Added new far/tutorial to illustrate use of sparse PatchTables:

- added tutorial/far/tutorial_9 with source for new tutorial
    - updated tutorial/CMakeLists.txt to deal with header path issue:
        - inclusion of code from regression/common required extension
This commit is contained in:
barry 2018-09-11 16:16:15 -07:00
parent f58330fdee
commit 4f482febfa
4 changed files with 682 additions and 0 deletions

View File

@ -25,6 +25,7 @@
include_directories(
"${PROJECT_SOURCE_DIR}/"
"${OPENSUBDIV_INCLUDE_DIR}/"
)
add_subdirectory(hbr)

View File

@ -32,6 +32,7 @@ set(TUTORIALS
tutorial_6
tutorial_7
tutorial_8
tutorial_9
)
foreach(tutorial ${TUTORIALS})

View File

@ -0,0 +1,38 @@
#
# Copyright 2018 DreamWorks Animation LLC.
#
# Licensed under the Apache License, Version 2.0 (the "Apache License")
# with the following modification; you may not use this file except in
# compliance with the Apache License and the following modification to it:
# Section 6. Trademarks. is deleted and replaced with:
#
# 6. Trademarks. This License does not grant permission to use the trade
# names, trademarks, service marks, or product names of the Licensor
# and its affiliates, except as required to comply with Section 4(c) of
# the License and to reproduce the content of the NOTICE file.
#
# You may obtain a copy of the Apache License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the Apache License with the above modification is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the Apache License for the specific
# language governing permissions and limitations under the Apache License.
#
set(SOURCE_FILES
far_tutorial_9.cpp
)
_add_executable(far_tutorial_9 "tutorials/far"
${SOURCE_FILES}
$<TARGET_OBJECTS:sdc_obj>
$<TARGET_OBJECTS:vtr_obj>
$<TARGET_OBJECTS:far_obj>
$<TARGET_OBJECTS:regression_common_obj>
)
install(TARGETS far_tutorial_9 DESTINATION "${CMAKE_BINDIR_BASE}/tutorials")

View File

@ -0,0 +1,642 @@
//
// Copyright 2018 DreamWorks Animation LLC.
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
//
// Description:
// This tutorial shows how to manage the limit surface of a potentially
// large mesh by creating groups of patches for selected faces of the
// mesh. Familiarity with construction and evaluation of a PatchTable
// is assumed (see far/tutorial_6).
//
// When the patches for a mesh do not need to be retained for further
// use, e.g. when simply computing points for a tessellation, the time
// and space required to construct a single large PatchTable can be
// considerable. By constructing, evaluating and discarding smaller
// PatchTables for subsets of the mesh, the high transient memory cost
// can be avoided when computed serially. When computed in parallel,
// there may be little memory savings, but the construction time can
// then be distributed.
//
// This tutorial creates simple geometry (currently a lattice of cubes)
// that can be expanded in complexity with a simple multiplier. The
// collection of faces are then divided into a specified number of groups
// from which patches will be constructed and evaluated. A simple
// tessellation (a triangle fan around the midpoint of each face) is then
// written in Obj format to the standard output.
//
#include "../../../regression/common/far_utils.h"
#include <opensubdiv/far/topologyDescriptor.h>
#include <opensubdiv/far/primvarRefiner.h>
#include <opensubdiv/far/patchTableFactory.h>
#include <opensubdiv/far/patchMap.h>
#include <opensubdiv/far/ptexIndices.h>
#include <cassert>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <sstream>
using namespace OpenSubdiv;
using Far::Index;
//
// Global utilities in this namespace are not relevant to the tutorial.
// They simply serve to construct some default geometry to be processed
// in the form of a TopologyRefiner and vector of vertex positions.
//
namespace {
//
// Simple structs for (x,y,z) position and a 3-tuple for the set
// of vertices of a triangle:
//
struct Pos {
Pos() { }
Pos(float x, float y, float z) { p[0] = x, p[1] = y, p[2] = z; }
Pos operator+(Pos const & op) const {
return Pos(p[0] + op.p[0], p[1] + op.p[1], p[2] + op.p[2]);
}
// Clear() and AddWithWeight() required for interpolation:
void Clear( void * =0 ) { p[0] = p[1] = p[2] = 0.0f; }
void AddWithWeight(Pos const & src, float weight) {
p[0] += weight * src.p[0];
p[1] += weight * src.p[1];
p[2] += weight * src.p[2];
}
float p[3];
};
typedef std::vector<Pos> PosVector;
struct Tri {
Tri() { }
Tri(int a, int b, int c) { v[0] = a, v[1] = b, v[2] = c; }
int v[3];
};
typedef std::vector<Tri> TriVector;
//
// Functions to populate the topology and geometry arrays with simple
// shapes that we can multiply to increase complexity:
//
void
appendDefaultPrimitive(Pos const & origin,
std::vector<int> & vertsPerFace,
std::vector<Index> & faceVerts,
std::vector<Pos> & positionsPerVert) {
// Local topology and position of a cube centered at origin:
static float const cubePositions[8][3] = { { -0.5f, -0.5f, -0.5f },
{ -0.5f, 0.5f, -0.5f },
{ -0.5f, 0.5f, 0.5f },
{ -0.5f, -0.5f, 0.5f },
{ 0.5f, -0.5f, -0.5f },
{ 0.5f, 0.5f, -0.5f },
{ 0.5f, 0.5f, 0.5f },
{ 0.5f, -0.5f, 0.5f } };
static int const cubeFaceVerts[6][4] = { { 0, 3, 2, 1 },
{ 4, 5, 6, 7 },
{ 0, 4, 7, 3 },
{ 1, 2, 6, 5 },
{ 0, 1, 5, 4 },
{ 3, 7, 6, 2 } };
// Identify the next vertex before appending vertex positions:
int baseVertex = (int) positionsPerVert.size();
for (int i = 0; i < 8; ++i) {
float const * p = cubePositions[i];
positionsPerVert.push_back(origin + Pos(p[0], p[1], p[2]));
}
// Append number of verts-per-face and face-vertices for each face:
for (int i = 0; i < 6; ++i) {
vertsPerFace.push_back(4);
for (int j = 0; j < 4; ++j) {
faceVerts.push_back(baseVertex + cubeFaceVerts[i][j]);
}
}
}
void
createDefaultGeometry(int multiplier,
std::vector<int> & vertsPerFace,
std::vector<Index> & faceVerts,
std::vector<Pos> & positionsPerVert) {
// Default primitive is currently a cube:
int const vertsPerPrimitive = 8;
int const facesPerPrimitive = 6;
int const faceVertsPerPrimitive = 24;
int nPrimitives = multiplier * multiplier * multiplier;
positionsPerVert.reserve(nPrimitives * vertsPerPrimitive);
vertsPerFace.reserve(nPrimitives * facesPerPrimitive);
faceVerts.reserve(nPrimitives * faceVertsPerPrimitive);
for (int x = 0; x < multiplier; ++x) {
for (int y = 0; y < multiplier; ++y) {
for (int z = 0; z < multiplier; ++z) {
appendDefaultPrimitive(Pos(x * 2.0f, y * 2.0f, z * 2.0f),
vertsPerFace, faceVerts,
positionsPerVert);
}
}
}
}
//
// Create a TopologyRefiner from default geometry created above:
//
Far::TopologyRefiner *
createTopologyRefinerDefault(int multiplier,
PosVector & posVector) {
std::vector<int> topVertsPerFace;
std::vector<Index> topFaceVerts;
createDefaultGeometry(multiplier, topVertsPerFace, topFaceVerts, posVector);
typedef Far::TopologyDescriptor Descriptor;
Sdc::SchemeType type = OpenSubdiv::Sdc::SCHEME_CATMARK;
Sdc::Options options;
options.SetVtxBoundaryInterpolation(Sdc::Options::VTX_BOUNDARY_EDGE_AND_CORNER);
Descriptor desc;
desc.numVertices = (int) posVector.size();
desc.numFaces = (int) topVertsPerFace.size();
desc.numVertsPerFace = &topVertsPerFace[0];
desc.vertIndicesPerFace = &topFaceVerts[0];
// Instantiate a FarTopologyRefiner from the descriptor.
Far::TopologyRefiner * refiner =
Far::TopologyRefinerFactory<Descriptor>::Create(desc,
Far::TopologyRefinerFactory<Descriptor>::Options(type, options));
if (refiner == 0) {
exit(EXIT_FAILURE);
}
bool dumpDefaultGeometryToObj = false;
if (dumpDefaultGeometryToObj) {
int nVerts = (int) posVector.size();
for (int i = 0; i < nVerts; ++i) {
float const * p = posVector[i].p;
printf("v %f %f %f\n", p[0], p[1], p[2]);
}
int const * fVerts = &topFaceVerts[0];
int nFaces = (int) topVertsPerFace.size();
for (int i = 0; i < nFaces; ++i) {
printf("f");
for (int j = 0; j < topVertsPerFace[i]; ++j) {
printf(" %d", 1 + *fVerts++);
}
printf("\n");
}
exit(EXIT_SUCCESS);
}
return refiner;
}
//
// Create a TopologyRefiner from a specified Obj file:
// geometry created internally:
//
Far::TopologyRefiner *
createTopologyRefinerFromObj(std::string const & objFileName,
PosVector & posVector) {
const char * filename = objFileName.c_str();
const Shape * shape = 0;
std::ifstream ifs(filename);
if (ifs) {
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
std::string shapeString = ss.str();
shape = Shape::parseObj(shapeString.c_str(), kCatmark, false);
if (shape == 0) {
fprintf(stderr, "Error: Cannot create Shape from .obj file '%s'\n", filename);
return 0;
}
} else {
fprintf(stderr, "Error: Cannot open .obj file '%s'\n", filename);
return 0;
}
Sdc::SchemeType sdcType = GetSdcType(*shape);
Sdc::Options sdcOptions = GetSdcOptions(*shape);
Far::TopologyRefiner * refiner = Far::TopologyRefinerFactory<Shape>::Create(*shape,
Far::TopologyRefinerFactory<Shape>::Options(sdcType, sdcOptions));
if (refiner == 0) {
fprintf(stderr, "Error: Unable to construct TopologyRefiner from .obj file '%s'\n", filename);
return 0;
}
int numVertices = refiner->GetNumVerticesTotal();
posVector.resize(numVertices);
std::memcpy(&posVector[0], &shape->verts[0], numVertices * 3 * sizeof(float));
return refiner;
}
} // end namespace
//
// The PatchGroup bundles objects used to create and evaluate a sparse set
// of patches. Its construction creates a PatchTable and all other objects
// necessary to evaluate patches associated with the specified subset of
// faces provided. A simple method to tessellate a specified face is
// provided.
//
// Note that, since the data buffers for the base level and refined levels
// are separate (we want to avoid copying primvar data for the base level
// of a potentially large mesh), that patch evaluation needs to account
// for the separation when combining control points.
//
struct PatchGroup {
PatchGroup(Far::PatchTableFactory::Options patchOptions,
Far::TopologyRefiner const & baseRefinerArg,
Far::PtexIndices const & basePtexIndicesArg,
std::vector<Pos> const & basePositionsArg,
std::vector<Index> const & baseFacesArg);
~PatchGroup();
void TessellateBaseFace(int face, PosVector & tessPoints,
TriVector & tessTris) const;
// Const reference members:
Far::TopologyRefiner const & baseRefiner;
Far::PtexIndices const & basePtexIndices;
std::vector<Pos> const & basePositions;
std::vector<Index> const & baseFaces;
// Members constructed to evaluate patches:
Far::PatchTable * patchTable;
Far::PatchMap * patchMap;
int patchFaceSize;
std::vector<Pos> localPositions;
};
PatchGroup::PatchGroup(Far::PatchTableFactory::Options patchOptions,
Far::TopologyRefiner const & baseRefinerArg,
Far::PtexIndices const & basePtexIndicesArg,
std::vector<Pos> const & basePositionsArg,
std::vector<Index> const & baseFacesArg) :
baseRefiner(baseRefinerArg),
basePtexIndices(basePtexIndicesArg),
basePositions(basePositionsArg),
baseFaces(baseFacesArg) {
// Derive adaptive refinement options from the given patch options:
//
Far::TopologyRefiner::AdaptiveOptions adaptiveOptions(0);
adaptiveOptions.isolationLevel = patchOptions.maxIsolationLevel;
adaptiveOptions.useInfSharpPatch = patchOptions.useInfSharpPatch;
adaptiveOptions.useSingleCreasePatch = patchOptions.useSingleCreasePatch;
adaptiveOptions.considerFVarChannels = patchOptions.generateFVarTables;
// Create a local refiner (sharing the base level), apply adaptive refinement
// to the given subset of base faces, and construct a patch table (and its
// associated map) for the same set of faces:
//
Far::ConstIndexArray groupFaces(&baseFaces[0], (int)baseFaces.size());
Far::TopologyRefiner *localRefiner =
Far::TopologyRefinerFactory<Far::TopologyDescriptor>::Create(baseRefiner);
localRefiner->RefineAdaptive(adaptiveOptions, groupFaces);
patchTable = Far::PatchTableFactory::Create(*localRefiner, patchOptions,
groupFaces);
patchMap = new Far::PatchMap(*patchTable);
patchFaceSize = Sdc::SchemeTypeTraits::GetRegularFaceSize(baseRefiner.GetSchemeType());
// Compute the number of refined and local points needed to evaluate the
// patches, allocate and interpolate. This varies from far/tutorial_6 in
// that the primvar buffer for the base vertices is separate from the
// refined vertices and local patch points (which must also be accounted
// for when evaluating the patches).
//
int nBaseVertices = localRefiner->GetLevel(0).GetNumVertices();
int nRefinedVertices = localRefiner->GetNumVerticesTotal() - nBaseVertices;
int nLocalPoints = patchTable->GetNumLocalPoints();
localPositions.resize(nRefinedVertices + nLocalPoints);
if (nRefinedVertices) {
Far::PrimvarRefiner primvarRefiner(*localRefiner);
Pos const * src = &basePositions[0];
Pos * dst = &localPositions[0];
for (int level = 1; level < localRefiner->GetNumLevels(); ++level) {
primvarRefiner.Interpolate(level, src, dst);
src = dst;
dst += localRefiner->GetLevel(level).GetNumVertices();
}
}
if (nLocalPoints) {
patchTable->ComputeLocalPointValues(&basePositions[0], nBaseVertices,
&localPositions[0], &localPositions[nRefinedVertices]);
}
delete localRefiner;
}
PatchGroup::~PatchGroup() {
delete patchTable;
delete patchMap;
}
void
PatchGroup::TessellateBaseFace(int face, PosVector & tessPoints,
TriVector & tessTris) const {
// Tesselate the face with points at the midpoint of the face and at
// each corner, and triangles connecting the midpoint to each edge.
// Irregular faces require an aribrary number of corners points, but
// all are at the origin of the child face of the irregular base face:
//
float const quadPoints[5][2] = { { 0.5f, 0.5f },
{ 0.0f, 0.0f },
{ 1.0f, 0.0f },
{ 1.0f, 1.0f },
{ 0.0f, 1.0f } };
float const triPoints[4][2] = { { 0.5f, 0.5f },
{ 0.0f, 0.0f },
{ 1.0f, 0.0f },
{ 0.0f, 1.0f } };
float const irregPoints[4][2] = { { 1.0f, 1.0f },
{ 0.0f, 0.0f } };
// Determine the topology of the given base face and the resulting
// tessellation points and faces to generate:
//
int baseFace = baseFaces[face];
int faceSize = baseRefiner.GetLevel(0).GetFaceVertices(baseFace).size();
bool faceIsIrregular = (faceSize != patchFaceSize);
int nTessPoints = faceSize + 1;
int nTessFaces = faceSize;
tessPoints.resize(nTessPoints);
tessTris.resize(nTessFaces);
// Compute the mid and corner points -- remember that for an irregular
// face, we must reference the individual ptex faces for each corner:
//
int ptexFace = basePtexIndices.GetFaceId(baseFace);
int numBaseVerts = (int) basePositions.size();
for (int i = 0; i < nTessPoints; ++i) {
// Choose the (s,t) coordinate from the fixed tessellation:
float const * st = faceIsIrregular ? irregPoints[i != 0]
: ((faceSize == 4) ? quadPoints[i] : triPoints[i]);
// Locate the patch corresponding to the face ptex idx and (s,t)
// and evaluate:
int patchFace = ptexFace;
if (faceIsIrregular && (i > 0)) {
patchFace += i - 1;
}
Far::PatchTable::PatchHandle const * handle =
patchMap->FindPatch(patchFace, st[0], st[1]);
assert(handle);
float pWeights[20];
patchTable->EvaluateBasis(*handle, st[0], st[1], pWeights);
// Identify the patch cvs and combine with the evaluated weights --
// remember to distinguish cvs in the base level:
Far::ConstIndexArray cvIndices = patchTable->GetPatchVertices(*handle);
Pos & pos = tessPoints[i];
pos.Clear();
for (int cv = 0; cv < cvIndices.size(); ++cv) {
int cvIndex = cvIndices[cv];
if (cvIndex < numBaseVerts) {
pos.AddWithWeight(basePositions[cvIndex], pWeights[cv]);
} else {
pos.AddWithWeight(localPositions[cvIndex - numBaseVerts], pWeights[cv]);
}
}
}
// Assign triangles connecting the midpoint of the base face to the
// points computed at the ends of each of its edges:
//
for (int i = 0; i < nTessFaces; ++i) {
tessTris[i] = Tri(0, 1 + i, 1 + ((i + 1) % faceSize));
}
}
//
// Command line arguments parsed to provide run-time options:
//
class Args {
public:
std::string inputObjFile;
Sdc::SchemeType schemeType;
int geoMultiplier;
int maxPatchDepth;
int numPatchGroups;
bool noTessFlag;
bool noOutputFlag;
public:
Args(int argc, char ** argv) :
inputObjFile(),
schemeType(Sdc::SCHEME_CATMARK),
geoMultiplier(10),
maxPatchDepth(3),
numPatchGroups(10),
noTessFlag(false),
noOutputFlag(false) {
for (int i = 1; i < argc; ++i) {
if (strstr(argv[i], ".obj")) {
if (inputObjFile.empty()) {
inputObjFile = std::string(argv[i]);
} else {
fprintf(stderr, "Warning: .obj file '%s' ignored\n", argv[i]);
}
} else if (!strcmp(argv[i], "-mult")) {
if (++i < argc) geoMultiplier = atoi(argv[i]);
} else if (!strcmp(argv[i], "-bilinear")) {
schemeType = Sdc::SCHEME_BILINEAR;
} else if (!strcmp(argv[i], "-catmark")) {
schemeType = Sdc::SCHEME_CATMARK;
} else if (!strcmp(argv[i], "-loop")) {
schemeType = Sdc::SCHEME_LOOP;
} else if (!strcmp(argv[i], "-depth")) {
if (++i < argc) maxPatchDepth = atoi(argv[i]);
} else if (!strcmp(argv[i], "-groups")) {
if (++i < argc) numPatchGroups = atoi(argv[i]);
} else if (!strcmp(argv[i], "-notess")) {
noTessFlag = true;
} else if (!strcmp(argv[i], "-nooutput")) {
noOutputFlag = true;
} else {
fprintf(stderr, "Warning: Argument '%s' ignored\n", argv[i]);
}
}
}
private:
Args() { }
};
//
// Load command line arguments and geometry, then divide the mesh into groups
// of faces from which to create and tessellate patches:
//
int
main(int argc, char **argv) {
Args args(argc, argv);
//
// Create or load the base geometry (command line arguments allow a
// .obj file to be specified). In addition to the TopologyRefiner
// and set of positions for the base vertices, a set of PtexIndices is
// also required to evaluate patches, so build it here once for use
// elsewhere:
//
std::vector<Pos> basePositions;
Far::TopologyRefiner * baseRefinerPtr = args.inputObjFile.empty() ?
createTopologyRefinerDefault(args.geoMultiplier, basePositions) :
createTopologyRefinerFromObj(args.inputObjFile, basePositions);
assert(baseRefinerPtr);
Far::TopologyRefiner & baseRefiner = *baseRefinerPtr;
Far::PtexIndices basePtexIndices(baseRefiner);
//
// Determine the sizes of the patch groups specified -- there will be
// two sizes that differ by one to account for unequal division:
//
int numBaseFaces = baseRefiner.GetNumFacesTotal();
int numPatchGroups = args.numPatchGroups;
if (numPatchGroups > numBaseFaces) {
numPatchGroups = numBaseFaces;
} else if (numPatchGroups < 1) {
numPatchGroups = 1;
}
int lesserGroupSize = numBaseFaces / numPatchGroups;
int numLargerGroups = numBaseFaces - (numPatchGroups * lesserGroupSize);
//
// Define the options used to construct the patches for each group.
// Unless suppressed, a tessellation in Obj format will also be printed
// to standard output, so keep track of the vertex indices.
//
Far::PatchTableFactory::Options patchOptions(args.maxPatchDepth);
patchOptions.generateVaryingTables = false;
patchOptions.shareEndCapPatchPoints = false;
patchOptions.endCapType =
Far::PatchTableFactory::Options::ENDCAP_GREGORY_BASIS;
int objVertCount = 0;
PosVector tessPoints;
TriVector tessFaces;
for (int i = 0; i < numPatchGroups; ++i) {
//
// Initialize a vector with a group of base faces from which to
// create and evaluate patches:
//
Index minFace = i * lesserGroupSize + std::min(i, numLargerGroups);
Index maxFace = minFace + lesserGroupSize + (i < numLargerGroups);
std::vector<Far::Index> baseFaces(maxFace - minFace);
for (int face = minFace; face < maxFace; ++face) {
baseFaces[face - minFace] = face;
}
//
// Declare a PatchGroup and tessellate its base faces -- generating
// vertices and faces in Obj format to standard output:
//
PatchGroup patchGroup(patchOptions,
baseRefiner, basePtexIndices, basePositions, baseFaces);
if (args.noTessFlag) continue;
if (!args.noOutputFlag) {
printf("g patchGroup_%d\n", i);
}
for (int j = 0; j < (int) baseFaces.size(); ++j) {
patchGroup.TessellateBaseFace(j, tessPoints, tessFaces);
if (!args.noOutputFlag) {
int nVerts = (int) tessPoints.size();
for (int k = 0; k < nVerts; ++k) {
float const * p = tessPoints[k].p;
printf("v %f %f %f\n", p[0], p[1], p[2]);
}
int nTris = (int) tessFaces.size();
int vBase = 1 + objVertCount;
for (int k = 0; k < nTris; ++k) {
int const * v = tessFaces[k].v;
printf("f %d %d %d\n", vBase + v[0], vBase + v[1], vBase + v[2]);
}
objVertCount += nVerts;
}
}
}
delete baseRefinerPtr;
return EXIT_SUCCESS;
}