This change make the bspline patch tess control/hull shader revert to
control vertex mirroring for boundary edges when the patch sharpness is
zero. This change helps improve some shader codegen optimization and
L1 cache behavior on (at least) Kepler GPUs with recent drivers.
Re-organized the single-crease patch code path in the tessellation
control/hull shaders to improve performance in the case where no patches
have non-zero crease sharpnesses.
Changed a couple of local 4x4 matrices to global uniforms to
work around a performance problem on recent GL drivers.
There are two local 4x4 float matrices with constant initializers
in the function OsdComputePerPatchVertexBSpline(...). Changing
these from local variables to global initialized uniforms improves
performance dramatically on recent NVIDIA drivers (e.g. 361.48 windows).
There is no such difference with Direct3D, but this change updates
the shader code for both implementations for consistency.
For now, the common patch shader code supports fractional spacing
modes only when screen-space tessellation is also enabled.
It's possible to relax this restriction, but that requires changing
the client shader interface.
This change includes support for both fractional_even_spacing
and fractional_odd_spacing.
The implementation follows the existing pattern of re-parameterizing
the tessellation domain only along transition boundary edges. This
allows for crack-free tessellation, but it might be better to
consistently re-parameterize all of the outer edges of all patches,
which also would be required for numerically watertight tessellation.
This is implemented in a way that requires no changes to the client
shader API. It should be more efficient to move some computations to
the control/hull shaders and reduce divergence in the execution of
eval/domain shaders.
Te issue here is that some of the functions were not considered templated
anymore because all their template arguments were specified, which made it
so compiler was creating implementation for them in every file from where
the header was included. This causes errors during linking related on the
same symbol implemented in several places.
Marking those functions as inlined solves the problem and should not cause
any bad side effects because they're small enough and likely being inlined
by an optimizer anyway.
This change restores the use of 4-bits in Far::PatchParam to
encode the refinement level of a patch. This restores one bit
that was stolen to allow for more general encoding of boundary
edge and transition edge masks. In order to accommodate all
of the bits that are required, the transition edge mask bits
are now stored along with the faceId bits.
Also, accessors are now exposed directly as members of Far::PatchParam
and the internal bitfield class is no longer directly exposed.
Unified transition patch drawing affects the calculation of
tessellation level metrics. Because a single edge of a shader
patch might be split into two halfs along a transition edge,
the effective maximum number of spans along any adaptive edge
is limited to half of the device maximum.
Besides we've not been computing accurate derivatives on gregory patch,
there was a separate bug in shaders which gives completely bogus dUdV on
corner vertices. This change fixes that significant artifact, however,
is still approximating derivatives by ignoring rational components.
- add HLSL equivalents of the previous GLSL change
- rename OsdGetSingleCreaseSegmentParameter to
OsdGetPatchSingleCreaseSegmentParameter.
- add shadingMode UI for dxViewer similar to glViewer
use boundaryMask to identify the crease edge from 4 edges.
with this change, single-crease patch no longer needs to be rotated on
its population.
In shader, experimentally use same infinite sharp matrix for both
boundary and single-crease patch.
Added a size specifier to the shader output array declaration
in the GregoryBasis and Gregory control shaders. This seems
to be required by the GLSL compiler on AMD and is harmless elsewhere.
Added a size specifier to the shader output array declaration
in the BSpline control shader. This seems to be required by the
GLSL compiler on AMD and is harmless elsewhere.
This change refactors the GLSL and HLSL patch shader code so that
most of the work is implemented within a library of common functions
and the remaining shader snippets just manage plumbing.
There is more to do here:
- varying and face-varying data can be managed entirely by the client
- similarly, displacement can be implemented in client code
- there's still quite a bit of residual boiler-plate code needed
in each shader stage that we should be able to wrap up in a more
convenient form.
To encapsulate endcap functions from public API, add methods to
tell the number of patch points needed (GetNumLocalPoints()) and
to compute those patch points as a result of change of basis from
the refined vertices (ComputeLocalPointValues()).
ComputeLocalPointValues takes contiguous source data of all levels
including level0 control vertices.