Although valence 2 gregory patch is not well supported yet, this fix
mitigates artifacts around such a vertex.
Adding a shape catmark_gregory_test8 to see this issue.
Now the channel specifier is the last parameter in a method's
parameter list with a default of 0. This is consistent with the
topological face-varying queries and also simplifies the common
case of just a single face-varying channel.
- add HLSL equivalents of the previous GLSL change
- rename OsdGetSingleCreaseSegmentParameter to
OsdGetPatchSingleCreaseSegmentParameter.
- add shadingMode UI for dxViewer similar to glViewer
use boundaryMask to identify the crease edge from 4 edges.
with this change, single-crease patch no longer needs to be rotated on
its population.
In shader, experimentally use same infinite sharp matrix for both
boundary and single-crease patch.
- split displayStyle and shadingMode control into two different settings.
- add more shadingModes:
normal, curvature(screen space), curvature (from patch)
- minor cleanup
- the framebuffer class in examples/common is unstable in certain drivers.
removing offscreen rendering for now.
- move screenshot function to GLUtils.
- fix vertex attrib binding bug (not showing control mesh on osx)
- add GLControlMeshDisplay and D3D11ControlMeshDisplay into
examples/common
- delete all drawCageEdges/drawCageVertices from viewers and
use ControlMeshDisplay class
Adding command line options to glViewer to make it easy
to control the requested GL version and profile. While
it is only enabled for glViewer in this change, it will
be easy to extend to all our example viewers. The new
command line options are:
-glCoreProfile on|off
-glForwardCompat on|off
-glVersion M.n
This change refactors the GLSL and HLSL patch shader code so that
most of the work is implemented within a library of common functions
and the remaining shader snippets just manage plumbing.
There is more to do here:
- varying and face-varying data can be managed entirely by the client
- similarly, displacement can be implemented in client code
- there's still quite a bit of residual boiler-plate code needed
in each shader stage that we should be able to wrap up in a more
convenient form.
The GLFW context version hint is a minimum version, not maximum version so
requesting 4.4 and then falling back to lower versions doesn't make sense.
This change sets the minimum version to 3.2 and attempts to standardize this
across all example apps.
Also print the maximum supported GL version along with the context version
at startup.
We will need to find a solution for Ignacio's older setup, but this at least
fixes the other fallout.
* Use glewIsSupported instead of glewGetExtension
* Convert tabs to spaces
* Remove GLEW static caching (they only get called once)
All examples, regression tests and tutorials directly looked into
opensubdiv source directory to grab the header files. This is somewhat
convenient during development but they can mistakenly access private
header files.
With this change, when OPENSUBDIV_INCLUDE_DIR is given to cmake,
it will be used as an include search path to build examples etc.
Otherwise it follows the same behavior as before.
Also replaces include references to the files in regression dir
to be relative, and cleanups some copy-paste patterns.
Add EvalStencils and EvalPatches API for most of CPU and GPU evaluators.
with this change, Eval API in the osd layer consists of following parts:
- Evaluators (Cpu, Omp, Tbb, Cuda, CL, GLXFB, GLCompute, D3D11Compute)
implements EvalStencils and EvalPatches(*). Both supports derivatives
(not fully implemented though)
- Interop vertex buffer classes (optional, same as before)
Note that these classes are not necessary to use Evaluators.
All evaluators have EvalStencils/Patches which take device-specific
buffer objects. For example, GLXFBEvaluator can take GLuint directly
for both stencil tables and input primvars. Although using these
interop classes makes it easy to integrate osd into relatively
simple applications.
- device-dependent StencilTable and PatchTable (optional)
These are also optional, but can be used simply a substitute of
Far::StencilTable and Far::PatchTable for osd evaluators.
- PatchArray, PatchCoord, PatchParam
They are tiny structs used for GPU based patch evaluation.
(*) TODO and known issues:
- CLEvaluator and D3D11Evaluator's EvalPatches() have not been implemented.
- GPU Gregory patch evaluation has not been implemented in EvalPatches().
- CudaEvaluator::EvalPatches() is very unstable.
- All patch evaluation kernels have not been well optimized.
- Currently GLXFB kernel doesn't support derivative evaluation.
There's a technical difficulty for the multi-stream output.
In osd layer, we use GLPatchTable (D3D11PatchTable) as a
device-specific representation of FarPatchTables instead of
DrawContext. GLPatchTable may be used not only for drawing
but also for GPU eval APIs (not yet supported though.
We may add CudaPatchTable etc as needed).
The legacy gregory patch drawing buffers are carved out to
the separate class, named GLLegacyGregoryPatchTable.
Also face-varying data are split into client side for now, until
we add new and more robust face-varying drawing structure
(scheduled at 3.1 release)
Tentatively replicate PatchArray structure in GLPatchTables. It will
be revised in the upcoming change.
Shifting hard-coded SRV locations of legacy gregory buffers in HLSL shaders.
As a preparation for retiring DrawContext, move SupportsAdaptiveTessellation
method to examples/common/glUtils, which is renamed and namespaced
from gl_common.{cpp,h} to be consistent to other files.
Same renamings applied to other example files.