Adding command line options to glViewer to make it easy
to control the requested GL version and profile. While
it is only enabled for glViewer in this change, it will
be easy to extend to all our example viewers. The new
command line options are:
-glCoreProfile on|off
-glForwardCompat on|off
-glVersion M.n
It appears the behavior of the version hint is operating system
(and perhaps driver) specific. On OSX the version hint is a
minimum version, but on Linux you get exactly the version
requested.
The GLFW FAQ seems to suggest that any driver not supporting
ARB_compatibility may need the hint.
s
- Make sure to declare usage of the include files if GLFW is found
- When GLFW is found and is compiled into examples/common, we need to
unfortunately link it into dxViewer. Hopefully we can refactor common
so that this won't be necessary in the future.
This change refactors the GLSL and HLSL patch shader code so that
most of the work is implemented within a library of common functions
and the remaining shader snippets just manage plumbing.
There is more to do here:
- varying and face-varying data can be managed entirely by the client
- similarly, displacement can be implemented in client code
- there's still quite a bit of residual boiler-plate code needed
in each shader stage that we should be able to wrap up in a more
convenient form.
The GLFW context version hint is a minimum version, not maximum version so
requesting 4.4 and then falling back to lower versions doesn't make sense.
This change sets the minimum version to 3.2 and attempts to standardize this
across all example apps.
Also print the maximum supported GL version along with the context version
at startup.
- removed all of the multi-level Interpolate...() methods taking T*, U*
- made all single-level methods consistent wrt usage of T&, U&
- replaced usage in regressions, tutorials and examples
- additional minor improvements to far/tutorials
We will need to find a solution for Ignacio's older setup, but this at least
fixes the other fallout.
* Use glewIsSupported instead of glewGetExtension
* Convert tabs to spaces
* Remove GLEW static caching (they only get called once)
To encapsulate endcap functions from public API, add methods to
tell the number of patch points needed (GetNumLocalPoints()) and
to compute those patch points as a result of change of basis from
the refined vertices (ComputeLocalPointValues()).
ComputeLocalPointValues takes contiguous source data of all levels
including level0 control vertices.
All examples, regression tests and tutorials directly looked into
opensubdiv source directory to grab the header files. This is somewhat
convenient during development but they can mistakenly access private
header files.
With this change, when OPENSUBDIV_INCLUDE_DIR is given to cmake,
it will be used as an include search path to build examples etc.
Otherwise it follows the same behavior as before.
Also replaces include references to the files in regression dir
to be relative, and cleanups some copy-paste patterns.
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
- created new class Far::PrimvarRefiner with interpolation methods
- removed interpolation and limit methods from Far::TopologyRefiner
- replaced internal usage in Far::StencilTableFactory
- replaced usage in regressions, tutorials and examples