- changed Vtr::LocalIndex to 16-bit integer from 8-bit
- added test shapes including valence 360 vertices
- disabled new shapes in far/regression until improved accuracy accepted
In OpenSubdiv 2.x, we encapsulated subdivision tables into
compute context in osd layer since those tables are order-dependent
and have to be applied in a certain manner. In 3.0, we adopted stencil
table based refinement. It's more simple and such an encapsulation is
no longer needed. Also 2.0 API has several ownership issues of GPU
kernel caching, and forces unnecessary instantiation of controllers
even though the cpu kernels typically don't need instances unlike GPU ones.
This change completely revisit osd client facing APIs. All contexts and
controllers were replaced with device-specific tables and evaluators.
While we can still use consistent API across various device backends,
unnecessary complexities have been removed. For example, cpu evaluator
is just a set of static functions and also there's no need to replicate
FarStencilTables to ComputeContext.
Also the new API delegates the ownership of compiled GPU kernels
to clients, for the better management of resources especially in multiple
GPU environment.
In addition to integrating ComputeController and EvalStencilController into
a single function Evaluator::EvalStencils(), EvalLimit API is also added
into Evaluator. This is working but still in progress, and we'll make a followup
change for the complete implementation.
-some naming convention changes:
GLSLTransformFeedback to GLXFBEvaluator
GLSLCompute to GLComputeEvaluator
-move LimitLocation struct into examples/glEvalLimit.
We're still discussing patch evaluation interface. Basically we'd like
to tease all ptex-specific parametrization out of far/osd layer.
TODO:
-implments EvalPatches() in the right way
-derivative evaluation API is still interim.
-VertexBufferDescriptor needs a better API to advance its location
-synchronization mechanism is not ideal (too global).
-OsdMesh class is hacky. need to fix it.
refactor CL/CUDA specific initialization stuffs into
examples/common/clDeviceContext and cudaDeviceContext, and
update examples to use those structs.
also
- remove CL/CUDA tests from osd_regression. The tests for those kernels will be covered by glImaging.
- update cuda initialization to use the GL-interoperable device if available.
- remove CL specialization from glShareTopology, following the same pattern as we took in the previous OsdGLMesh refactoring. (still something strange with XFB kernels though)
- fix file permissions.
Removed OpenCL/D3D11 specialization and add DEVICE_CONTEXT as a template
parameter. For the kernels which don't need a context object (e.g.
CPU, OpenGL, cuda) just ignore the context, and for the kernels which
use a context (e.g. OpenCL, DirectX) takes a context or a user-defined
class as which encapsulates device contexts. Note that OpenCL requires
two objects, cl_context and cl_command_queue. The user-defined
class must provide GetContext() and GetCommandQueue() for strongly typed
binding to osd VertexBuffers and ComputeContexts.
Osd::Mesh and MeshInterface have been used as a handy harness to host
multiple GPU kernels and graphics APIs. However it has CL/DirectX
specializations and duplicates large amount of plubming code. With this
change, glMesh.h and d3d11Mesh.h become just typedefs and all logic is
put into mesh.h without specializations.
Also cleaned up unused header files and code formatting.
Renamed the existing vtr_regression test to far_regression as the public API is
meant to be the far library, and vtr_regression was really testing through
the far API.
Deleted the old far_regression as it is no longer relevant.
This is the first step to tease off Osd compute controller/contexts
from Far API.
Currently FarStencilTable only creates a kernelbatch for the entire range,
so we can use [0, numStencils) for all cases instead of KernelBatch.
This might not be true if we apply non-factorized level-wise stencils,
then we'll add another modular utility to serve those cases.
PatchTablesFactory fills 20 indices topology into patchtable, and use it for eval and draw.
note: currently screen-space adaptive tessellation of gregory basis patches is
broken and cracks appear around them.
- CPU, CPUGL backends both updated
- CL backend still needs work
- Loop subdivision tests disabled because they don't work
- Hedit tests disbaled because they don't work
- extend Far::PatchTables data structures & interfaces to store requisite
information for channels of face-varying bi-cubic patches
- implement gather function in Far::PatchTablesFactory to populate face-varying
channels with adaptive patches
- extend accessor interface in Vtr::Level
- propagate code fall-out throughout OpenSubdiv code base, examples & tutorials
- extend vtrViewer code to visualize tessellated bi-cubic face-varying patches
- add simple parsing function to the Shape class
- only a small portion of the MTL format is supported (no textures)
- the feature is disabled by default
- this work is incomplete : we still need to add piping to the GPU
- renamed Sdc::Type to SchemeType and TypeTraits to SchemeTypeTraits
- renamed TYPE_ prefix to SCHEME_
- updated all usage within core library
- updated all usage in examples, tutorials, etc.
- fixed naming consistency of protected methods used by Factory
- removed other unused and/or redundant protected methods
- update Far Factories to reflect changes to Refiner methods
- updated usage in tutorials and regression
- move level of refinement / isolation into the Options structs
- fix splash damage in rest of the code
note 1: this is less than ideal, because most compilers accept the previous
call to these functions with an incorrect parameter list (ie. passing
the level instead of the struct issues no warnings and compiles...)
caveat emptor...
note 2: the level parameter names may not be final for adaptive modes
as we will likely want independent controls over crease vs.
extraordinary vertex isolation.
- change topology refiner to check for edge sharpnesses when selecting faces for isolation
- add face-aggregator for edge tags to Vtr::Level
- fix logic in Far::PatchTablesFactory to correctly tag single-crease patches along infinitely sharp edges
note : this fix is a bit of a cludge - barfowl confirms that the vertex crease tags (VTags) are intended to
carry neighborhood information, which they currently do not. we will revisit this shortly and fix the tags,
which will allow us to simplify the traversal logic when isolating topology features.
fixes#369
Const' declared instances of Vtr::Array do not protect the pointer held
privately by the class properly. In order to force the compiler to
protect this pointer, we removed all non-const accessors from Vtr::Array
(now renamed Vtr::ConstArray) and moved them to a child class (Vtr::Array),
which requires const_cast<> operators internally to allow access.
The change & renaming is then propagated to all internal dependencies.
- VVarBoundaryInterpolation is now VtxBoundaryInterpolation
- enum prefix change from VVAR to VTX
- generel cleanup / doxyfication
- update of beta / release notes
- add error reporting callback to Vtr::Level::validateTopology
- switch printfs to callback
- add error code enums to Vtr::Level
- route Far::TopologyRefinerFactory::reportInvalidTopology through Vtr::Level callback
note:
- Vtr::Level::validateTopology needs to check creaase tag indices
- topology validation should be client-code driver in TopologyRefinerFactory (turned off in the code at the moment)
- make sure we don't get conflicting enums (CODE_ERROR)
- fix template specialization for Far::TopologyRefinerFactory in regression/common/vtr_utils
- fix remaining error reporting code around osd
- adaptive mode: remove faces tagged as holes from the selection of faces to isolate
- uniform mode: faces tagged as holes are still included in the refinement process,
however they are removed from patch tables
- future improvements: add a 'selective refinement' code path separate from 'uniform refinement'
to handle this case without un-necessary subdivision work.