Merge branch 'release/v3_0_3'

This commit is contained in:
jcowles 2015-10-05 16:27:31 -07:00
commit 6d8ebd409a
26 changed files with 1550 additions and 268 deletions

View File

@ -31,6 +31,27 @@
----
Release 3.0.3
=============
Release 3.0.3 is a minor stability release which includes important performance
and bug fixes.
**New Features**
- Smooth normal generation tutorial, far_tutorial_8
**Changes**
- Major performance improvement in PatchTable construction
- Improved patch approximations for non-manifold features
**Bug Fixes**
- Fixed double delete in GLSL Compute controller
- Fixed buffer layout for GLSL Compute kernel
- Fixed GL buffer leak in Osd::GLPatchTable
- Fixed out-of-bounds data access for TBB and OMP stencil evaluation
- Fixed WIN32_LEAN_AND_MEAN typo
- Fixed Loop-related shader issues glFVarViewer
Release 3.0.2
=============

View File

@ -27,6 +27,7 @@
#include "clDeviceContext.h"
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#elif defined(__APPLE__)
#include <OpenGL/OpenGL.h>

View File

@ -25,6 +25,7 @@
#include "cudaDeviceContext.h"
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#elif defined(__APPLE__)
#include <OpenGL/OpenGL.h>

View File

@ -25,12 +25,12 @@
#ifndef STOPWATCH_H
#define STOPWATCH_H
#if not (_WIN32 or _WIN64)
#if (_WIN32 or _WIN64)
#include <windows.h>
#else
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
#else
#endif
class Stopwatch {

View File

@ -501,6 +501,9 @@ public:
if (type == Far::PatchDescriptor::QUADS) {
ss << "#define PRIM_QUAD\n";
} else if (type == Far::PatchDescriptor::TRIANGLES) {
ss << "#define PRIM_TRI\n";
ss << "#define LOOP\n";
} else {
ss << "#define PRIM_TRI\n";
}

View File

@ -51,14 +51,61 @@ namespace {
EndCapBSplineBasisPatchFactory::EndCapBSplineBasisPatchFactory(
TopologyRefiner const & refiner) :
_refiner(&refiner), _numVertices(0), _numPatches(0) {
// Sanity check: the mesh must be adaptively refined
assert(not refiner.IsUniform());
// Reserve the patch point stencils. Ideally topology refiner
// would have an API to return how many endcap patches will be required.
// Instead we conservatively estimate by the number of patches at the
// finest level.
int numMaxLevelFaces = refiner.GetLevel(refiner.GetMaxLevel()).GetNumFaces();
_vertexStencils.reserve(numMaxLevelFaces*16);
_varyingStencils.reserve(numMaxLevelFaces*16);
}
ConstIndexArray
EndCapBSplineBasisPatchFactory::GetPatchPoints(
Vtr::internal::Level const * level, Index faceIndex,
PatchTableFactory::PatchFaceTag const * /*levelPatchTags*/,
Vtr::internal::Level const * level, Index thisFace,
PatchTableFactory::PatchFaceTag const *levelPatchTags,
int levelVertOffset) {
Vtr::ConstIndexArray facePoints = level->getFaceVertices(thisFace);
PatchTableFactory::PatchFaceTag patchTag = levelPatchTags[thisFace];
// if it's boundary, fallback to use GregoryBasis
if (patchTag._boundaryCount > 0) {
return getPatchPointsFromGregoryBasis(
level, thisFace, facePoints, levelVertOffset);
}
// there's a short-cut when the face contains only 1 extraordinary vertex.
// (we can achieve this by isolating 2 levels)
// look for the extraordinary vertex
int irregular = -1;
for (int i = 0; i < 4; ++i) {
int valence = level->getVertexFaces(facePoints[i]).size();
if (valence != 4) {
if (irregular != -1) {
// more than one extraoridinary vertices.
// fallback to use GregoryBasis
return getPatchPointsFromGregoryBasis(
level, thisFace, facePoints, levelVertOffset);
}
irregular = i;
}
}
// faster B-spline endcap generation
return getPatchPoints(level, thisFace, irregular, facePoints,
levelVertOffset);
}
ConstIndexArray
EndCapBSplineBasisPatchFactory::getPatchPointsFromGregoryBasis(
Vtr::internal::Level const * level, Index thisFace,
ConstIndexArray facePoints, int levelVertOffset) {
// XXX: For now, always create new 16 indices for each patch.
// we'll optimize later to share all regular control points with
// other patches as well as to try to make extra ordinary verts watertight.
@ -68,66 +115,386 @@ EndCapBSplineBasisPatchFactory::GetPatchPoints(
_patchPoints.push_back(_numVertices + offset);
++_numVertices;
}
GregoryBasis::ProtoBasis basis(*level, thisFace, levelVertOffset, -1);
// XXX: temporary hack. we should traverse topology and find existing
// vertices if available
//
// Reorder gregory basis stencils into regular bezier
GregoryBasis::ProtoBasis basis(*level, faceIndex, levelVertOffset, -1);
std::vector<GregoryBasis::Point> bezierCP;
bezierCP.reserve(16);
GregoryBasis::Point const *bezierCP[16];
bezierCP.push_back(basis.P[0]);
bezierCP.push_back(basis.Ep[0]);
bezierCP.push_back(basis.Em[1]);
bezierCP.push_back(basis.P[1]);
bezierCP[0] = &basis.P[0];
bezierCP[1] = &basis.Ep[0];
bezierCP[2] = &basis.Em[1];
bezierCP[3] = &basis.P[1];
bezierCP.push_back(basis.Em[0]);
bezierCP.push_back(basis.Fp[0]); // arbitrary
bezierCP.push_back(basis.Fp[1]); // arbitrary
bezierCP.push_back(basis.Ep[1]);
bezierCP[4] = &basis.Em[0];
bezierCP[5] = &basis.Fp[0]; // arbitrary
bezierCP[6] = &basis.Fp[1]; // arbitrary
bezierCP[7] = &basis.Ep[1];
bezierCP.push_back(basis.Ep[3]);
bezierCP.push_back(basis.Fp[3]); // arbitrary
bezierCP.push_back(basis.Fp[2]); // arbitrary
bezierCP.push_back(basis.Em[2]);
bezierCP[8] = &basis.Ep[3];
bezierCP[9] = &basis.Fp[3]; // arbitrary
bezierCP[10] = &basis.Fp[2]; // arbitrary
bezierCP[11] = &basis.Em[2];
bezierCP.push_back(basis.P[3]);
bezierCP.push_back(basis.Em[3]);
bezierCP.push_back(basis.Ep[2]);
bezierCP.push_back(basis.P[2]);
bezierCP[12] = &basis.P[3];
bezierCP[13] = &basis.Em[3];
bezierCP[14] = &basis.Ep[2];
bezierCP[15] = &basis.P[2];
// all stencils should have the same capacity.
int stencilCapacity = basis.P[0].GetCapacity();
// Apply basis conversion from bezier to b-spline
float Q[4][4] = {{ 6, -7, 2, 0},
{ 0, 2, -1, 0},
{ 0, -1, 2, 0},
{ 0, 2, -7, 6} };
std::vector<GregoryBasis::Point> H(16);
Vtr::internal::StackBuffer<GregoryBasis::Point, 16> H(16);
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
for (int k = 0; k < 4; ++k) {
if (isWeightNonZero(Q[i][k])) H[i*4+j] += bezierCP[j+k*4] * Q[i][k];
H[i*4+j].Clear(stencilCapacity);
for (int k = 0; k < 4; ++k) {
if (isWeightNonZero(Q[i][k])) {
H[i*4+j].AddWithWeight(*bezierCP[j+k*4], Q[i][k]);
}
}
}
}
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
GregoryBasis::Point p;
GregoryBasis::Point p(stencilCapacity);
for (int k = 0; k < 4; ++k) {
if (isWeightNonZero(Q[j][k])) p += H[i*4+k] * Q[j][k];
if (isWeightNonZero(Q[j][k])) {
p.AddWithWeight(H[i*4+k], Q[j][k]);
}
}
_vertexStencils.push_back(p);
}
}
int varyingIndices[] = { 0, 0, 1, 1,
0, 0, 1, 1,
3, 3, 2, 2,
3, 3, 2, 2,};
for (int i = 0; i < 16; ++i) {
_varyingStencils.push_back(basis.V[varyingIndices[i]]);
GregoryBasis::Point p(1);
p.AddWithWeight(facePoints[varyingIndices[i]] + levelVertOffset, 1.0f);
_varyingStencils.push_back(p);
}
++_numPatches;
return ConstIndexArray(&_patchPoints[(_numPatches-1)*16], 16);
}
void
EndCapBSplineBasisPatchFactory::computeLimitStencils(
Vtr::internal::Level const *level,
ConstIndexArray facePoints, int vid,
GregoryBasis::Point *P, GregoryBasis::Point *Ep, GregoryBasis::Point *Em)
{
int maxvalence = level->getMaxValence();
Vtr::internal::StackBuffer<Index, 40> manifoldRing;
manifoldRing.SetSize(maxvalence*2);
int ringSize =
level->gatherQuadRegularRingAroundVertex(
facePoints[vid], manifoldRing, /*fvarChannel*/-1);
// note: this function has not yet supported boundary.
assert((ringSize & 1) == 0);
int valence = ringSize/2;
int stencilCapacity = ringSize + 1;
Index start = -1, prev = -1;
{
int ip = (vid+1)%4, im = (vid+3)%4;
for (int i = 0; i < valence; ++i) {
if (manifoldRing[i*2] == facePoints[ip])
start = i;
if (manifoldRing[i*2] == facePoints[im])
prev = i;
}
}
assert(start > -1 && prev > -1);
GregoryBasis::Point e0, e1;
e0.Clear(stencilCapacity);
e1.Clear(stencilCapacity);
float t = 2.0f * float(M_PI) / float(valence);
float ef = 1.0f / (valence * (cosf(t) + 5.0f +
sqrtf((cosf(t) + 9) * (cosf(t) + 1)))/16.0f);
for (int i = 0; i < valence; ++i) {
Index ip = (i+1)%valence;
Index idx_neighbor = (manifoldRing[2*i + 0]),
idx_diagonal = (manifoldRing[2*i + 1]),
idx_neighbor_p = (manifoldRing[2*ip + 0]);
float d = float(valence)+5.0f;
GregoryBasis::Point f(4);
f.AddWithWeight(facePoints[vid], float(valence)/d);
f.AddWithWeight(idx_neighbor_p, 2.0f/d);
f.AddWithWeight(idx_neighbor, 2.0f/d);
f.AddWithWeight(idx_diagonal, 1.0f/d);
P->AddWithWeight(f, 1.0f/float(valence));
float c0 = 0.5f*cosf((float(2*M_PI) * float(i)/float(valence)))
+ 0.5f*cosf((float(2*M_PI) * float(ip)/float(valence)));
float c1 = 0.5f*sinf((float(2*M_PI) * float(i)/float(valence)))
+ 0.5f*sinf((float(2*M_PI) * float(ip)/float(valence)));
e0.AddWithWeight(f, c0*ef);
e1.AddWithWeight(f, c1*ef);
}
*Ep = *P;
Ep->AddWithWeight(e0, cosf((float(2*M_PI) * float(start)/float(valence))));
Ep->AddWithWeight(e1, sinf((float(2*M_PI) * float(start)/float(valence))));
*Em = *P;
Em->AddWithWeight(e0, cosf((float(2*M_PI) * float(prev)/float(valence))));
Em->AddWithWeight(e1, sinf((float(2*M_PI) * float(prev)/float(valence))));
}
ConstIndexArray
EndCapBSplineBasisPatchFactory::getPatchPoints(
Vtr::internal::Level const *level, Index thisFace,
Index extraOrdinaryIndex, ConstIndexArray facePoints,
int levelVertOffset) {
// Fast B-spline endcap construction.
//
// This function assumes the patch is not on boundary
// and it contains only 1 extraordinary vertex.
// The location of the extraoridnary vertex can be one of
// 0-ring quad corner.
//
// B-Spline control point gathering indice
//
// [5] (4)---(15)--(14) 0 : extraoridnary vertex
// | | |
// | | | 1,2,3,9,10,11,12,13 :
// (6)----0-----3-----13 B-Spline control points, gathered by
// | | | | traversing topology
// | | | |
// (7)----1-----2-----12 (5) :
// | | | | Fitted patch point (from limit position)
// | | | |
// (8)----9-----10----11 (4),(6),(7),(8),(14),(15) :
// Fitted patch points
// (from limit tangents and bezier CP)
//
static int const rotation[4][16] = {
/*= 0 ring =*/ /* ================ 1 ring ================== */
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ,14, 15},
{ 1, 2, 3, 0, 7, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6},
{ 2, 3, 0, 1, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, 8, 9},
{ 3, 0, 1, 2, 13, 14, 15, 4, 5, 6, 7, 8, 9, 10, 11, 12}};
int maxvalence = level->getMaxValence();
int stencilCapacity = 2*maxvalence + 16;
GregoryBasis::Point P(stencilCapacity), Em(stencilCapacity), Ep(stencilCapacity);
computeLimitStencils(level, facePoints, extraOrdinaryIndex, &P, &Em, &Ep);
P.OffsetIndices(levelVertOffset);
Em.OffsetIndices(levelVertOffset);
Ep.OffsetIndices(levelVertOffset);
// returning patch indices (a mix of cage vertices and patch points)
int patchPoints[16];
// first, we traverse the topology to gather 15 vertices. This process is
// similar to Vtr::Level::gatherQuadRegularInteriorPatchPoints
int pointIndex = 0;
int vid = extraOrdinaryIndex;
// 0-ring
patchPoints[pointIndex++] = facePoints[0] + levelVertOffset;
patchPoints[pointIndex++] = facePoints[1] + levelVertOffset;
patchPoints[pointIndex++] = facePoints[2] + levelVertOffset;
patchPoints[pointIndex++] = facePoints[3] + levelVertOffset;
// 1-ring
ConstIndexArray thisFaceVerts = level->getFaceVertices(thisFace);
for (int i = 0; i < 4; ++i) {
Index v = thisFaceVerts[i];
ConstIndexArray vFaces = level->getVertexFaces(v);
ConstLocalIndexArray vInFaces = level->getVertexFaceLocalIndices(v);
if (i != vid) {
// regular corner
int thisFaceInVFaces = vFaces.FindIndexIn4Tuple(thisFace);
int intFaceInVFaces = (thisFaceInVFaces + 2) & 0x3;
Index intFace = vFaces[intFaceInVFaces];
int vInIntFace = vInFaces[intFaceInVFaces];
ConstIndexArray facePoints = level->getFaceVertices(intFace);
patchPoints[pointIndex++] =
facePoints[(vInIntFace + 1)&3] + levelVertOffset;
patchPoints[pointIndex++] =
facePoints[(vInIntFace + 2)&3] + levelVertOffset;
patchPoints[pointIndex++] =
facePoints[(vInIntFace + 3)&3] + levelVertOffset;
} else {
// irregular corner
int thisFaceInVFaces = vFaces.FindIndex(thisFace);
int valence = vFaces.size();
{
// first
int intFaceInVFaces = (thisFaceInVFaces + 1) % valence;
Index intFace = vFaces[intFaceInVFaces];
int vInIntFace = vInFaces[intFaceInVFaces];
ConstIndexArray facePoints = level->getFaceVertices(intFace);
patchPoints[pointIndex++] =
facePoints[(vInIntFace+3)&3] + levelVertOffset;
}
{
// middle: (n-vertices) needs a limit stencil. skip for now
pointIndex++;
}
{
// end
int intFaceInVFaces = (thisFaceInVFaces + (valence-1)) %valence;
Index intFace = vFaces[intFaceInVFaces];
int vInIntFace = vInFaces[intFaceInVFaces];
ConstIndexArray facePoints = level->getFaceVertices(intFace);
patchPoints[pointIndex++] =
facePoints[(vInIntFace+1)&3] + levelVertOffset;
}
}
}
// stencils for patch points
GregoryBasis::Point X5(stencilCapacity),
X6(stencilCapacity),
X7(stencilCapacity),
X8(stencilCapacity),
X4(stencilCapacity),
X15(stencilCapacity),
X14(stencilCapacity);
// limit tangent : Em
// X6 = 1/3 * ( 36Em - 16P0 - 8P1 - 2P2 - 4P3 - P6 - 2P7)
// X7 = 1/3 * (-18Em + 8P0 + 4P1 + P2 + 2P3 + 2P6 + 4P7)
// X8 = X6 + (P8-P6)
X6.AddWithWeight(Em, 36.0f/3.0f);
X6.AddWithWeight(patchPoints[rotation[vid][0]], -16.0f/3.0f);
X6.AddWithWeight(patchPoints[rotation[vid][1]], -8.0f/3.0f);
X6.AddWithWeight(patchPoints[rotation[vid][2]], -2.0f/3.0f);
X6.AddWithWeight(patchPoints[rotation[vid][3]], -4.0f/3.0f);
X6.AddWithWeight(patchPoints[rotation[vid][6]], -1.0f/3.0f);
X6.AddWithWeight(patchPoints[rotation[vid][7]], -2.0f/3.0f);
X7.AddWithWeight(Em, -18.0f/3.0f);
X7.AddWithWeight(patchPoints[rotation[vid][0]], 8.0f/3.0f);
X7.AddWithWeight(patchPoints[rotation[vid][1]], 4.0f/3.0f);
X7.AddWithWeight(patchPoints[rotation[vid][2]], 1.0f/3.0f);
X7.AddWithWeight(patchPoints[rotation[vid][3]], 2.0f/3.0f);
X7.AddWithWeight(patchPoints[rotation[vid][6]], 2.0f/3.0f);
X7.AddWithWeight(patchPoints[rotation[vid][7]], 4.0f/3.0f);
X8 = X6;
X8.AddWithWeight(patchPoints[rotation[vid][8]], 1.0f);
X8.AddWithWeight(patchPoints[rotation[vid][6]], -1.0f);
// limit tangent : Ep
// X4 = 1/3 * ( 36EP - 16P0 - 4P1 - 2P15 - 2P2 - 8P3 - P4)
// X15 = 1/3 * (-18EP + 8P0 + 2P1 + 4P15 + P2 + 4P3 + 2P4)
// X14 = X4 + (P14 - P4)
X4.AddWithWeight(Ep, 36.0f/3.0f);
X4.AddWithWeight(patchPoints[rotation[vid][0]], -16.0f/3.0f);
X4.AddWithWeight(patchPoints[rotation[vid][1]], -4.0f/3.0f);
X4.AddWithWeight(patchPoints[rotation[vid][2]], -2.0f/3.0f);
X4.AddWithWeight(patchPoints[rotation[vid][3]], -8.0f/3.0f);
X4.AddWithWeight(patchPoints[rotation[vid][4]], -1.0f/3.0f);
X4.AddWithWeight(patchPoints[rotation[vid][15]], -2.0f/3.0f);
X15.AddWithWeight(Ep, -18.0f/3.0f);
X15.AddWithWeight(patchPoints[rotation[vid][0]], 8.0f/3.0f);
X15.AddWithWeight(patchPoints[rotation[vid][1]], 2.0f/3.0f);
X15.AddWithWeight(patchPoints[rotation[vid][2]], 1.0f/3.0f);
X15.AddWithWeight(patchPoints[rotation[vid][3]], 4.0f/3.0f);
X15.AddWithWeight(patchPoints[rotation[vid][4]], 2.0f/3.0f);
X15.AddWithWeight(patchPoints[rotation[vid][15]], 4.0f/3.0f);
X14 = X4;
X14.AddWithWeight(patchPoints[rotation[vid][14]], 1.0f);
X14.AddWithWeight(patchPoints[rotation[vid][4]], -1.0f);
// limit corner (16th free vert)
// X5 = 36LP - 16P0 - 4(P1 + P3 + P4 + P6) - (P2 + P7 + P15)
X5.AddWithWeight(P, 36.0f);
X5.AddWithWeight(patchPoints[rotation[vid][0]], -16.0f);
X5.AddWithWeight(patchPoints[rotation[vid][1]], -4.0f);
X5.AddWithWeight(patchPoints[rotation[vid][3]], -4.0f);
X5.AddWithWeight(X4, -4.0f);
X5.AddWithWeight(X6, -4.0f);
X5.AddWithWeight(patchPoints[rotation[vid][2]], -1.0f);
X5.AddWithWeight(X7, -1.0f);
X5.AddWithWeight(X15, -1.0f);
// [5] (4)---(15)--(14) 0 : extraoridnary vertex
// | | |
// | | | 1,2,3,9,10,11,12,13 :
// (6)----0-----3-----13 B-Spline control points, gathered by
// | | | | traversing topology
// | | | |
// (7)----1-----2-----12 (5) :
// | | | | Fitted patch point (from limit position)
// | | | |
// (8)----9-----10----11 (4),(6),(7),(8),(14),(15) :
//
// patch point stencils will be stored in this order
// (Em) 6, 7, 8, (Ep) 4, 15, 14, (P) 5
int offset = _refiner->GetNumVerticesTotal();
GregoryBasis::Point V0, V1, V3;
V0.AddWithWeight(facePoints[vid] + levelVertOffset, 1.0f);
V1.AddWithWeight(facePoints[(vid+1)&3] + levelVertOffset, 1.0f);
V3.AddWithWeight(facePoints[(vid+3)&3] + levelVertOffset, 1.0f);
// push back to stencils;
patchPoints[3* vid + 6] = (_numVertices++) + offset;
_vertexStencils.push_back(X6);
_varyingStencils.push_back(V0);
patchPoints[3*((vid+1)%4) + 4] = (_numVertices++) + offset;
_vertexStencils.push_back(X7);
_varyingStencils.push_back(V1);
patchPoints[3*((vid+1)%4) + 5] = (_numVertices++) + offset;
_vertexStencils.push_back(X8);
_varyingStencils.push_back(V1);
patchPoints[3* vid + 4] = (_numVertices++) + offset;
_vertexStencils.push_back(X4);
_varyingStencils.push_back(V0);
patchPoints[3*((vid+3)%4) + 6] = (_numVertices++) + offset;
_vertexStencils.push_back(X15);
_varyingStencils.push_back(V3);
patchPoints[3*((vid+3)%4) + 5] = (_numVertices++) + offset;
_vertexStencils.push_back(X14);
_varyingStencils.push_back(V3);
patchPoints[3*vid + 5] = (_numVertices++) + offset;
_vertexStencils.push_back(X5);
_varyingStencils.push_back(V0);
// reorder into UV row-column
static int const permuteRegular[16] =
{ 5, 6, 7, 8, 4, 0, 1, 9, 15, 3, 2, 10, 14, 13, 12, 11 };
for (int i = 0; i < 16; ++i) {
_patchPoints.push_back(patchPoints[permuteRegular[i]]);
}
++_numPatches;
return ConstIndexArray(&_patchPoints[(_numPatches-1)*16], 16);
}

View File

@ -91,6 +91,22 @@ public:
}
private:
ConstIndexArray getPatchPointsFromGregoryBasis(
Vtr::internal::Level const * level, Index thisFace,
ConstIndexArray facePoints,
int levelVertOffset);
ConstIndexArray getPatchPoints(
Vtr::internal::Level const *level, Index thisFace,
Index extraOrdinaryIndex, ConstIndexArray facePoints,
int levelVertOffset);
void computeLimitStencils(
Vtr::internal::Level const *level,
ConstIndexArray facePoints, int vid,
GregoryBasis::Point *P, GregoryBasis::Point *Ep, GregoryBasis::Point *Em);
TopologyRefiner const *_refiner;
GregoryBasis::PointsVector _vertexStencils;
GregoryBasis::PointsVector _varyingStencils;

View File

@ -47,6 +47,15 @@ EndCapGregoryBasisPatchFactory::EndCapGregoryBasisPatchFactory(
// Sanity check: the mesh must be adaptively refined
assert(not refiner.IsUniform());
// Reserve the patch point stencils. Ideally topology refiner
// would have an API to return how many endcap patches will be required.
// Instead we conservatively estimate by the number of patches at the
// finest level.
int numMaxLevelFaces = refiner.GetLevel(refiner.GetMaxLevel()).GetNumFaces();
_vertexStencils.reserve(numMaxLevelFaces*20);
_varyingStencils.reserve(numMaxLevelFaces*20);
}
//

View File

@ -36,57 +36,6 @@ namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
// Builds a table of local indices pairs for each vertex of the patch.
//
// o
// N0 |
// | ....
// | .... : Gregory patch
// o ------ o ------ o ....
// N1 V | .... M3
// | .......
// | .......
// o .......
// N2
//
// [...] [N2 - N3] [...]
//
// Each value pair is composed of 2 index values in range [0-4[ pointing
// to the 2 neighbor vertices of the vertex 'V' belonging to the Gregory patch.
// Neighbor ordering is valence CCW and must match the winding of the 1-ring
// vertices.
//
static void
getQuadOffsets(Vtr::internal::Level const & level, Vtr::Index fIndex,
Vtr::Index offsets[], int fvarChannel=-1) {
Far::ConstIndexArray fPoints = (fvarChannel<0) ?
level.getFaceVertices(fIndex) :
level.getFaceFVarValues(fIndex, fvarChannel);
assert(fPoints.size()==4);
for (int i = 0; i < 4; ++i) {
Vtr::Index vIndex = fPoints[i];
Vtr::ConstIndexArray vFaces = level.getVertexFaces(vIndex),
vEdges = level.getVertexEdges(vIndex);
int thisFaceInVFaces = -1;
for (int j = 0; j < vFaces.size(); ++j) {
if (fIndex == vFaces[j]) {
thisFaceInVFaces = j;
break;
}
}
assert(thisFaceInVFaces != -1);
// we have to use the number of incident edges to modulo the local index
// because there could be 2 consecutive edges in the face belonging to
// the Gregory patch.
offsets[i*2+0] = thisFaceInVFaces;
offsets[i*2+1] = (thisFaceInVFaces + 1)%vEdges.size();
}
}
int
GregoryBasis::ProtoBasis::GetNumElements() const {
@ -153,6 +102,8 @@ GregoryBasis::ProtoBasis::ProtoBasis(
Vtr::internal::Level const & level, Index faceIndex,
int levelVertOffset, int fvarChannel) {
// XXX: This function is subject to refactor in 3.1
Vtr::ConstIndexArray facePoints = (fvarChannel<0) ?
level.getFaceVertices(faceIndex) :
level.getFaceFVarValues(faceIndex, fvarChannel);
@ -162,27 +113,45 @@ GregoryBasis::ProtoBasis::ProtoBasis(
valences[4],
zerothNeighbors[4];
Vtr::internal::StackBuffer<Index,40> manifoldRing((maxvalence+2)*2);
// XXX: a temporary hack for the performance issue
// ensure Point has a capacity for the neighborhood of
// 2 extraordinary verts + 2 regular verts
// worse case: n-valence verts at a corner of n-gon.
int stencilCapacity =
4/*0-ring*/ + 2*(2*(maxvalence-2)/*1-ring around extraordinaries*/
+ 2/*1-ring around regulars, excluding shared ones*/);
Vtr::internal::StackBuffer<Point,16> f(maxvalence);
Vtr::internal::StackBuffer<Point,64> r(maxvalence*4);
Point e0[4], e1[4];
for (int i = 0; i < 4; ++i) {
P[i].Clear(stencilCapacity);
e0[i].Clear(stencilCapacity);
e1[i].Clear(stencilCapacity);
V[i].Clear(1);
}
Point e0[4], e1[4], org[4];
Vtr::internal::StackBuffer<Index, 40> manifoldRings[4];
manifoldRings[0].SetSize(maxvalence*2);
manifoldRings[1].SetSize(maxvalence*2);
manifoldRings[2].SetSize(maxvalence*2);
manifoldRings[3].SetSize(maxvalence*2);
Vtr::internal::StackBuffer<Point, 10> f(maxvalence);
Vtr::internal::StackBuffer<Point, 40> r(maxvalence*4);
// the first phase
for (int vid=0; vid<4; ++vid) {
org[vid] = facePoints[vid];
// save for varying stencils
V[vid] = facePoints[vid];
V[vid].AddWithWeight(facePoints[vid], 1.0f);
int ringSize =
level.gatherQuadRegularRingAroundVertex(
facePoints[vid], manifoldRing, fvarChannel);
facePoints[vid], manifoldRings[vid], fvarChannel);
int valence;
if (ringSize & 1) {
// boundary vertex
manifoldRing[ringSize] = manifoldRing[ringSize-1];
manifoldRings[vid][ringSize] = manifoldRings[vid][ringSize-1];
++ringSize;
valence = -ringSize/2;
} else {
@ -196,21 +165,19 @@ GregoryBasis::ProtoBasis::ProtoBasis(
zerothNeighbor=0,
ibefore=0;
Point pos(facePoints[vid]);
for (int i=0; i<ivalence; ++i) {
Index im = (i+ivalence-1)%ivalence,
ip = (i+1)%ivalence;
Index idx_neighbor = (manifoldRing[2*i + 0]),
idx_diagonal = (manifoldRing[2*i + 1]),
idx_neighbor_p = (manifoldRing[2*ip + 0]),
idx_neighbor_m = (manifoldRing[2*im + 0]),
idx_diagonal_m = (manifoldRing[2*im + 1]);
Index idx_neighbor = (manifoldRings[vid][2*i + 0]),
idx_diagonal = (manifoldRings[vid][2*i + 1]),
idx_neighbor_p = (manifoldRings[vid][2*ip + 0]),
idx_neighbor_m = (manifoldRings[vid][2*im + 0]),
idx_diagonal_m = (manifoldRings[vid][2*im + 1]);
bool boundaryNeighbor = (level.getVertexEdges(idx_neighbor).size() >
level.getVertexFaces(idx_neighbor).size());
level.getVertexFaces(idx_neighbor).size());
if (fvarChannel>=0) {
// XXXX manuelk need logic to check for boundary in fvar
@ -232,21 +199,22 @@ GregoryBasis::ProtoBasis::ProtoBasis(
}
}
Point neighbor(idx_neighbor),
diagonal(idx_diagonal),
neighbor_p(idx_neighbor_p),
neighbor_m(idx_neighbor_m),
diagonal_m(idx_diagonal_m);
float d = float(ivalence)+5.0f;
f[i].Clear(4);
f[i].AddWithWeight(facePoints[vid], float(ivalence)/d);
f[i].AddWithWeight(idx_neighbor_p, 2.0f/d);
f[i].AddWithWeight(idx_neighbor, 2.0f/d);
f[i].AddWithWeight(idx_diagonal, 1.0f/d);
P[vid].AddWithWeight(f[i], 1.0f/float(ivalence));
f[i] = (pos*float(ivalence) + (neighbor_p+neighbor)*2.0f + diagonal) / (float(ivalence)+5.0f);
P[vid] += f[i];
r[vid*maxvalence+i] = (neighbor_p-neighbor_m)/3.0f + (diagonal-diagonal_m)/6.0f;
int rid = vid * maxvalence + i;
r[rid].Clear(4);
r[rid].AddWithWeight(idx_neighbor_p, 1.0f/3.0f);
r[rid].AddWithWeight(idx_neighbor_m, -1.0f/3.0f);
r[rid].AddWithWeight(idx_diagonal, 1.0f/6.0f);
r[rid].AddWithWeight(idx_diagonal_m, -1.0f/6.0f);
}
P[vid] /= float(ivalence);
zerothNeighbors[vid] = zerothNeighbor;
if (currentNeighbor == 1) {
boundaryEdgeNeighbors[1] = boundaryEdgeNeighbors[0];
@ -254,24 +222,27 @@ GregoryBasis::ProtoBasis::ProtoBasis(
for (int i=0; i<ivalence; ++i) {
int im = (i+ivalence-1)%ivalence;
Point e = (f[i]+f[im])*0.5f;
e0[vid] += e * csf(ivalence-3, 2*i);
e1[vid] += e * csf(ivalence-3, 2*i+1);
float c0 = 0.5f * csf(ivalence-3, 2*i);
float c1 = 0.5f * csf(ivalence-3, 2*i+1);
e0[vid].AddWithWeight(f[i ], c0);
e0[vid].AddWithWeight(f[im], c0);
e1[vid].AddWithWeight(f[i ], c1);
e1[vid].AddWithWeight(f[im], c1);
}
float ef = computeCoefficient(ivalence);
e0[vid] *= ef;
e1[vid] *= ef;
if (valence<0) {
Point b0(boundaryEdgeNeighbors[0]),
b1(boundaryEdgeNeighbors[1]);
// Boundary gregory case:
if (valence < 0) {
P[vid].Clear(stencilCapacity);
if (ivalence>2) {
P[vid] = (b0 + b1 + pos*4.0f)/6.0f;
P[vid].AddWithWeight(boundaryEdgeNeighbors[0], 1.0f/6.0f);
P[vid].AddWithWeight(boundaryEdgeNeighbors[1], 1.0f/6.0f);
P[vid].AddWithWeight(facePoints[vid], 4.0f/6.0f);
} else {
P[vid] = pos;
P[vid].AddWithWeight(facePoints[vid], 1.0f);
}
float k = float(float(ivalence) - 1.0f); //k is the number of faces
float c = cosf(float(M_PI)/k);
@ -280,10 +251,17 @@ GregoryBasis::ProtoBasis::ProtoBasis(
float alpha_0k = -((1.0f+2.0f*c)*sqrtf(1.0f+c))/((3.0f*k+c)*sqrtf(1.0f-c));
float beta_0 = s/(3.0f*k + c);
Point diagonal(manifoldRing[2*zerothNeighbor + 1]);
int idx_diagonal = manifoldRings[vid][2*zerothNeighbor + 1];
e0[vid] = (b0 - b1)/6.0f;
e1[vid] = pos*gamma + diagonal*beta_0 + (b0 + b1)*alpha_0k;
e0[vid].Clear(stencilCapacity);
e0[vid].AddWithWeight(boundaryEdgeNeighbors[0], 1.0f/6.0f);
e0[vid].AddWithWeight(boundaryEdgeNeighbors[1], -1.0f/6.0f);
e1[vid].Clear(stencilCapacity);
e1[vid].AddWithWeight(facePoints[vid], gamma);
e1[vid].AddWithWeight(idx_diagonal, beta_0);
e1[vid].AddWithWeight(boundaryEdgeNeighbors[0], alpha_0k);
e1[vid].AddWithWeight(boundaryEdgeNeighbors[1], alpha_0k);
for (int x=1; x<ivalence-1; ++x) {
@ -292,50 +270,68 @@ GregoryBasis::ProtoBasis::ProtoBasis(
float alpha = (4.0f*sinf((float(M_PI) * float(x))/k))/(3.0f*k+c),
beta = (sinf((float(M_PI) * float(x))/k) + sinf((float(M_PI) * float(x+1))/k))/(3.0f*k+c);
Index idx_neighbor = manifoldRing[2*curri + 0],
idx_diagonal = manifoldRing[2*curri + 1];
Index idx_neighbor = manifoldRings[vid][2*curri + 0],
idx_diagonal = manifoldRings[vid][2*curri + 1];
Point p_neighbor(idx_neighbor),
p_diagonal(idx_diagonal);
e1[vid] += p_neighbor*alpha + p_diagonal*beta;
e1[vid].AddWithWeight(idx_neighbor, alpha);
e1[vid].AddWithWeight(idx_diagonal, beta);
}
e1[vid] /= 3.0f;
e1[vid] *= 1.0f/3.0f;
}
}
Index quadOffsets[8];
getQuadOffsets(level, faceIndex, quadOffsets, fvarChannel);
// the second phase
for (int vid=0; vid<4; ++vid) {
int n = abs(valences[vid]),
ivalence = n;
int n = abs(valences[vid]);
int ivalence = n;
int ip = (vid+1)%4,
im = (vid+3)%4,
np = abs(valences[ip]),
nm = abs(valences[im]);
Index start = quadOffsets[vid*2+0],
prev = quadOffsets[vid*2+1],
start_m = quadOffsets[im*2],
prev_p = quadOffsets[ip*2+1];
Index start = -1, prev = -1, start_m = -1, prev_p = -1;
for (int i = 0; i < n; ++i) {
if (manifoldRings[vid][i*2] == facePoints[ip])
start = i;
if (manifoldRings[vid][i*2] == facePoints[im])
prev = i;
}
for (int i = 0; i < np; ++i) {
if (manifoldRings[ip][i*2] == facePoints[vid]) {
prev_p = i;
break;
}
}
for (int i = 0; i < nm; ++i) {
if (manifoldRings[im][i*2] == facePoints[vid]) {
start_m = i;
break;
}
}
assert(start != -1 && prev != -1 && start_m != -1 && prev_p != -1);
Point Em_ip, Ep_im;
Point Em_ip = P[ip];
Point Ep_im = P[im];
if (valences[ip]<-2) {
Index j = (np + prev_p - zerothNeighbors[ip]) % np;
Em_ip = P[ip] + e0[ip]*cosf((float(M_PI)*j)/float(np-1)) + e1[ip]*sinf((float(M_PI)*j)/float(np-1));
Em_ip.AddWithWeight(e0[ip], cosf((float(M_PI)*j)/float(np-1)));
Em_ip.AddWithWeight(e1[ip], sinf((float(M_PI)*j)/float(np-1)));
} else {
Em_ip = P[ip] + e0[ip]*csf(np-3,2*prev_p) + e1[ip]*csf(np-3,2*prev_p+1);
Em_ip.AddWithWeight(e0[ip], csf(np-3, 2*prev_p));
Em_ip.AddWithWeight(e1[ip], csf(np-3, 2*prev_p+1));
}
if (valences[im]<-2) {
Index j = (nm + start_m - zerothNeighbors[im]) % nm;
Ep_im = P[im] + e0[im]*cosf((float(M_PI)*j)/float(nm-1)) + e1[im]*sinf((float(M_PI)*j)/float(nm-1));
Ep_im.AddWithWeight(e0[im], cosf((float(M_PI)*j)/float(nm-1)));
Ep_im.AddWithWeight(e1[im], sinf((float(M_PI)*j)/float(nm-1)));
} else {
Ep_im = P[im] + e0[im]*csf(nm-3,2*start_m) + e1[im]*csf(nm-3,2*start_m+1);
Ep_im.AddWithWeight(e0[im], csf(nm-3, 2*start_m));
Ep_im.AddWithWeight(e1[im], csf(nm-3, 2*start_m+1));
}
if (valences[vid] < 0) {
@ -355,12 +351,25 @@ GregoryBasis::ProtoBasis::ProtoBasis(
float s1 = 3.0f - 2.0f*csf(n-3,2)-csf(np-3,2),
s2 = 2.0f*csf(n-3,2),
s3 = 3.0f -2.0f*cosf(2.0f*float(M_PI)/float(n)) - cosf(2.0f*float(M_PI)/float(nm));
Ep[vid] = P[vid];
Ep[vid].AddWithWeight(e0[vid], csf(n-3, 2*start));
Ep[vid].AddWithWeight(e1[vid], csf(n-3, 2*start +1));
Ep[vid] = P[vid] + e0[vid]*csf(n-3, 2*start) + e1[vid]*csf(n-3, 2*start +1);
Em[vid] = P[vid] + e0[vid]*csf(n-3, 2*prev ) + e1[vid]*csf(n-3, 2*prev + 1);
Fp[vid] = (P[vid]*csf(np-3,2) + Ep[vid]*s1 + Em_ip*s2 + rp[start])/3.0f;
Fm[vid] = (P[vid]*csf(nm-3,2) + Em[vid]*s3 + Ep_im*s2 - rp[prev])/3.0f;
Em[vid] = P[vid];
Em[vid].AddWithWeight(e0[vid], csf(n-3, 2*prev ));
Em[vid].AddWithWeight(e1[vid], csf(n-3, 2*prev + 1));
Fp[vid].Clear(stencilCapacity);
Fp[vid].AddWithWeight(P[vid], csf(np-3, 2)/3.0f);
Fp[vid].AddWithWeight(Ep[vid], s1/3.0f);
Fp[vid].AddWithWeight(Em_ip, s2/3.0f);
Fp[vid].AddWithWeight(rp[start], 1.0f/3.0f);
Fm[vid].Clear(stencilCapacity);
Fm[vid].AddWithWeight(P[vid], csf(nm-3, 2)/3.0f);
Fm[vid].AddWithWeight(Em[vid], s3/3.0f);
Fm[vid].AddWithWeight(Ep_im, s2/3.0f);
Fm[vid].AddWithWeight(rp[prev], -1.0f/3.0f);
} else if (valences[vid] < -2) {
Index jp = (ivalence + start - zerothNeighbors[vid]) % ivalence,
@ -370,24 +379,59 @@ GregoryBasis::ProtoBasis::ProtoBasis(
s2 = 2*csf(n-3,2),
s3 = 3.0f-2.0f*cosf(2.0f*float(M_PI)/n)-cosf(2.0f*float(M_PI)/nm);
Ep[vid] = P[vid] + e0[vid]*cosf((float(M_PI)*jp)/float(ivalence-1)) + e1[vid]*sinf((float(M_PI)*jp)/float(ivalence-1));
Em[vid] = P[vid] + e0[vid]*cosf((float(M_PI)*jm)/float(ivalence-1)) + e1[vid]*sinf((float(M_PI)*jm)/float(ivalence-1));
Fp[vid] = (P[vid]*csf(np-3,2) + Ep[vid]*s1 + Em_ip*s2 + rp[start])/3.0f;
Fm[vid] = (P[vid]*csf(nm-3,2) + Em[vid]*s3 + Ep_im*s2 - rp[prev])/3.0f;
Ep[vid] = P[vid];
Ep[vid].AddWithWeight(e0[vid], cosf((float(M_PI)*jp)/float(ivalence-1)));
Ep[vid].AddWithWeight(e1[vid], sinf((float(M_PI)*jp)/float(ivalence-1)));
Em[vid] = P[vid];
Em[vid].AddWithWeight(e0[vid], cosf((float(M_PI)*jm)/float(ivalence-1)));
Em[vid].AddWithWeight(e1[vid], sinf((float(M_PI)*jm)/float(ivalence-1)));
Fp[vid].Clear(stencilCapacity);
Fp[vid].AddWithWeight(P[vid], csf(np-3,2)/3.0f);
Fp[vid].AddWithWeight(Ep[vid], s1/3.0f);
Fp[vid].AddWithWeight(Em_ip, s2/3.0f);
Fp[vid].AddWithWeight(rp[start], 1.0f/3.0f);
Fm[vid].Clear(stencilCapacity);
Fm[vid].AddWithWeight(P[vid], csf(nm-3,2)/3.0f);
Fm[vid].AddWithWeight(Em[vid], s3/3.0f);
Fm[vid].AddWithWeight(Ep_im, s2/3.0f);
Fm[vid].AddWithWeight(rp[prev], -1.0f/3.0f);
if (valences[im]<0) {
s1=3-2*csf(n-3,2)-csf(np-3,2);
Fp[vid] = Fm[vid] = (P[vid]*csf(np-3,2) + Ep[vid]*s1 + Em_ip*s2 + rp[start])/3.0f;
Fp[vid].Clear(stencilCapacity);
Fp[vid].AddWithWeight(P[vid], csf(np-3,2)/3.0f);
Fp[vid].AddWithWeight(Ep[vid], s1/3.0f);
Fp[vid].AddWithWeight(Em_ip, s2/3.0f);
Fp[vid].AddWithWeight(rp[start], 1.0f/3.0f);
Fm[vid] = Fp[vid];
} else if (valences[ip]<0) {
s1 = 3.0f-2.0f*cosf(2.0f*float(M_PI)/n)-cosf(2.0f*float(M_PI)/nm);
Fm[vid] = Fp[vid] = (P[vid]*csf(nm-3,2) + Em[vid]*s1 + Ep_im*s2 - rp[prev])/3.0f;
Fm[vid].Clear(stencilCapacity);
Fm[vid].AddWithWeight(P[vid], csf(nm-3,2)/3.0f);
Fm[vid].AddWithWeight(Em[vid], s1/3.0f);
Fm[vid].AddWithWeight(Ep_im, s2/3.0f);
Fm[vid].AddWithWeight(rp[prev], -1.0f/3.0f);
Fp[vid] = Fm[vid];
}
} else if (valences[vid]==-2) {
Ep[vid].Clear(stencilCapacity);
Ep[vid].AddWithWeight(facePoints[vid], 2.0f/3.0f);
Ep[vid].AddWithWeight(facePoints[ip], 1.0f/3.0f);
Ep[vid] = (org[vid]*2.0f + org[ip])/3.0f;
Em[vid] = (org[vid]*2.0f + org[im])/3.0f;
Fp[vid] = Fm[vid] = (org[vid]*4.0f + org[((vid+2)%n)] + org[ip]*2.0f + org[im]*2.0f)/9.0f;
Em[vid].Clear(stencilCapacity);
Em[vid].AddWithWeight(facePoints[vid], 2.0f/3.0f);
Em[vid].AddWithWeight(facePoints[im], 1.0f/3.0f);
Fp[vid].Clear(stencilCapacity);
Fp[vid].AddWithWeight(facePoints[vid], 4.0f/9.0f);
Fp[vid].AddWithWeight(facePoints[((vid+2)%n)], 1.0f/9.0f);
Fp[vid].AddWithWeight(facePoints[ip], 2.0f/9.0f);
Fp[vid].AddWithWeight(facePoints[im], 2.0f/9.0f);
Fm[vid] = Fp[vid];
}
}
@ -429,16 +473,7 @@ GregoryBasis::CreateStencilTable(PointsVector const &stencils) {
float * weights = &stencilTable->_weights[0];
for (int i = 0; i < nStencils; ++i) {
GregoryBasis::Point const &src = stencils[i];
int size = src.GetSize();
memcpy(indices, src.GetIndices(), size*sizeof(Index));
memcpy(weights, src.GetWeights(), size*sizeof(float));
*sizes = size;
indices += size;
weights += size;
++sizes;
stencils[i].Copy(&sizes, &indices, &weights);
}
stencilTable->generateOffsets();

View File

@ -26,6 +26,7 @@
#define OPENSUBDIV3_FAR_GREGORY_BASIS_H
#include "../vtr/level.h"
#include "../vtr/stackBuffer.h"
#include "../far/types.h"
#include "../far/stencilTable.h"
#include <cstring>
@ -79,22 +80,15 @@ public:
//
class Point {
public:
static const int RESERVED_ENTRY_SIZE = 64;
// 40 means up to valence=10 is on stack
static const int RESERVED_STENCIL_SIZE = 40;
Point() : _size(0) {
_indices.reserve(RESERVED_ENTRY_SIZE);
_weights.reserve(RESERVED_ENTRY_SIZE);
}
Point(Vtr::Index idx, float weight = 1.0f) {
_indices.reserve(RESERVED_ENTRY_SIZE);
_weights.reserve(RESERVED_ENTRY_SIZE);
_size = 1;
_indices.push_back(idx);
_weights.push_back(weight);
Point(int stencilCapacity=RESERVED_STENCIL_SIZE) : _size(0) {
_stencils.SetSize(stencilCapacity);
}
Point(Point const & other) {
_stencils.SetSize(other._stencils.GetSize());
*this = other;
}
@ -102,96 +96,81 @@ public:
return _size;
}
Vtr::Index const * GetIndices() const {
return &_indices[0];
int GetCapacity() const {
return _stencils.GetSize();
}
float const * GetWeights() const {
return &_weights[0];
void Clear(int capacity) {
_size = 0;
if ((int)_stencils.GetSize() < capacity) {
_stencils.SetSize(capacity);
}
}
void AddWithWeight(Vtr::Index idx, float weight) {
for (int i = 0; i < _size; ++i) {
if (_stencils[i].index == idx) {
_stencils[i].weight += weight;
return;
}
}
assert(_size < (int)_stencils.GetSize());
_stencils[_size].index = idx;
_stencils[_size].weight = weight;
++_size;
}
void AddWithWeight(Point const &src, float weight) {
for (int i = 0; i < src._size; ++i) {
AddWithWeight(src._stencils[i].index,
src._stencils[i].weight * weight);
}
}
Point & operator = (Point const & other) {
Clear(other.GetCapacity());
_size = other._size;
_indices = other._indices;
_weights = other._weights;
return *this;
}
Point & operator += (Point const & other) {
for (int i=0; i<other._size; ++i) {
Vtr::Index idx = findIndex(other._indices[i]);
_weights[idx] += other._weights[i];
}
return *this;
}
Point & operator -= (Point const & other) {
for (int i=0; i<other._size; ++i) {
Vtr::Index idx = findIndex(other._indices[i]);
_weights[idx] -= other._weights[i];
assert(_size <= (int)_stencils.GetSize());
for (int i = 0; i < _size; ++i) {
_stencils[i] = other._stencils[i];
}
return *this;
}
Point & operator *= (float f) {
for (int i=0; i<_size; ++i) {
_weights[i] *= f;
_stencils[i].weight *= f;
}
return *this;
}
Point & operator /= (float f) {
return (*this)*=(1.0f/f);
}
friend Point operator * (Point const & src, float f) {
Point p( src ); return p*=f;
}
friend Point operator / (Point const & src, float f) {
Point p( src ); return p*= (1.0f/f);
}
Point operator + (Point const & other) {
Point p(*this); return p+=other;
}
Point operator - (Point const & other) {
Point p(*this); return p-=other;
}
void OffsetIndices(Vtr::Index offset) {
for (int i=0; i<_size; ++i) {
_indices[i] += offset;
_stencils[i].index += offset;
}
}
void Copy(int ** size, Vtr::Index ** indices, float ** weights) const {
memcpy(*indices, &_indices[0], _size*sizeof(Vtr::Index));
memcpy(*weights, &_weights[0], _size*sizeof(float));
for (int i = 0; i < _size; ++i) {
**indices = _stencils[i].index;
**weights = _stencils[i].weight;
++(*indices);
++(*weights);
}
**size = _size;
*indices += _size;
*weights += _size;
++(*size);
}
private:
int findIndex(Vtr::Index idx) {
for (int i=0; i<_size; ++i) {
if (_indices[i]==idx) {
return i;
}
}
_indices.push_back(idx);
_weights.push_back(0.0f);
++_size;
return _size-1;
}
int _size;
std::vector<Vtr::Index> _indices;
std::vector<float> _weights;
struct Stencil {
Vtr::Index index;
float weight;
};
Vtr::internal::StackBuffer<Stencil, RESERVED_STENCIL_SIZE> _stencils;
};
//

View File

@ -898,7 +898,10 @@ PatchTableFactory::identifyAdaptivePatches(AdaptiveContext & context) {
}
// Identify boundaries for both regular and xordinary patches -- non-manifold
// edges and vertices are interpreted as boundaries for regular patches
// (infinitely sharp) edges and vertices are currently interpreted as boundaries
// for regular patches, though an irregular patch or extrapolated boundary patch
// is really necessary in future for some non-manifold cases.
//
if (hasBoundaryVertex or hasNonManifoldVertex) {
Vtr::ConstIndexArray fEdges = level->getFaceEdges(faceIndex);
@ -911,6 +914,27 @@ PatchTableFactory::identifyAdaptivePatches(AdaptiveContext & context) {
((level->getEdgeTag(fEdges[1])._nonManifold) << 1) |
((level->getEdgeTag(fEdges[2])._nonManifold) << 2) |
((level->getEdgeTag(fEdges[3])._nonManifold) << 3);
// Other than non-manifold edges, non-manifold vertices that were made
// sharp should also trigger new "boundary" edges for the sharp corner
// patches introduced in these cases.
//
if (level->getVertexTag(fVerts[0])._nonManifold &&
level->getVertexTag(fVerts[0])._infSharp) {
nonManEdgeMask |= (1 << 0) | (1 << 3);
}
if (level->getVertexTag(fVerts[1])._nonManifold &&
level->getVertexTag(fVerts[1])._infSharp) {
nonManEdgeMask |= (1 << 1) | (1 << 0);
}
if (level->getVertexTag(fVerts[2])._nonManifold &&
level->getVertexTag(fVerts[2])._infSharp) {
nonManEdgeMask |= (1 << 2) | (1 << 1);
}
if (level->getVertexTag(fVerts[3])._nonManifold &&
level->getVertexTag(fVerts[3])._infSharp) {
nonManEdgeMask |= (1 << 3) | (1 << 2);
}
boundaryEdgeMask |= nonManEdgeMask;
}

View File

@ -114,12 +114,6 @@ GLComputeEvaluator::GLComputeEvaluator() : _workGroupSize(64) {
}
GLComputeEvaluator::~GLComputeEvaluator() {
if (_stencilKernel.program) {
glDeleteProgram(_stencilKernel.program);
}
if (_patchKernel.program) {
glDeleteProgram(_patchKernel.program);
}
}
static GLuint

View File

@ -70,12 +70,11 @@ GLPatchTable::allocate(Far::PatchTable const *farPatchTable) {
patchTable.GetPatchArrayBuffer() + numPatchArrays);
// copy index buffer
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _patchIndexBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
glBindBuffer(GL_ARRAY_BUFFER, _patchIndexBuffer);
glBufferData(GL_ARRAY_BUFFER,
indexSize * sizeof(GLint),
patchTable.GetPatchIndexBuffer(),
GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// copy patchparam buffer
glBindBuffer(GL_ARRAY_BUFFER, _patchParamBuffer);
@ -89,17 +88,8 @@ GLPatchTable::allocate(Far::PatchTable const *farPatchTable) {
glGenTextures(1, &_patchIndexTexture);
glGenTextures(1, &_patchParamTexture);
GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER,
indexSize * sizeof(GLint),
patchTable.GetPatchIndexBuffer(),
GL_STATIC_DRAW);
glBindTexture(GL_TEXTURE_BUFFER, _patchIndexTexture);
// glTexBuffer(GL_TEXTURE_BUFFER, GL_R32I, _patchIndexBuffer);
glTexBuffer(GL_TEXTURE_BUFFER, GL_R32I, buffer);
glTexBuffer(GL_TEXTURE_BUFFER, GL_R32I, _patchIndexBuffer);
glBindTexture(GL_TEXTURE_BUFFER, _patchParamTexture);
glTexBuffer(GL_TEXTURE_BUFFER, GL_RGB32I, _patchParamBuffer);

View File

@ -26,6 +26,7 @@
layout(local_size_x=WORK_GROUP_SIZE, local_size_y=1, local_size_z=1) in;
layout(std430) buffer;
// source and destination buffers

View File

@ -79,6 +79,9 @@ public:
(void)instance; // unused
(void)deviceContext; // unused
if (stencilTable->GetNumStencils() == 0)
return false;
return EvalStencils(srcBuffer->BindCpuBuffer(), srcDesc,
dstBuffer->BindCpuBuffer(), dstDesc,
&stencilTable->GetSizes()[0],

View File

@ -40,7 +40,7 @@
#include <GLES2/gl2.h>
#else
#if defined(_WIN32)
#define W32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#if defined(OSD_USES_GLEW)

View File

@ -80,6 +80,9 @@ public:
(void)instance; // unused
(void)deviceContext; // unused
if (stencilTable->GetNumStencils() == 0)
return false;
return EvalStencils(srcBuffer->BindCpuBuffer(), srcDesc,
dstBuffer->BindCpuBuffer(), dstDesc,
&stencilTable->GetSizes()[0],

View File

@ -489,8 +489,8 @@ Scheme<SCHEME_LOOP>::assignCreaseLimitTangentMasks(VERTEX const& vertex,
double theta = M_PI / (interiorEdgeCount + 1);
Weight cWeight = -3.0f * std::sin(theta);
Weight eWeightCoeff = -3.0f * (2.0f * std::cos(theta) - 2.0f);
Weight cWeight = -3.0f * (Weight) std::sin(theta);
Weight eWeightCoeff = -3.0f * (2.0f * (Weight) std::cos(theta) - 2.0f);
tan2Mask.VertexWeight(0) = 0.0f;
@ -498,7 +498,7 @@ Scheme<SCHEME_LOOP>::assignCreaseLimitTangentMasks(VERTEX const& vertex,
tan2Mask.EdgeWeight(creaseEnds[1]) = cWeight;
for (int i = 1; i <= interiorEdgeCount; ++i) {
tan2Mask.EdgeWeight(creaseEnds[0] + i) = eWeightCoeff * std::sin(i * theta);
tan2Mask.EdgeWeight(creaseEnds[0] + i) = eWeightCoeff * (Weight) std::sin(i * theta);
}
} else if (interiorEdgeCount == 1) {
// See notes above regarding scale factor of 3.0:
@ -566,8 +566,8 @@ Scheme<SCHEME_LOOP>::assignSmoothLimitTangentMasks(VERTEX const& vertex,
Weight alpha = (Weight) (2.0f * M_PI / valence);
for (int i = 0; i < valence; ++i) {
double alphaI = alpha * i;
tan1Mask.EdgeWeight(i) = std::cos(alphaI);
tan2Mask.EdgeWeight(i) = std::sin(alphaI);
tan1Mask.EdgeWeight(i) = (Weight) std::cos(alphaI);
tan2Mask.EdgeWeight(i) = (Weight) std::sin(alphaI);
}
}
}

View File

@ -25,7 +25,7 @@
#ifndef OPENSUBDIV3_VERSION_H
#define OPENSUBDIV3_VERSION_H
#define OPENSUBDIV_VERSION v3_0_2
#define OPENSUBDIV_VERSION v3_0_3
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {

View File

@ -30,6 +30,8 @@ if (NOT NO_REGRESSION)
add_subdirectory(far_regression)
add_subdirectory(far_perf)
if(OPENGL_FOUND AND (GLEW_FOUND OR APPLE) AND GLFW_FOUND)
add_subdirectory(osd_regression)
else()

View File

@ -0,0 +1,49 @@
#
# Copyright 2015 Pixar
#
# Licensed under the Apache License, Version 2.0 (the "Apache License")
# with the following modification; you may not use this file except in
# compliance with the Apache License and the following modification to it:
# Section 6. Trademarks. is deleted and replaced with:
#
# 6. Trademarks. This License does not grant permission to use the trade
# names, trademarks, service marks, or product names of the Licensor
# and its affiliates, except as required to comply with Section 4(c) of
# the License and to reproduce the content of the NOTICE file.
#
# You may obtain a copy of the Apache License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the Apache License with the above modification is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the Apache License for the specific
# language governing permissions and limitations under the Apache License.
#
include_directories(
"${OPENSUBDIV_INCLUDE_DIR}/"
"${PROJECT_SOURCE_DIR}/"
)
set(SOURCE_FILES
far_perf.cpp
)
set(PLATFORM_LIBRARIES
"${OSD_LINK_TARGET}"
)
_add_executable(far_perf
${SOURCE_FILES}
$<TARGET_OBJECTS:sdc_obj>
$<TARGET_OBJECTS:vtr_obj>
$<TARGET_OBJECTS:far_obj>
$<TARGET_OBJECTS:regression_common_obj>
)
install(TARGETS far_perf DESTINATION "${CMAKE_BINDIR_BASE}")
add_test(far_perf ${EXECUTABLE_OUTPUT_PATH}/far_regression)

View File

@ -0,0 +1,171 @@
//
// Copyright 2015 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include <cassert>
#include <cstdio>
#include <fstream>
#include <sstream>
#include <opensubdiv/far/primvarRefiner.h>
#include <opensubdiv/far/stencilTableFactory.h>
#include <opensubdiv/far/patchTableFactory.h>
#include "../../regression/common/far_utils.h"
// XXX: revisit the directory structure for examples/tests
#include "../../examples/common/stopwatch.h"
#include "init_shapes.h"
//------------------------------------------------------------------------------
static void
doPerf(const Shape *shape, int maxlevel, int endCapType)
{
using namespace OpenSubdiv;
Sdc::SchemeType type = OpenSubdiv::Sdc::SCHEME_CATMARK;
Sdc::Options sdcOptions;
sdcOptions.SetVtxBoundaryInterpolation(Sdc::Options::VTX_BOUNDARY_EDGE_ONLY);
Stopwatch s;
// ----------------------------------------------------------------------
// Instantiate a FarTopologyRefiner from the descriptor and refine
s.Start();
Far::TopologyRefiner * refiner = Far::TopologyRefinerFactory<Shape>::Create(
*shape, Far::TopologyRefinerFactory<Shape>::Options(type, sdcOptions));
{
Far::TopologyRefiner::AdaptiveOptions options(maxlevel);
refiner->RefineAdaptive(options);
}
s.Stop();
double timeRefine = s.GetElapsed();
// ----------------------------------------------------------------------
// Create stencil table
s.Start();
Far::StencilTable const * vertexStencils = NULL;
{
Far::StencilTableFactory::Options options;
vertexStencils = Far::StencilTableFactory::Create(*refiner, options);
}
s.Stop();
double timeCreateStencil = s.GetElapsed();
// ----------------------------------------------------------------------
// Create patch table
s.Start();
Far::PatchTable const * patchTable = NULL;
{
Far::PatchTableFactory::Options poptions(maxlevel);
poptions.SetEndCapType((Far::PatchTableFactory::Options::EndCapType)endCapType);
patchTable = Far::PatchTableFactory::Create(*refiner, poptions);
}
s.Stop();
double timeCreatePatch = s.GetElapsed();
// ----------------------------------------------------------------------
// append local points to stencils
s.Start();
{
if (Far::StencilTable const *vertexStencilsWithLocalPoints =
Far::StencilTableFactory::AppendLocalPointStencilTable(
*refiner, vertexStencils,
patchTable->GetLocalPointStencilTable())) {
delete vertexStencils;
vertexStencils = vertexStencilsWithLocalPoints;
}
}
s.Stop();
double timeAppendStencil = s.GetElapsed();
// ---------------------------------------------------------------------
double timeTotal = s.GetTotalElapsed();
printf("TopologyRefiner::Refine %f %5.2f%%\n",
timeRefine, timeRefine/timeTotal*100);
printf("StencilTableFactory::Create %f %5.2f%%\n",
timeCreateStencil, timeCreateStencil/timeTotal*100);
printf("PatchTableFactory::Create %f %5.2f%%\n",
timeCreatePatch, timeCreatePatch/timeTotal*100);
printf("StencilTableFactory::Append %f %5.2f%%\n",
timeAppendStencil, timeAppendStencil/timeTotal*100);
printf("Total %f\n", timeTotal);
}
//------------------------------------------------------------------------------
int main(int argc, char **argv)
{
using namespace OpenSubdiv;
int maxlevel = 8;
std::string str;
int endCapType = Far::PatchTableFactory::Options::ENDCAP_GREGORY_BASIS;
for (int i = 1; i < argc; ++i) {
if (strstr(argv[i], ".obj")) {
std::ifstream ifs(argv[i]);
if (ifs) {
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
str = ss.str();
g_shapes.push_back(ShapeDesc(argv[i], str.c_str(), kCatmark));
}
}
else if (!strcmp(argv[i], "-l")) {
maxlevel = atoi(argv[++i]);
}
else if (!strcmp(argv[i], "-e")) {
const char *type = argv[++i];
if (!strcmp(type, "bspline")) {
endCapType = Far::PatchTableFactory::Options::ENDCAP_BSPLINE_BASIS;
} else if (!strcmp(type, "gregory")) {
endCapType = Far::PatchTableFactory::Options::ENDCAP_GREGORY_BASIS;
} else {
printf("Unknown endcap type %s\n", type);
return 1;
}
}
}
if (g_shapes.empty()) {
initShapes();
}
for (int i = 0; i < (int)g_shapes.size(); ++i) {
Shape const * shape = Shape::parseObj(
g_shapes[i].data.c_str(),
g_shapes[i].scheme,
g_shapes[i].isLeftHanded);
for (int lv = 1; lv <= maxlevel; ++lv) {
printf("---- %s, level %d ----\n", g_shapes[i].name.c_str(), lv);
doPerf(shape, lv, endCapType);
}
}
}
//------------------------------------------------------------------------------

View File

@ -0,0 +1,48 @@
//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../common/shape_utils.h"
struct ShapeDesc {
ShapeDesc(char const * iname, std::string const & idata, Scheme ischeme,
bool iisLeftHanded=false) :
name(iname), data(idata), scheme(ischeme), isLeftHanded(iisLeftHanded) { }
std::string name,
data;
Scheme scheme;
bool isLeftHanded;
};
static std::vector<ShapeDesc> g_shapes;
#include "../shapes/all.h"
//------------------------------------------------------------------------------
static void initShapes() {
g_shapes.push_back( ShapeDesc("catmark_car", catmark_car, kCatmark ) );
g_shapes.push_back( ShapeDesc("catmark_pole64", catmark_pole64, kCatmark ) );
}
//------------------------------------------------------------------------------

View File

@ -31,6 +31,7 @@ set(TUTORIALS
tutorial_5
tutorial_6
tutorial_7
tutorial_8
)
foreach(tutorial ${TUTORIALS})

View File

@ -0,0 +1,37 @@
#
# Copyright 2013 Pixar
#
# Licensed under the Apache License, Version 2.0 (the "Apache License")
# with the following modification; you may not use this file except in
# compliance with the Apache License and the following modification to it:
# Section 6. Trademarks. is deleted and replaced with:
#
# 6. Trademarks. This License does not grant permission to use the trade
# names, trademarks, service marks, or product names of the Licensor
# and its affiliates, except as required to comply with Section 4(c) of
# the License and to reproduce the content of the NOTICE file.
#
# You may obtain a copy of the Apache License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the Apache License with the above modification is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the Apache License for the specific
# language governing permissions and limitations under the Apache License.
#
set(SOURCE_FILES
far_tutorial_8.cpp
)
_add_executable(far_tutorial_8
${SOURCE_FILES}
$<TARGET_OBJECTS:sdc_obj>
$<TARGET_OBJECTS:vtr_obj>
$<TARGET_OBJECTS:far_obj>
)
install(TARGETS far_tutorial_8 DESTINATION "${CMAKE_BINDIR_BASE}/tutorials")

View File

@ -0,0 +1,527 @@
//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
//------------------------------------------------------------------------------
// Tutorial description:
//
// NOTE: The following approaches are approximations to compute smooth normals,
// for highest fidelity patches should be used for positions and normals,
// which form the true limit surface.
//
// Building on tutorial 3, this example shows how to instantiate a simple mesh,
// refine it uniformly, interpolate both 'vertex' and 'face-varying'
// primvar data, and finally calculate approximated smooth normals.
// The resulting interpolated data is output in 'obj' format.
//
// Currently, this tutorial supports 3 methods to approximate smooth normals:
//
// CrossTriangle : Calculates smooth normals (accumulating per vertex) using
// 3 verts to generate 2 vectors. This approximation has
// trouble when working with quads (which can be non-planar)
// since it only takes into account half of each face.
//
// CrossQuad : Calculates smooth normals (accumulating per vertex)
// but this time, instead of taking into account only 3 verts
// it creates 2 vectors crossing the quad.
// This approximation builds upon CrossTriangle but takes
// into account the 4 verts of the face.
//
// Limit : Calculates the normals at the limit for each vert
// at the last level of subdivision.
// These are the true limit normals, however, in this example
// they are used with verts that are not at the limit.
// This can lead to new visual artifacts since the normals
// and the positions don't match. Additionally, this approach
// requires extra computation to calculate the limit normals.
// For this reason, we strongly suggest using
// limit positions with limit normals.
//
#include <opensubdiv/far/topologyDescriptor.h>
#include <opensubdiv/far/primvarRefiner.h>
#include <cstdio>
//------------------------------------------------------------------------------
// Math helpers.
//
//
// Returns the normalized version of the input vector
inline void
normalize(float *n) {
float rn = 1.0f/sqrtf(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]);
n[0] *= rn;
n[1] *= rn;
n[2] *= rn;
}
// Returns the cross product of \p v1 and \p v2.
void cross(float const *v1, float const *v2, float* vOut)
{
vOut[0] = v1[1] * v2[2] - v1[2] * v2[1];
vOut[1] = v1[2] * v2[0] - v1[0] * v2[2];
vOut[2] = v1[0] * v2[1] - v1[1] * v2[0];
}
//------------------------------------------------------------------------------
// Face-varying implementation.
//
//
struct Vertex {
// Minimal required interface ----------------------
Vertex() {
Clear();
}
Vertex(Vertex const & src) {
position[0] = src.position[0];
position[1] = src.position[1];
position[2] = src.position[2];
}
void Clear() {
position[0]=position[1]=position[2]=0.0f;
}
void AddWithWeight(Vertex const & src, float weight) {
position[0]+=weight*src.position[0];
position[1]+=weight*src.position[1];
position[2]+=weight*src.position[2];
}
// Public interface ------------------------------------
void SetPosition(float x, float y, float z) {
position[0]=x;
position[1]=y;
position[2]=z;
}
const float * GetPosition() const {
return position;
}
float position[3];
};
//------------------------------------------------------------------------------
// Face-varying container implementation.
//
// We are using a uv texture layout as a 'face-varying' primtiive variable
// attribute. Because face-varying data is specified 'per-face-per-vertex',
// we cannot use the same container that we use for 'vertex' or 'varying'
// data. We specify a new container, which only carries (u,v) coordinates.
// Similarly to our 'Vertex' container, we add a minimaliztic interpolation
// interface with a 'Clear()' and 'AddWithWeight()' methods.
//
struct FVarVertexUV {
// Minimal required interface ----------------------
void Clear() {
u=v=0.0f;
}
void AddWithWeight(FVarVertexUV const & src, float weight) {
u += weight * src.u;
v += weight * src.v;
}
// Basic 'uv' layout channel
float u,v;
};
struct FVarVertexColor {
// Minimal required interface ----------------------
void Clear() {
r=g=b=a=0.0f;
}
void AddWithWeight(FVarVertexColor const & src, float weight) {
r += weight * src.r;
g += weight * src.g;
b += weight * src.b;
a += weight * src.a;
}
// Basic 'color' layout channel
float r,g,b,a;
};
//------------------------------------------------------------------------------
// Cube geometry from catmark_cube.h
// 'vertex' primitive variable data & topology
static float g_verts[8][3] = {{ -0.5f, -0.5f, 0.5f },
{ 0.5f, -0.5f, 0.5f },
{ -0.5f, 0.5f, 0.5f },
{ 0.5f, 0.5f, 0.5f },
{ -0.5f, 0.5f, -0.5f },
{ 0.5f, 0.5f, -0.5f },
{ -0.5f, -0.5f, -0.5f },
{ 0.5f, -0.5f, -0.5f }};
static int g_nverts = 8,
g_nfaces = 6;
static int g_vertsperface[6] = { 4, 4, 4, 4, 4, 4 };
static int g_vertIndices[24] = { 0, 1, 3, 2,
2, 3, 5, 4,
4, 5, 7, 6,
6, 7, 1, 0,
1, 7, 5, 3,
6, 0, 2, 4 };
// 'face-varying' primitive variable data & topology for UVs
static float g_uvs[14][2] = {{ 0.375, 0.00 },
{ 0.625, 0.00 },
{ 0.375, 0.25 },
{ 0.625, 0.25 },
{ 0.375, 0.50 },
{ 0.625, 0.50 },
{ 0.375, 0.75 },
{ 0.625, 0.75 },
{ 0.375, 1.00 },
{ 0.625, 1.00 },
{ 0.875, 0.00 },
{ 0.875, 0.25 },
{ 0.125, 0.00 },
{ 0.125, 0.25 }};
static int g_nuvs = 14;
static int g_uvIndices[24] = { 0, 1, 3, 2,
2, 3, 5, 4,
4, 5, 7, 6,
6, 7, 9, 8,
1, 10, 11, 3,
12, 0, 2, 13 };
// 'face-varying' primitive variable data & topology for color
static float g_colors[24][4] = {{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 0.0, 0.0, 1.0},
{1.0, 0.0, 0.0, 1.0},
{1.0, 0.0, 0.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0}};
static int g_ncolors = 24;
static int g_colorIndices[24] = { 0, 3, 9, 6,
7, 10, 15, 12,
13, 16, 21, 18,
19, 22, 4, 1,
5, 23, 17, 11,
20, 2, 8, 14 };
using namespace OpenSubdiv;
// Approximation methods for smooth normal computations
enum NormalApproximation
{
CrossTriangle,
CrossQuad,
Limit
};
//------------------------------------------------------------------------------
int main(int argc, char ** argv) {
const int maxlevel = 2;
enum NormalApproximation normalApproximation = CrossTriangle;
// Parsing command line parameters to see if the user wants to use a
// specific method to calculate normals
for (int i = 1; i < argc; ++i) {
if (strstr(argv[i], "-limit")) {
normalApproximation = Limit;
} else if (!strcmp(argv[i], "-crossquad")) {
normalApproximation = CrossQuad;
} else if (!strcmp(argv[i], "-crosstriangle")) {
normalApproximation = CrossTriangle;
} else {
printf("Parameters : \n");
printf(" -crosstriangle : use the cross product of vectors\n");
printf(" generated from 3 verts (default).\n");
printf(" -crossquad : use the cross product of vectors\n");
printf(" generated from 4 verts.\n");
printf(" -limit : use normals calculated from the limit.\n");
return 0;
}
}
typedef Far::TopologyDescriptor Descriptor;
Sdc::SchemeType type = OpenSubdiv::Sdc::SCHEME_CATMARK;
Sdc::Options options;
options.SetVtxBoundaryInterpolation(Sdc::Options::VTX_BOUNDARY_EDGE_ONLY);
options.SetFVarLinearInterpolation(Sdc::Options::FVAR_LINEAR_NONE);
// Populate a topology descriptor with our raw data
Descriptor desc;
desc.numVertices = g_nverts;
desc.numFaces = g_nfaces;
desc.numVertsPerFace = g_vertsperface;
desc.vertIndicesPerFace = g_vertIndices;
// Create a face-varying channel descriptor
const int numChannels = 2;
const int channelUV = 0;
const int channelColor = 1;
Descriptor::FVarChannel channels[numChannels];
channels[channelUV].numValues = g_nuvs;
channels[channelUV].valueIndices = g_uvIndices;
channels[channelColor].numValues = g_ncolors;
channels[channelColor].valueIndices = g_colorIndices;
// Add the channel topology to the main descriptor
desc.numFVarChannels = numChannels;
desc.fvarChannels = channels;
// Instantiate a FarTopologyRefiner from the descriptor
Far::TopologyRefiner * refiner =
Far::TopologyRefinerFactory<Descriptor>::Create(desc,
Far::TopologyRefinerFactory<Descriptor>::Options(type, options));
// Uniformly refine the topolgy up to 'maxlevel'
// note: fullTopologyInLastLevel must be true to work with face-varying data
{
Far::TopologyRefiner::UniformOptions refineOptions(maxlevel);
refineOptions.fullTopologyInLastLevel = true;
refiner->RefineUniform(refineOptions);
}
// Allocate and initialize the 'vertex' primvar data (see tutorial 2 for
// more details).
std::vector<Vertex> vbuffer(refiner->GetNumVerticesTotal());
Vertex * verts = &vbuffer[0];
for (int i=0; i<g_nverts; ++i) {
verts[i].SetPosition(g_verts[i][0], g_verts[i][1], g_verts[i][2]);
}
// Allocate & initialize the first channel of 'face-varying' primvars (UVs)
std::vector<FVarVertexUV> fvBufferUV(refiner->GetNumFVarValuesTotal(channelUV));
FVarVertexUV * fvVertsUV = &fvBufferUV[0];
for (int i=0; i<g_nuvs; ++i) {
fvVertsUV[i].u = g_uvs[i][0];
fvVertsUV[i].v = g_uvs[i][1];
}
// Allocate & interpolate the 'face-varying' primvar data (colors)
std::vector<FVarVertexColor> fvBufferColor(refiner->GetNumFVarValuesTotal(channelColor));
FVarVertexColor * fvVertsColor = &fvBufferColor[0];
for (int i=0; i<g_ncolors; ++i) {
fvVertsColor[i].r = g_colors[i][0];
fvVertsColor[i].g = g_colors[i][1];
fvVertsColor[i].b = g_colors[i][2];
fvVertsColor[i].a = g_colors[i][3];
}
// Interpolate both vertex and face-varying primvar data
Far::PrimvarRefiner primvarRefiner(*refiner);
Vertex * srcVert = verts;
FVarVertexUV * srcFVarUV = fvVertsUV;
FVarVertexColor * srcFVarColor = fvVertsColor;
for (int level = 1; level <= maxlevel; ++level) {
Vertex * dstVert = srcVert + refiner->GetLevel(level-1).GetNumVertices();
FVarVertexUV * dstFVarUV = srcFVarUV + refiner->GetLevel(level-1).GetNumFVarValues(channelUV);
FVarVertexColor * dstFVarColor = srcFVarColor + refiner->GetLevel(level-1).GetNumFVarValues(channelColor);
primvarRefiner.Interpolate(level, srcVert, dstVert);
primvarRefiner.InterpolateFaceVarying(level, srcFVarUV, dstFVarUV, channelUV);
primvarRefiner.InterpolateFaceVarying(level, srcFVarColor, dstFVarColor, channelColor);
srcVert = dstVert;
srcFVarUV = dstFVarUV;
srcFVarColor = dstFVarColor;
}
// Approximate normals
Far::TopologyLevel const & refLastLevel = refiner->GetLevel(maxlevel);
int nverts = refLastLevel.GetNumVertices();
int nfaces = refLastLevel.GetNumFaces();
int firstOfLastVerts = refiner->GetNumVerticesTotal() - nverts;
std::vector<Vertex> normals(nverts);
// Different ways to approximate smooth normals
//
// For details check the description at the beginning of the file
if (normalApproximation == Limit) {
// Approximation using the normal at the limit with verts that are
// not at the limit
//
// For details check the description at the beginning of the file
std::vector<Vertex> fineLimitPos(nverts);
std::vector<Vertex> fineDu(nverts);
std::vector<Vertex> fineDv(nverts);
primvarRefiner.Limit(&verts[firstOfLastVerts], fineLimitPos, fineDu, fineDv);
for (int vert = 0; vert < nverts; ++vert) {
float const * du = fineDu[vert].GetPosition();
float const * dv = fineDv[vert].GetPosition();
float norm[3];
cross(du, dv, norm);
normals[vert].SetPosition(norm[0], norm[1], norm[2]);
}
} else if (normalApproximation == CrossQuad) {
// Approximate smooth normals by accumulating normal vectors computed as
// the cross product of two vectors generated by the 4 verts that
// form each quad
//
// For details check the description at the beginning of the file
for (int f = 0; f < nfaces; f++) {
Far::ConstIndexArray faceVertices = refLastLevel.GetFaceVertices(f);
// We will use the first three verts to calculate a normal
const float * v0 = verts[ firstOfLastVerts + faceVertices[0] ].GetPosition();
const float * v1 = verts[ firstOfLastVerts + faceVertices[1] ].GetPosition();
const float * v2 = verts[ firstOfLastVerts + faceVertices[2] ].GetPosition();
const float * v3 = verts[ firstOfLastVerts + faceVertices[3] ].GetPosition();
// Calculate the cross product between the vectors formed by v1-v0 and
// v2-v0, and then normalize the result
float normalCalculated [] = {0.0,0.0,0.0};
float a[3] = { v2[0]-v0[0], v2[1]-v0[1], v2[2]-v0[2] };
float b[3] = { v3[0]-v1[0], v3[1]-v1[1], v3[2]-v1[2] };
cross(a, b, normalCalculated);
normalize(normalCalculated);
// Accumulate that normal on all verts that are part of that face
for(int vInFace = 0; vInFace < faceVertices.size() ; vInFace++ ) {
int vertexIndex = faceVertices[vInFace];
normals[vertexIndex].position[0] += normalCalculated[0];
normals[vertexIndex].position[1] += normalCalculated[1];
normals[vertexIndex].position[2] += normalCalculated[2];
}
}
} else if (normalApproximation == CrossTriangle) {
// Approximate smooth normals by accumulating normal vectors computed as
// the cross product of two vectors generated by 3 verts of the quad
//
// For details check the description at the beginning of the file
for (int f = 0; f < nfaces; f++) {
Far::ConstIndexArray faceVertices = refLastLevel.GetFaceVertices(f);
// We will use the first three verts to calculate a normal
const float * v0 = verts[ firstOfLastVerts + faceVertices[0] ].GetPosition();
const float * v1 = verts[ firstOfLastVerts + faceVertices[1] ].GetPosition();
const float * v2 = verts[ firstOfLastVerts + faceVertices[2] ].GetPosition();
// Calculate the cross product between the vectors formed by v1-v0 and
// v2-v0, and then normalize the result
float normalCalculated [] = {0.0,0.0,0.0};
float a[3] = { v1[0]-v0[0], v1[1]-v0[1], v1[2]-v0[2] };
float b[3] = { v2[0]-v0[0], v2[1]-v0[1], v2[2]-v0[2] };
cross(a, b, normalCalculated);
normalize(normalCalculated);
// Accumulate that normal on all verts that are part of that face
for(int vInFace = 0; vInFace < faceVertices.size() ; vInFace++ ) {
int vertexIndex = faceVertices[vInFace];
normals[vertexIndex].position[0] += normalCalculated[0];
normals[vertexIndex].position[1] += normalCalculated[1];
normals[vertexIndex].position[2] += normalCalculated[2];
}
}
}
// Finally we just need to normalize the accumulated normals
for (int vert = 0; vert < nverts; ++vert) {
normalize(&normals[vert].position[0]);
}
{ // Output OBJ of the highest level refined -----------
// Print vertex positions
for (int vert = 0; vert < nverts; ++vert) {
float const * pos = verts[firstOfLastVerts + vert].GetPosition();
printf("v %f %f %f\n", pos[0], pos[1], pos[2]);
}
// Print vertex normals
for (int vert = 0; vert < nverts; ++vert) {
float const * pos = normals[vert].GetPosition();
printf("vn %f %f %f\n", pos[0], pos[1], pos[2]);
}
// Print uvs
int nuvs = refLastLevel.GetNumFVarValues(channelUV);
int firstOfLastUvs = refiner->GetNumFVarValuesTotal(channelUV) - nuvs;
for (int fvvert = 0; fvvert < nuvs; ++fvvert) {
FVarVertexUV const & uv = fvVertsUV[firstOfLastUvs + fvvert];
printf("vt %f %f\n", uv.u, uv.v);
}
// Print faces
for (int face = 0; face < nfaces; ++face) {
Far::ConstIndexArray fverts = refLastLevel.GetFaceVertices(face);
Far::ConstIndexArray fuvs = refLastLevel.GetFaceFVarValues(face, channelUV);
// all refined Catmark faces should be quads
assert(fverts.size()==4 and fuvs.size()==4);
printf("f ");
for (int vert=0; vert<fverts.size(); ++vert) {
// OBJ uses 1-based arrays...
printf("%d/%d/%d ", fverts[vert]+1, fuvs[vert]+1, fverts[vert]+1);
}
printf("\n");
}
}
}
//------------------------------------------------------------------------------