- FarKernelBatch becomes a class w/ accessors
- split the FarKernelBatchFactory to its own header file
- add doxy doc
- propagate fallout to the rest of the code base
be used as intended to specify an installation directory, which can be located anywhere on the
file system.
Also improved the doxygen target and made the doxy build "quiet".
fixes#154
- replace ptex indexing with the FarPtexCoord structure as a way to pass per-patch
ptex data to the shaders.
We are replacing a vector<int> arranged as :
int[0] : ptex face index
int[1] : (u,v) as 16 bits encoding the log2 coordinate of the top left corner
Instead we are now using a struct arranged as :
int[0] : ptex face index
int[1] : is a bit-field containing u,v, rotation, depth and non-quad
The u,v coordinates have been reduced to 10 bits instead of 16, which still
gives us a lot of margin.
- Replace OsdVertexBufferDescriptor with something more adequate for general
primvar representation (this name will probably eventually change...)
- Improve OsdPatchDescriptor
- add a "loop" boolean (true if the patch is of loop type)
- add a GetPatchSize() accessor
- OsdPatchArray :
- remove some redundant elements (still more to do there)
- Fix all shader / examples / regressions & stuff to make this all work.
fixes#143
2 client APIs are changed.
- VertexBuffer::UpdateData() takes start vertex offset
- ComputeController::Refine() takes FarKernelBatchVector
Also, ComputeContext no longer holds farmesh.
Client can free farmesh after OsdComputeContext is created.
(but still need FarKernelBatchVector to apply subdivision kernels)
Now a ComputeController is passed as an
argument to OsdMesh::Create(). This is
a better match to the underlying object
model and can be much more efficient for
compute controllers that have expensive
resources, e.g. compiled shader kernels.
Fixes#103
- add bool OsdGLDrawContext::SupportsAdaptiveTessellation() method
- modify glViewer to use that instead of #ifdefs
Note : this is not the final word on this as OSD really needs a more comprehensive
system to provide run-time information about available features to the client code.
fixes#111
Model the GL VB after D3D11 one, where there are no data read backs, however this means
an extra memory copy of the buffer. 4th level uniform subdiv on Car, glGetBufferSubData
was taking 50% of CPU time before (actual subdiv 22%), now that is gone. Full CPU Draw
62ms -> 54ms, looks like most of overhead now is just waiting on GL queries).
In example code, GLUT has been replaced with GLFW so that glViewer/ptexViewer can run on OSX (10.7 or later).
OSX note: still have some problem with clang, may need to explicitly specify gcc on cmake cmdline
-DCMAKE_CXX_COMPILE=/usr/bin/g++
fixes#98
- remove the GL error check in cudaGLVertexBuffer :
* unrelated GL errors left on the stack were triggering erroneous
vertexBuffer allocation errors
* we should not be checking for GL errors here anyway (as most other
buffer allocations aren't checked either)
- add some pointer checking in the GL / D3D drawContexts in case the
vertexBuffer pointers passed are NULL
- add some additional typedefs in OsdError to report some of the new
CUDA / GL related errors
This avoids adaptive tessellation artifacts near silhouette edges
by using the projected diameter of an edge's bounding sphere
rather than the length of the projected edge itself.
There is a nice writeup of this by Bryan Dudash of NVIDIA at:
https://developer.nvidia.com/content/dynamic-hardware-tessellation-basics