP_GREGORY_BASIS;
refiner.RefineAdaptive(patchOptions.GetRefineAdaptiveOptions());
patchTablePtr = Far::PatchTableFactory::Create(refiner, patchOptions);
assert(patchTablePtr);
}
//
// Assemble the set of locations for the limit points. For each base
// face, coordinates for the center and its corners are specified --
// from which we will construct a triangle fan providing a crude
// tessellation (similar to tutorial_5_2).
//
std::vector<LocationArray> locations;
int numLimitPoints = assembleLimitPointLocations(refiner, locations);
//
// Construct a LimitStencilTable from the refiner, patch table (optional)
// and the collection of limit point locations. Stencils can optionally
// be created for computing dervatives -- the default is to compute 1st
// derivative stencils, so be sure to disable that if not necessary:
//
Far::LimitStencilTableFactory::Options limitOptions;
limitOptions.generate1stDerivatives = args.deriv1Flag;
Far::LimitStencilTable const * limitStencilTablePtr =
Far::LimitStencilTableFactory::Create(refiner, locations,
0, // optional StencilTable for the refined points
patchTablePtr, // optional PatchTable
limitOptions);
assert(limitStencilTablePtr);
Far::LimitStencilTable const & limitStencilTable = *limitStencilTablePtr;
//
// Apply the constructed LimitStencilTable to compute limit positions
// from the base level vertex positions. This is trivial if computing
// all positions in one invokation. The UpdateValues method (and those
// for derivatives) are overloaded to optionally accept a subrange of
// indices to distribute the computation:
//
std::vector<Pos> limitPositions(numLimitPoints);
limitStencilTable.UpdateValues(basePositions, limitPositions);
// Call with the optional subrange:
limitStencilTable.UpdateValues(basePositions, limitPositions,
0, numLimitPoints / 2);
limitStencilTable.UpdateValues(basePositions, limitPositions,
(numLimitPoints / 2) + 1, numLimitPoints);
// Write vertices and faces in Obj format for the original limit points:
int objVertCount = 0;
if (!args.noOutputFlag) {
printf("g base_mesh\n");
objVertCount = writeToObj(baseLevel, limitPositions, objVertCount);
}
//
// Recompute the limit points and output faces for different "poses" of
// the original mesh -- in this case simply translated. Also optionally
// compute 1st derivatives (though they are not used here):
//
std::vector<Pos> posePositions(basePositions);
std::vector<Pos> limitDu(args.deriv1Flag ? numLimitPoints : 0);
std::vector<Pos> limitDv(args.deriv1Flag ? numLimitPoints : 0);
for (int i = 0; i < args.numPoses; ++i) {
// Trivially transform the base vertex positions and re-compute:
for (size_t j = 0; j < basePositions.size(); ++j) {
posePositions[j] = posePositions[j] + args.poseOffset;
}
limitStencilTable.UpdateValues(posePositions, limitPositions);
if (args.deriv1Flag) {
limitStencilTable.UpdateDerivs(posePositions, limitDu, limitDv);
}
if (!args.noOutputFlag) {
printf("\ng pose_%d\n", i);
objVertCount = writeToObj(baseLevel, limitPositions, objVertCount);
}
}
delete refinerPtr;
delete patchTablePtr;
delete limitStencilTablePtr;
return EXIT_SUCCESS;
}